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 In this article, using Krall-Laguerre polynomials in compression we develop 

the class of methods for the numerical solution of Volterra integral equations 

(VIE) of the third type. This method leads to a linear system of equations that 

are easily solvable. Two numerical examples were presented to verify the 

method, applicability and accuracy of the method. Numerical results are 

provided to illustrate the proposed method and to compared with the 

methods in [14]. 
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1. Introduction  

Different numerical methods are used to solve ordinary differential equations or differential 

equations with partial derivatives, or integral equations, linear or non-linear, time-dependent or non-

time-dependent. Among these methods, finite differences, finite elements and spectral methods can 

be mentioned. Spectral methods are of particular importance due to their high accuracy and fast 

convergence. Spectral methods are divided into three main groups: Galerkin, Tau and collocation, 

each of which has special capabilities. 

There are two main methods for solving integral equations numerically, which are considered as 

direct and iterative methods, respectively. In the direct methods of solving the problem, it leads to 

solving the system of linear or non-linear equations, but iterative methods do not need to solve the 

system. Of course, each of these methods has its own advantages and disadvantages. Integral 

equations have many applications in other sciences. For example, in [1] Fredholm's integral equations 

are used in plasma physics calculations. Many studies have been done on the numerical solution of 

these equations, and many types of numerical methods have been developed to quickly and 

accurately obtain the approximation of y(x). Literature reviews and references of many existing 

methods are available in [2]. Collocation methods [3], sinc methods [4-6], general spectral methods 

[7, 8], convolution equation methods [9], Runge-Kutta methods [10-12] and Galerkin methods [14, 

15] are several of the many approaches that have already been considered. It also presents a new 

numerical method for solving integral Volterra functional equations with variable bounds and mixed 

delays [16]. 

Many numerical methods have been introduced to solve IE numerically, but each method has its own 

shortcomings. Most of the numerical methods convert the model equations containing IE into 

discrete model equations, which appear in the form of a set of linear or nonlinear algebraic 

equations. In the case of direct solvers for solving this set of algebraic equations, the computational 

cost of a large system worsens due to the large computational time and memory requirements 

required for mathematical operations. Therefore, it is still a challenging task to introduce a simple 

and efficient technique for IEs. In this method, we focus on improving the efficiency of direct solvers 

by using orthogonal base functions method. Direct solvers are useful for solving problems that 

iterative solvers struggle with. 

 The present study proposes a new method for the numerical solution of third type linear integral 

equations. It should be noted that the given method is based on the approximation of unknown 

functions using the Krall-Laguerre polynomial.   

This article is organized as follows. In section 2, we explain preliminaries such as  integral equations of 

the third type, Krall orthogonal polynomials, Laguerre polynomials and Krall- Laguerre polynomials. 

Section 3 is devoted to numerical solution of integral equation of the third type. In Section 4 we 
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achieve numerical examples to show the accuracy of the method and the culmination of paper in 

section 5 is the conclusion. 

2. Preliminaries  

The aim of this section is to interpret notations and definition of Integral equations of the third type 
and Krall-Laguerre polynomials that have expressed entirely in [17]. 
 

2.1 Integral equations of the third type  

In recent years, researchers have conducted extensive scientific studies on the integral. Equations 

that can significantly help to model and analyze a wide range of problems in mechanics, engineering, 

chemistry, physics, biology, astronomy, potential theor are called integral equations of the third type. 

For example, the integral equation 

(1          ) 
0

( ) ( ) ( ) ( , ) ( ) , 0,
x

x f x g x x t k x t f t dt x T −= + −  

where  )0,1 , , 0 , 0 ,       +  and g(x) is a continuous function on the interval I. Also, 

k(x,t) is continuous on the set  ( , ): 0x t t x T =   
 
and in the form 

1( , ) ( , )k x t x k x t += and 

also 
1 ( )k c  . 

This class of equations, as stated in (4-1), is found correspondingly in the concepts of single integral 

equations with boundary value problems for complex partial differential equations. 

2.2 Krall orthogonal polynomials 
Orthogonal Krall polynomials are known as subsets of polynomials with a linear function u obtained 

from quasi-definite functions (see [19, 20]), thus :u H →  representing a complex polynomial 

space H with complex coefficients. 

