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ABSTRACT 

 

 This article proposes a simple efficient method for solving some volterra 

integral equations with time delay that arises in different applied issues. By 

using basis orthogonal functions and their operational matrix of integration, 

integral equations can be reduced to a sparse linear lower triangular system 

which can be solved by forward substitution. Numerical examples show that 

the proposed scheme has a suitable degree of accuracy.   
 

1.Introduction  

Many numerical methods have been introduced to solve IE numerically, but each method has its 

own shortcomings. Most of the numerical methods convert the model equations containing IE into 

discrete model equations, which appear in the form of a set of linear or nonlinear algebraic equations. 

In the case of direct solvers for solving this set of algebraic equations, the computational cost of a large 

system worsens due to the large computational time and memory requirements required for 

mathematical operations. Therefore, it is still a challenging task to introduce a simple and efficient 

technique for IEs. In this method, we focus on improving the efficiency of direct solvers by using 
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orthogonal base functions method. Direct solvers are useful for solving problems that iterative solvers 

struggle with. Most of time delay Integral equations are frequently encountered in engineering and 

biological modeling processes. In [1,2 ],  delay integral equations (DIEs) and delay integro-differential  

equations (DIDEs) are solved by different methods. In [3], the approximate solutions of optimal 

control of time delay  systems are derived by Block pulse functions. A  piecewise fuzzy polynomial 

interpolation method is proposed to approximate the solutions of fuzzy delay integral equations with 

weakly singular kernels has been reviewed [4]. In [5], a numerical method to solve a fuzzy differential 

equation via differential inclusions with their membership distribution functions is obtained. Bloor et 

al. [6] used collocation technique to solve delayed IEs using Taylor polynomials. Mosleh and Otadi [7] 

used the least squares technique to solve Volterra delay IEs. Bica and Popescu [8] developed an 

iterative technique to solve nonlinear Volterra fuzzy IEs with fixed delay. 

Nowadays, basis functions such as Haar wavelets were used to derive  solutions of integral and 

differential equations that can be seen in [9-11]. It also presents a new numerical method for solving 

integral Volterra functional equations with variable bounds and mixed delays [12]. The problem of the 

existence of solution to functional integral equations has been investigated in different references [13] 

and applications to this type of equations have also been found in models of swelling porous media 

[14], [15]. 

    In this paper we use Block pulse functions for numerical solving Volterra integral equations with 

constant time delay 0  as, 

t

0
g(t) f (t) k(t,s)g(s )ds t [0,T], T (0, )= + −     

    This article is organized as follows. In section 2, we explain block pulse functions and integration 

operational matrix and functions containing time delay
f (t )− 

.  Section 3 is devoted to  solving 

Volterra integral equations with time delay.  Section 4 is devoted to error estimation in Block Pulse 

functions  approximation and in Section 5 we achieve numerical examples to show the accuracy of the 

method and the culmination of paper in section 6 is the conclusion. 

2. Preliminaries 

      The aim of this section is to interpret notations and definition of the block pulse functions that have 

expressed entirely in [9]. 

 

 2.1.   Definition 

       We define the m-set of BPFs as, 

(m)

i

1 (i 1)h t ih
(t)

0 otherwise.

−  
 = 

  

       

T
with t [0,T), i 1,2,...,m and h

m
 . = =

 
    The primary properties of BPFs are disjointness and orthogonality that can be expressed as follows 

(m) (m) (m)

i j ij i(t) (t) (t),  =  
 

https://www.sciencedirect.com/topics/mathematics/interpolation-polynomial
https://www.sciencedirect.com/topics/mathematics/interpolation-polynomial
https://www.sciencedirect.com/topics/engineering/differential-inclusion
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T
(m) (m)

i j ij
0

(t) (t)dt h , i, j 1,2 ,...,m  =  =   
 2.2.   Functions approximation 

     The orthogonality property of BPFs is the base of expanding functions into their block pulse series. 

