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Abstract. In this paper, we plan to provide numerical schemes for solving the system of 
nonlinear Volterra-Fredholm integral equations (V-FIEs), by applying the quick and innova- 
tive methods to our problem-solving. We attempt to talk about a few numerical topics, such 
examination of uniqueness. Lastly, the suggested approaches’ applicability and correctness 
are evaluated, and comparisons are made with a few numerical instances.  

 
1. INTRODUCTION 

This work aims to address the non-homogeneous V-FIE of the second sort, which takes 
the following form: 

Ξ(β, Υ) = Φ(β, Υ) + 

∫ β ∫ 

ϑ(β, Υ, ξ, t, Ξ(ξ, t))dξdt, (1.1) 

where Ξ(β, Υ) is an unknown function, the functions Φ(β, Υ) and ϑ(β, Υ, ξ, t, Ξ(ξ, t)) are 
analytic on D = Ω × [0, T ] and where T > 0, and Ω is a closed subset of Rn, n = 1, 2, 3. 

These kinds of equations come up in a number of physical and biological issues, the theory 
of parabolic boundary value problems, and the mathematical modelling of the spatiotemporal 
evolution of epidemic models. [23] contains in-depth analyses and descriptions of these 
models. The following writers solve the two-dimensional V-FIEs: The V-FIEs and by [20] and 
[?], respectively, are solved in 1986 using the time collocation technique. [17] and [10] employ 
methods for solving V-FIEs that are based on the ADM. Two-dimensional V-FIE are solved 
by [3] using the homotopy perturbation technique, and by [2] using the two-dimensional 
Legendre Wavelets method. We direct the reader to the following publications for further 
information on numerical solutions to two-dimensional V-FIEs [15, 18, 27]. Different kinds of 
differential and integral equations can be approximatedly solved using power series expansion 
and its characteristics [21]. 

Numerous methods, including matrix-based approach [14], HPM [9] and MHPM [7], spline 
collocation method [5], and iterative method [24], have been used recently for the nonlinear 
computation of the two-dimensional V-FIEs. A HAM for solving nonlinear V-FIEs of the 
first sort was suggested by Behzadi [4]. 

The linear VFIEs were solved by Shekarabi et al. [22] using the two-dimensional Bernstein 
operational matrices technique, and the V-FIEs were solved by Dastjerdi et al. [8] using the 
radial basis function approximation. Additionally, [25] suggests using the Taylor polynomial 
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approach to approximate the solution of the V-FIEs. Conversely, Paripour and Kamyar 
[19] used novel basis functions to solve nonlinear V-FIEs directly, whilst Bhrawy et al. 
[6] employed the Legendre-Gauss-Lobatto collocation technique to approximate the multi- 
dimensional Fredholm integral equation solution. 

In this work, we use some approximation techniques HAM and VIM to solve a broad type 
of nonlinear V-FIEs. Additionally, we shall examine a few fresh uniqueness findings for the 
solutions. Using a number of test issues as examples, a successful conclusion is presented, 
backed up by the tabulated results of the given instances, demonstrating the approaches’ 
versatility and competence. 

2. DESCRIPTION OF THE TECHNIQUES 

The development of more sophisticated and effective techniques for solving V-FIE has 
been the focus of certain potent techniques, such the HAM [1, 12, 13, 16], VIM [10, 11, 13, 
20, 21, 24, 26]. In this part, we will go over each of these techniques: 

2.1. HAM Technique. The solution provided in HAM is primarily local. We split the 
interval I into sub-intervals in order to extend this solution over the interval I = [0, T ] to 
Ij = [βj−1, βj ), j = 1, 2, 3, · · · , p, where 0 ≤ β0 < β1 < · · · ≤ βp = T . We solve the equation 

(1.1) in each subinterval Ij . Let Ξ1(β) be solution of equation (1.1) in the subinterval I1. 

For, 2 ≤ i ≤ p, Ξi(β) is solution of equation (1.1) in the subinterval I with initial conditions 

by obtaining the initial conditions from the interval Ii−1. 