 In the following relation, the Dirac delta function is added and u  refers to the linear function. 

1

( )
N

p p

p

u u A x
=

= +  

where 1 2, , ,...,p pA x x x   and ( )px  is the Dirac delta function at the point
 px . 

2.3 Laguerre polynomials 

A complete orthogonal sequence in ( 2 ,L b−  and  )2 ,L a +  space can be obtained from the 

sequence in  )2 0,L +  space. In fact, it will be done by changing variables t b s= −  and t s a= + . 

By applying the Gram-Schmidt process to the sequence defined by: 

22 2 2, , , ....
t t t

e t e t e
− − −
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We find an orthogonal sequence of normal   ne . 

It can be shown that sequence  ne  is as follows: 

/2 ( ) , 0,1,2,...t

n ne e L t n−= =
 

that Laguerre polynomials of order n are defined as follows: 

( )

0 ( ) 1 ,

( ) , 1, 2,...
!

t n
n t

n n

L t

e d
L t t e n

n dt

−

=

= =

 

in other words: 

0

( 1)
( ) ,

!

jn
j

n

j

n
L t t

jj=

 −
=  

 
 

The first few terms of the Laguerre polynomial are: 

0

1

2

2

2 3

3

2 3 4

4

( ) 1

( ) 1

1
( ) 1 2

2

3 1
( ) 1 3

2 6

2 1
( ) 1 4 3

3 24

L t

L t t

L t t t

L t t t t

L t t t t t

=

= −

= − +

= − + −

= − + − +
 

In fact, Laguerre polynomials  ( )nL t are the solutions of Laguerre second order differential equation: 

( )1 0 ,n n nt L t L n L + − + = 

2.4 Krall- Laguerre polynomials 

Krall - Laguerre polynomials ( )mK x  of degree m in the article [17] are defined as follows: 

( )

( )
( )

0

1
( ) 1

1 !

i
m

i

m

i

m
K x i m x

ii
 

=

−  
 = + + +   +  

 

A family of  
0

( )m m
K x



=
 polynomials is also orthogonal to the measure of  . 

where 

( )d w x dx = 

Therefore, the weight function is : 
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1
( ) ( ) ( )xw x x e H x



−= +
 

Where H(x) is the heavy side step function and measure 𝒘  refers to the weight of the Laguerre xe −  

on the interval  )0 ,  . 

The first six terms of this polynomial are listed as follows : 

𝐾0(𝑥) = 1, 

𝐾1(𝑥) = 2 − 3𝑥 
𝐾2(𝑥) = 2 − 7𝑥 + 2𝑥2, 

𝐾3(𝑥) = 2 − 12𝑥 + 7𝑥2 −
5𝑥3

6
, 

𝐾4(𝑥) = 2 − 18𝑥 + 16𝑥2 −
23𝑥3

6
+

𝑥4

4
, 

𝐾5(𝑥) = 2 − 25𝑥 + 30𝑥2 −
65𝑥3

6
+

17𝑥4

12
−

7𝑥5

120
 

The Krall-Laguerre polynomials are shown in Figure 1 for different values of m . 

 

Figure 1.The Krall-Laguerre polynomials  

 
3. Numerical solution of integral equation of the third type 
 
Consider the integral equation of the third type as follows: 

 (2                    )
 

0
( ) ( ) ( ) ( , ) ( ) , 0,

x

x f x g x x t k x t f t dt x T −= + −  

To numerically solve this type of integral equations, we approximate the unknown function f with 

equation.  
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Accordingly, we will have: 

∑  

𝑚

𝑖=0

𝑓 (
𝑖

𝑚
) (

(−1)𝑖

(𝑖 + 1)!
[𝑖(𝛼 + 𝑚 + 1) + 𝛼] (

𝑚
𝑖

) ((𝑥𝛽+𝑖) − ∫  
𝑥

0

(𝑥 − 𝑡)−𝛼𝑘(𝑥, 𝑡)𝑡𝑖𝑑𝑡)) = 𝑔(𝑥) 

Accordingly, we will have: 

To obtain: 𝑓 (
𝑖

𝑚
) , 𝑖 = 0, … , 𝑚, by replacing x with , 0,...,j

j
x j m

m 
= =

+
 and 1mx = −

  for small 

values of  , the above equation becomes a linear system of equations. 