A real bounded function 
2f (t) L [0,T) , can be expanded into a block pulse series as 

m
(m)

m i i

i 1

ˆf (t) f (t) f (t),
=

= 
 

   where 

T
(m

i

)

i
0

f
1

f (t) (t)dt
h

= 
is the block pulse coefficient with respect to the ith BPF 

(m)

i (t)
. In the 

vector form we have, 
T T

m
ˆf (t) f (t) F (t) (t)F,=  =

 

    where 
( )

T

1 2 mF f ,f , ,  f .= 
 Let 

2

1 2k(s, t) L ([0,T ) [0,T )). 
 It can be expanded as 

T T Tk(s, t) (s)K (t) (t)K (s),=   =   where (s), (t)   are 1 2m ,m
 dimensional BPFs vectors 

respectively, and ij 1K (k ), i 1, 2,.. ., m ,= =
 2j 1,2,...,m= is the 1 2m m block pulse coefficient matrix with  

                                      

1 2
1 2

T T
(m ) (m )

ij i j
0 0

1 2

1
k k(s, t) (s) (t)dtds,

h h
=   

 

where 

1 2
1 2

1 2

T T
h , h

m m
= =

. For convenience, we put 1 2m m m= =
. 

2.3.   Integration operational matrix 

  Computing 

t
(m)

i
0

(s)ds one obtains  

t
(m)

i
0

0 0 t (i 1)h,

(s)ds t (i 1)h (i 1)h t ih,

h ih t T

  −


 = − − −  
  



 
   From [5], we will have:  

t

0
(s)ds P (t),   

    where the operational matrix of integration is given by 

1 2 2 2

0 1 2 2
h

P 0 0 1 2
2

0 0 0 1
m m

 
 
 
 =
 
 
 
   

      So, the integral of every function f(t) can be approximated as follows 

0 0
( ) ( ) ( )

t t
T Tf x dx F x dx F P t      

2.4.   Functions containing time delay 

In order to approximate a function containing time delay, we consider a block pulse function 

containing time delay ( )q h = + with a nonnegative integer q and 0 1   that can be expressed as 
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(m) (m) (m)

i q

(m) (m) (m)

i i q

(t) (t (i q)h) (t (i q 1)h) for i m q

(t ) (t) (t (i q 1)h) for i m q.

0 for i m q

+  

+ 

 +  − + − − + −  −


 −  =  − − + − = −
  −  

Where     

(m)
1 0 t h,

(t)
0 otherwise.



  
 = 

   

In a vector form, 
(m) T q T q T q 1

i i i i(t ) H (t) H (t) H (t),+

  − =   −  + 
 

    where  
( )

T

i 0,...,0,1,0,...,0 =
 with 1 in i-th position and 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0
m m

H



 
 
 
 =
 
 
 
   

To avoid the expression 
(t)

in the above equation, we expand the function  
(m)

i (t ) −
into its block 

pulse series : 

( )(m)

i i1 i2 im(t ) c ,c , , c ( ),  t −  =  
 

where the block pulse coefficients ijc (i, j 1,2, ,m)=
 are: 

0 ( 1)

( 1) ( 1) ( 1)

1

1 1
( ) ( ) ( ) ,

1
( ( ) ( ) ( ) )

( (1 ) ) .

T jh

ij i j i
j h

jh jh jh
T q

i
j h j h j h

T q q

i j

c t t dt t dt
h h

H t dt t dt H t dt
h

H H

 

    

 

−

− − −

+

= − = −

=   −  + 

=  − + 

 

  

 

Noticing that the expression 
T q q 1

i j((1 )H H )+ − + 
is just the single entry positioned in the ith row 

and jth column of the matrix 
q q 1(1 )H H +− + , we can expand the whole block pulse function vector 

containing time delay (q )h = +  into its block pulse series in a vector form : 
q q 1(t ) ((1 )H H ) (t).+ − = − +   

In the above equation, the matrix 
q q 1(1 )H H +− + is usually called the block pulse operational matrix 

for time delay, or simply the delay operational matrix. Expressing concretely, it is : 

                       

1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0
(1 ) .