Ξi(βi−1) = Ξi−1(βi−1),  for  i = 2, · · · , p. 

The solution of equation (1.1) is given by 
 
 

 
where 

p 

Ξ = χIiΞi, (2.1) 
i=1 

χ  = 

(
1  m > 1 

 
For equation (1.1), first we choose 

L[φi(β; p)] = 

0  m ≤ 1. 

 
∂nφi(β; p) 

∂βn , n = 0, 1, 2, · · · 

and  
Hi(β, Υ)  =  1 

m 

Ξi0(β, Υ)  = Ξ(i−1)j 
(β, Υ), for i = 2, · · · . 

j=0 

We use HAM to equation (1.1) to confirm its applicability and promise in solving Volterra- 
Fredholm integral equations. Initially, we select 

L[(β, Υ; p)] = φ(β, Υ; p) 

and 

H(β, Υ) = 1. 

A nonlinear operator is defined as follows: 

N [φ(β, Υ; p)] = φ(β, Υ; p) + Φ(β, Υ) + 

∫ β ∫ 

 

 

ϑ(β, Υ, ξ, t, φ(ξ, t; p))dξdt, (2.2) 
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λ (τ, Υ) − (τ, Υ) (2.8) 
∂τ ∂τ 

ϑ(τ, Υ, ξ, t, Ξn(ξ, τ ))dξ − dξdt dτ. 
∂τ 

∫ 

∫ 

0 Ω 

0 

The zero order deformation equation is: 

(1 − p)L[(β, Υ; p) − Ξ0(β, Υ)] = pkN [φ(β, Υ; p)]. (2.3) 

Differentiating equation (2.3), we have the so-called mth-order deformation equation for 
m ≥ 1 after dividing them by m!, setting p = 0, and rearranging m-times with regard to the 
embedding parameter p: 

Ξm(β, Υ) = χmΞm−1(β, Υ) + hRm (Ξ→  
m−1), (2.4) 

where 
R  ( Ξ→  )  =  Ξ (β, Υ) − 

∫ β ∫ ∂m−1ϑ(β, Υ, ξ, t, φ(ξ, t; p)) 
dξdt m m−1 m−1 

0 Ω ∂pm−1 
 
p=0 

−(1 − χm)Φ(β, Υ). (2.5) 

Now, we have: 

 

Ξ(β, Υ) = Ξ0(β, Υ) + Ξ1(β, Υ) + Ξ2(β, Υ) + · · · . 

2.2. Variational Iteration Method (VIM). Consider the integral equation given in 
Eq.(1.1): 

Ξ(β, Υ) = φ(β, Υ) + 

∫ β ∫ 

ϑ(β, Υ, ξ, t, Ξ(ξ, t))dξdt, (2.6) 

with Ω = [0, b], 
For the integral equation (1.1), let w(β) be a function such that w′(β) = Ξ(β), noting that 
Ξ(β) is continuous. Then for Eq. (1.1) first we take the partial derivative with respect to β. 
We have 

∂Ξ 
− 

∂φ b 

— ϑ(β, Υ, ξ, t, Ξ(ξ, β))dξ − 
∫ β ∫ b 

∂ϑ dξdt = 0 (2.7) 
 

Consider 
∂β ∂β 0 0 0  ∂β 

b 

— ϑ(β, Υ, ξ, t, Ξ(ξ, β))dξ − 
∫ β ∫ b 

∂ϑ dξdt, 
0 0 0  ∂β 

as a restricted variation, we use the VIM in direction Υ. Then we have the following iteration 
sequence: 

∫ β  h ∂Ξn ∂φ 
 

∫ b ∫ τ ∫ b ∂ϑ i 

   

Taking the variation with respect to the independent variable Ξn and noticing that δΞn(0) = 
0, we get 

δΞn+1 = δΞn + λδΞn|τ =Υ 

x 

λ
′
δΞndτ = 0 (2.9) 