After that, the equation can be rewritten as: 

𝐵𝑋 = 𝑌 

where 

𝐵 = [
(−1)𝑖

(𝑖 + 1)!
[𝑖(𝛼 + 𝑚 + 1) + 𝛼] (

𝑚
𝑖

) ((𝑥𝑗
𝛽+𝑖

) − ∫  
𝑥

0

(𝑥𝑗 − 𝑡)
−𝛼

𝑘(𝑥𝑗 , 𝑡)𝑡𝑖𝑑𝑡)] , 𝑖, 𝑗 = 0,1, … , 𝑚,

𝑋 = [𝑓 (
𝑖

𝑚
)]

𝑡

, 𝑖 = 0, … , 𝑚

𝑌 = [𝑔(𝑥𝑗)]
𝑡
,          𝑗 = 0, … , 𝑚

 

Therefore, the integral in B formula is calculated numerically. 

Here with replacing 

𝑓 (
𝑖

𝑚
) , 𝑖 = 0, … , 𝑚, by   𝑓𝑚 (

𝑖

𝑚
) , 𝑖 = 0, … , 𝑚 

In equation (2), which are here considered as solutions in the nodes, then  

( )( ) , 0,...,m m ik f x i m=
 

is obtained that is the solution for integral equation (2). 

4. Numerical examples 
Now, two different examples are given, which show that the given method can be accurate, 
applicable and effective. In fact, according to [14], by presenting both examples, the efficiency of the 
proposed method is evaluated in this study. 
 
Example 1. As the first example, equation (2) considering the values: 
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It becomes the following Abel equation: 

 

Where 

 

In other words, the exact solution of the equation in this example is: 

 

First, the above equation was solved through different values of m. Then the numerical outputs were 

listed in Table 1. In this table, the report of the highest error, the order of convergence and the 

outputs of the Galerkin method [14] are given. 

Notably, the numerical outputs showed that the proposed method has a convergence order of 3.63, 

while, in the Galerkin method described in [14], these examples had a convergence order of 2.45. 

Table 1. Numerical outputs of example 1 and comparison with Galerkin method 

methodGalerkin  

mP

 

methodGalerkin  

me 

Proposed method 

mP 

Proposed method 

me 

m 

2.45 

2.94 

33.154 10− 
24.214 10− 
33.910 10− 
43.421 10− 

3.63 

3.94 

41.348 10− 

42.515 10−  

6 

12 

3.42 3.99 41.747 10− 24 

3.15 3.90 45.201 10− 48 

 

Example 2. As a second example, equation (2) considering the values: 

 

It becomes the following equation: 
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In other words, the exact solution of the equation in this example is: 

 

The above equation is practically used in modeling a number of heat conduction problems with 

mixed boundary conditions. 

Here also, the above equation was solved for different values of m. Then the numerical outputs were 

listed in Table 2. In this table, the report of the highest error, the order of convergence and the 

outputs of the Galerkin method [14] are given. 

Notably, the numerical outputs showed that the proposed method has a convergence rate of 4.45, 

while, in the Galerkin method described in [14], these examples had a convergence rate of 1.99. 

 

Table 2. Numerical outputs of example 2 and comparison with Galerkin method 

methodGalerkin  

mP

 

methodGalerkin  

me 

Proposed method 

mP 

Proposed method 

me 

m 

3.15 

3.01 

32.543 10− 
33.101 10− 
41.121 10− 
43.311 10− 

4.45 

4.88 

53.012 10− 

46.170 10−  

6 

12 

2.41 4.53 42.015 10− 24 

1.95 4.64 58.124 10− 48 

 

5. Conclusion and further research 
The present study proposes a numerical method based on Krall-Laguerre polynomials to solve 

Volterra integral equations (VIE) of the third type. This method reduces the problem-solving 

operations, turning it into systems of algebraic equations that are easily solvable. Two numerical 

examples were presented to verify the method, applicability and accuracy of the method. Numerical 

results showed that the convergence rate of this method is acceptable. There are several methods for 

solving integral equations of the third kind. Therefore, other numerical methods can be evaluated 

with the present study and their results can be compared with each other. 
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