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

q qH H

 

 


 



+



− 
 

− 
 
 
 − + =
 −
 
 
 
 
 
 

(q +1) - t h
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 Therefore, the block pulse series of a function containing time delay can easily be obtained as : 
1( ) ( ) ((1 ) ) ( ).T T q qf t F t F H H t    +−  − = − +   

 

3.   Solving Volterra integral equations with time delay 

   We consider the following Volterra integral equation with constant time delay  

 

where the function is the unknown function, while the functions and 

are the known functions.                                                                                                                                    

We approximate and by relations as follows 

( ) ( ) ( ) , ( ) ( ) ( ) , =  =T T T Tg t G t t G f t F t t F 

( , ) ( ) ( ) ( ) ( ),  = T T Tk t s t K s s K t 

 

If we put , then we have, 

 

With substituting above approximation in equation, we have 

 

Let be the ith row of the constant matrix , be the ith row of the integration operational 

matrix P and be a diagonal matrix with as its diagonal entries. By the previous relations and 

assuming 

, we will have, 

         

0 

0
( ) ( ) ( , ) ( ) , [0, ], (0, ),

t

g t f t k t s g s ds t T T = + −  

2[0, ]g L T 2[0, ]f L T

2( , ) ([0, ] [0, ])k t s L T T 

( ) , ( ) , ( , )g t f t k t s ( )g s −

1( ) ( ) ((1 ) ) ( ),T T q qg s G s G H H s    +−  − − + 

1(1 ) q qA H H  += − +

( ) ( ).Tg s G A s− 

0

0

( ) ( ) ( ) ( ) ( ) ,

( ) ( ( ) ( ) ) ( ).

t
T T T T T

t
T T T T

G t F t G A s s K t ds

F t G A s s ds K t

  +   

 +   





iK TK iR

iKD
iK

1 2m m=

0 0

1 1

2 2

1 1 1 1

2 2 2 2

( ( ) ( ) ) ( ) ( ( ) ( ) ) ( )

( ) 0 0

0 ( ) 0
( )

0 0 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

t t
T T T T

m m

T T

T T

T
m m m

s s ds K t s s ds K t

R t K

R t K
t

R t K

R t K t R t t K

R t K t R t t K

R t K t R t

   =   

  
  

  = 
  
  

  

    
 

    = =
 
 

    

 

1

2

1

2

( )

( ) ( ),

m

T

m

K

K

m K

t K

R D

R D
t B t

R D

 
 
 
 
  
 

 
 
 

=  =  
 
 
 
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   where                                      

 

we will have    

 

or  

 

So, by setting and  replacing by , we will have, 
TM G F ,=  

which is a linear system of equations with lower triangular coefficients matrix that gives the 

approximate block pulse coefficient of the unknown function 
( ).g t

 

 

4.   Error estimation in block pulse functions approximation 

   In this section, we will show that the rate of block pulse functions approximation is O(h) and because 

of it we can obtain a good degree of accuracy. 

 

Theorem 1. Suppose that f(t) is an arbitrary real bounded function, which is square integrable in the 

interval [0,1), and 
( )ˆ( ) ( ) me t f t f t= −

, [0,1)t I = , which  
( )

1

ˆ ( )
m

i i

i

mf tt f 
=

=
 is the block pulse  

series of  ( )f t . Then,   

( ) ( )‎ ‎ ‎‎
2 3

sup
t I

h
e t f t





  

                     

Proof. Let, 

( )
( )

‎
0

i i

i

i

f t f t D
e t

t I D

− 
= 

 −  

where 
( )

1
 ‎ ‎ ‎‎ ‎ ‎‎‎ ‎‎iD t i h t ih h

m

 
= −  


= 
  and 1, 2,..., .i m=   We have, 

( ) ( ) ( )
( )