0 

Then we apply the following stationary conditions: 

1 + λ(τ )|τ =Υ = 0, λ
′
(τ )|τ =Υ = 0, 

The general Lagrange multiplier, therefore, can be readily identified: 

λ = −1, 

0 a 0 

∫ 

Ξn+1(β, Υ)  =  Ξn(β, Υ) + 

— 
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(τ, y) − (τ, Υ) (2.10) 
∂τ ∂τ 

ϑ(τ, Υ, ξ, t, Ξn(ξ, τ ))dξ − dξdt dτ. 
∂τ 

Φ(β, Υ) + 

0 

0 Ω 

and as a result, we obtain the following iteration formula: 
∫ β h ∂Ξn ∂φ 

 

∫ b ∫ τ ∫ b ∂ϑ i 

   

Consequently, the approximate solution is given by 

lim 
n−→∞ 

Ξn(β, Υ) = Ξ(β, Υ). 

 
3. UNIQUENESS RESULTS 

Assume that the space of all continuous functions is S. In D, φ : D −→ Rn satisfied 

φ(β, Υ)  = O(exp(µ(β+  Υ  ))), (β, Υ) ∈ D, µ > 0. (3.1) 

In this space S we define 

|φ| = sup[  φ(β, Υ)  exp(−µ(β+  Υ  ))]. (3.2) 
D 

With the aforementioned norm, it is obvious that S is a Banach space. We see that a constant 
M > 0 exists from (3.1) such that: 

φ(β, Υ)  = M (exp(µ(β+  Υ  ))), 

we get 

|φ| ≤ M. (3.3) 

Our principal finding is the following theorem, which provides adequate conditions for the 
uniqueness and existence of equation (1.1) solutions. Before starting and proving the main 
results, we provide the following theories: 

(H1): A continuous nonnegative function exists h(β, Υ, ξ, t) defined on D2 such that 

ϑ(β, Υ, ξ, t, Ξ1) − ϑ(β, Υ, ξ, t, Ξ2)  ≤ h(β, Υ, ξ, t)  Ξ1 − Ξ2  

and 
∫ β ∫ 

h(β, Υ, ξ, t)exp(µ(ξ+  t  ))dξdt ≤ Q exp(µ(β+  Υ  )), 
  

where (β, Υ, ξ, t, Ξi) ∈ D2 × Rn, i = 1, 2 and Q > 0. 

(H2): A constant N > 0 exists such that: 

 ∫ β ∫ 

 

Theorem 3.1. Assuming the validity of (H1) and (H2), a unique solution to Eq.(1.1) exists 
if 0 < Q < 1. 

Proof. Let the right half of equation (1.1) define the operator T : S −→ S. It appears that 

T (u) is continuous in D and T (Ξ(β, Υ)) ∈ Rn for Ξ ∈ S and (β, t) ∈ D. 

0 a 0 

0 Ω 

Ξn+1(β, Υ)  =  Ξn(β, Υ) − 

— 

ϑ(β, Υ, ξ, t, 0) dξdt ≤ N exp(µ(β+ Υ )). 
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Φ(β, t) = e 
 
cos(β) + Υ cos(β) +  t cos(β − 2) sin(2)

 
, 

∫ β ∫ 

h(β, Υ, ξ, t) exp(µ(ξ+ t ))dξdt 

∫ β ∫ 

≤ |Ξ1 − Ξ2| h(β, Υ, ξ, t) exp(µ(ξ+ t ))dξdt 

Using assumptions (H1) and (H2), we first demonstrate the satisfaction of (3.1). 

 

T (Ξ(β, Υ))  ≤ ϑ(β, Υ, ξ, t, Ξ(ξ, t)) − ϑ(β, Υ, ξ, t, 0)  dξdt 
0 Ω 

 ∫ β ∫ 

 + Φ(β, Υ) + 
0 

∫ β ∫ 
 

  
 

ϑ(β, Υ, ξ, t, 0) dξdt 
Ω 

 

 

 

 

∴ T (Ξ) ∈ S. 