( ) ( )( )
( )1 1

1 1ih ih

i
i h i h

e t f t f s ds f t f s ds
h h− −

= − = − 
  

now by mean value theorem, we get, 

( ) ( )
( )1

'( ) 1
'( )( )‎‎ ‎‎‎‎‎‎‎‎ ‎‎ ‎‎ ‎‎‎‎‎‎ ‎ ‎ ‎ ‎‎‎‎‎ ‎

2

ih
i

i i i i
i h

f
e t t s ds f t i h t D i m

h


 

−

 
 
 

= − = + − +  =
then 

  

( ) ( )
( )

( )
( )

( )

22 2 2

1 1

3
2

1
‎ ‎ ‎ ‎ ‎ ‎ ‎

2

( ' ,  ‎‎‎‎‎ ‎‎ ‎‎‎ ‎ ‎ ‎ ‎

(

) ..., ‎‎
12

ih ih

i
i

i i

i i

h i h

i

e t e t dt f t i h dt

h
f D i m





− −
= = +

 
 


= 

− +


=

 

 

11 21 1

22 2

2 2

0 2
.

2

0 0

m

m

mm m m

k k k

k kh
B

k


 
 
 =
 
 
 

( ) ( ) ( ),T T TG t F t G AB t  + 

M I AB= − =

( ) ,T TG I AB F−
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   Consequently    

 

or, 

( ) ( )‎ ‎ ‎‎
2 3

sup
t I

h
e t f t





  

hence, 
( )‎ ‎ ‎‎e t O h=

  

                     

Theorem 2. Suppose that 
( )  )  )( )2, 0,1 0,1f s t L 

  

 and 
( ) ( ) ( ) ( )  )  )ˆ, , , ‎‎ ‎‎ ‎ ‎ ‎‎ ‎ ‎‎me s t f s t f s t s t D = = −

 where 

( ) ( )

1 1

ˆ ( , ) ( ) ( )
m m

m m

m ij i j

i j

f s t f s t 
= =

=
 is 

the block pulse series of 
( ),f s t

. Then, 

( )

1

2

2 2

( , ) ( , )

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎
2 3

s t
x y D x y D

h
e s t f x y f x y

 

 
   +
 
    

                      

Proof. Let, 

( )
( ) ( )

( )

,    , ‎‎
‎ ‎ ‎‎‎

0 , .

ij ij

ij

ij

f s t f s t D
e s t

s t DD

−
= 




 −
 

Where 
( ) ( ) ( )

1
, : 1 ‎‎ ‎ ‎ ‎‎ ‎ijD s t i h s ih j h t jh h

m

 
= −   −   = 
   and , 1,2,..., .i j m=  We have, 

( ) ( ) ( )
( )( )

( ) ( )( )
( )( )2 21 1 1 1

1 1
, ,,, , ,

ih jh ih jh

ij
i h j h i h j h

se s t f s t f x y dydx f f x y dydt x
h h− − − −

= −− =   
 now by 

mean value theorem, we get, 

( )
( )( )2 1 1

1
( , ) ( ) ( , ) ( ) ( , )

1 1
( , ) ( , ) , ( , ), ( , ) .

2 2

ih jh

ij s i j t i j
i h j h

s i j t i j i j ij

e s t s x f t y f dydx
h

f s i h f t j h s t D

   

     

− −
 = − + −

      
 = + − + + + − +       

      

 

 
then 

 

( ) ( )
( )( )

( ) ( )

2 2

1 1

4
2 2

‎ ‎ ‎

( , ) ( , ) ,  , ‎‎ ‎‎‎ ‎ ‎ ‎ ‎ ‎‎‎‎‎ ‎‎
12

ih jh

ij
i h j h

s i j t i j i i

j

j

i

j

e s t e s t dtds

h
f f D i j m     

− −
=

 = +  =

 

  
Consequently 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2
1 122

0 0
1

1 1
2 2 2

0 0
1 1 1

23 2
2

1

‎ ‎ ‎

‎ ‎ ‎

( ) sup ( ) ,
12 12

2

m

i

i

m m m

i i j i

i i j i i

m

i

t

i

Ii

e t e t dt e t dt

e t e t e t dt e t dt e t

h h
f f t

=

=  = =

=

 
= =  

 

 
= = = 

 

 = 

+

 

    


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( ) ( )

( )

( )

2

1 1

2

1 1

1 1 1 12 2

0 0 0 0

1 1 2

0 0

4 2
2 22 2

( , ) (1 )

1 1

1 ,

‎ ‎ ‎

( , ) ( , ) sup ( , ) sup ( , ) , 
12 1

( , )

( , ) ( , )

2

m m

ij

i j

m m m m

ij ij

i j i j

m

s i j t i j

m

i

s t
x y D x yj D

e s t

e s

e s t e s t dtds dtds

dtds

h h
f f f x y f

t

x y

t e s

   
 

= =

= = = =

= =

 
 
 

= 

= =

= =

 
    + +
 
 

   

 



 


 

or,                                  

( )

1

2

2 2

( , ) ( , )

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎
2 3

s t
x y D x y D

h
e s t f x y f x y

 

 
   +
 
   

Hence, 
( )‎ ‎ ‎ ‎‎e s t O h=

 

 

5.  Numerical examples 

   To illustrate the theoretical results stated in Section 3 we consider the examples below. Let iG
denote 

the Block pulse coefficient of exact solution of the given examples, and let ig
be the Block pulse 

coefficient of computed solutions by the presented method. The error is defined as,                       

1 i m i iE max | G g |  = −‖ ‖
. 

 

Example 1. Consider the following Volterra integral equation with (constant) time delay 0  , 
4 3 2

2

0
1 0 0

12 3 2

tt t
g ( t ) ( )t ( t s )g ( s )ds s ,t [ ,T ], ( ,T )


  = − + + − + − −  

 

With the exact solution
2g( t ) t= , for 0 t T  .The numerical results are shown in Table 1. 

 

 Example 2. Consider the following Fredholm integral equation time delay 0  , 

0
0 0

T

g ( t ) t (Tcos(T ) sin(T ) sin( )) sin( t )

( ts )g ( s )ds s ,t [ ,T ], ( ,T )

  

 

= − − − − +

+ −  
 

With the exact solution g( t ) sin t= , for 0 t T  .The numerical results are shown in Table 2. 

Conclusion  

   Using Block pulse functions as basic functions to solve the Volterra integral equations with constant 

time delay is very simple and effective in comparison with other methods. Its applicability and 

accuracy is checked on some examples. In these examples the norm infinity of error is given only for 

10 specific values of  . The benefits of this method are low cost of setting up the equations without 

applying any projection  method such as Galerkin, collocation, etc. 

 

 
Table 1. Results for example 1 with m=32. 

1T = 0.5T = 0.1T = 

E


 
 

 
 

E


 
 

E



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2.417813E – 7 

8.895481E – 6 

1.189044E – 6 

3.594127E – 5 

7.787479E – 5 

1.422281E – 4 

2.332652E – 4 

3.550228E – 4 

5.113481E – 4 

0.01 

0.04 

0.07 

0.10 

0.13 

0.16 

0.19 

0.22 

0.25 

1.432365E – 8 

5.053922E – 8 

6.775494E – 8 

2.075733E – 6 

4.540855e – 5 

8.363133E – 5 

1.382092E – 5 

2.118146E – 5 

3.070148E – 4 

0.005 

0.020 

0.035 

0.050 

0.065 

0.080 

0.095 

0.110 

0.125 

2.252537E – 10 

7.890189E – 10 

1.051373E – 9 

3.235521E – 9 

7.100636E – 8 

1.311426E – 8 

2.172782E – 7 

3.337662E – 7 

4.847992E – 7 

0.001 

0.004 

    0.007 

0.010 

0.013 

0.016 

0.019 

0.022 

0.025 

 

 
Table 2. Results for example 2 with m=32. 

 

 

 

                           7.   
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