+N exp(µ(ξ+  Υ  )) 

≤  [MQ + N ] exp(µ(ξ+  Υ  )). 

We shall also show that T (Ξ) is a contraction map in the second place. Assuming Ξ1, Ξ2 ∈ S, 
the following may be deduced from (H1): 

T (Ξ1(β, Υ)) − T (Ξ2(β, Υ))  

≤ ϑ(β, Υ, ξ, t, Ξ1(ξ, t)) − ϑ(β, Υ, ξ, t, Ξ2(ξ, t))  dξdt 
0 Ω 

∫ β ∫ 

 

  

≤ Q|Ξ1 − Ξ2| exp(µ(ξ+  Υ  )). 

Consequently, we have 

|T (Ξ1) − T (Ξ2)| ≤ Q|Ξ1 − Ξ2|. 

In other words, T is a contraction map. According to the Banach contraction principle, S 
contains a single fixed point Ξ for T.   

4. NUMERICAL EXAMPLES 

The semi-analytical methods for solving nonlinear V-FIEs based on ADM, MADM, and 
HAM are presented in this section. 

 
Example 1.  Consider the nonlinear V-FIE (1.1) with: 

−Υ 1 
 

2 

ϑ(β, Υ, ξ, t, Ξ(ξ, t)) = −cos(β − ξ)e−(Υ−t)Ξ(ξ, t), (β, Υ) ∈ [0, 2] × Ω. 
The exact solution is Ξ(β, Υ) = cos(β)e−Υ, with Ω = [0, 2]. We applied the methods 

presented in this paper: 

 

TABLE 1. Numerical Results of the Example 1. 
 

(β, Υ) Exact HAM VIM 

(0.0625,0.0625) 0.937578 0.937577 0.937577 
(0.125,0.125) 0.875611 0.875598 0.875597 

(0.25,0.25) 0.754589 0.754488 0.754378 
(O.5,0.5) 0.532280 0.531273 0.529861 

(1,1) 0.198766 0.188564 0.176687 

≤  |Ξ| 
0 Ω 

0 Ω 
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1+Υ2 

(1+Υ)(1+t2 ) 

(1+Υ2 ) 

 

 

 
FIGURE 1. Numerical Results of the Example 1. 

 

 
Example 2.  Consider the nonlinear V-FIE (1.1) with: 

βΥ2 
 

8(1+Υ2 )(1+Υ) 
— log

 
1 +  βΥ 

 
, 

ϑ(β, Υ, ξ, t, Ξ(ξ, t)) = β(1−ξ
2 ) 

(1 − e(−Ξ(ξ,t))), (β, Υ) ∈ [0, 1] × Ω. 

The exact solution is Ξ(β, Υ) = − log(  1+βΥ  ), with Ω = [0, 1]. We applied the methods 

presented in this paper: 

TABLE 2. Numerical Results of the Example 2. 
 

(β, Υ) Exact HAM VIM 

(0.03125,0.03125) -0.000975134 -0.000975134 -0.000975131 
(0.0625,0.0625) -0.003883492 -0.003883457 -0.003883387 

(0.125,0.125) -0.015267453 -0.015266645 -0.015266523 
(0.25,0.25) -0.057158421 -0.057157346 -0.057146473 
(O.5,0.5) -0.182321014 -0.182214013 -0.182132611 

(1,1) -0.405465006 -0.404802854 -0.404406365 

Φ(β, t) = 
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FIGURE 2. Numerical Results of the Example 2. 

 
5. CONCLUSION 

In this study, the V-FIEs are solved using the HAM and VIM. To show the method’s 
validity and usefulness, we explained the procedures, applied them to two test problems, 
and compared the outcomes with the precise solutions. Furthermore, a minimal amount of 
iterations are required to achieve a desirable outcome. This assertion is supported by the pro- 
vided numerical examples. The precise answer and the estimated solutions of the illustrated 
examples-which used HAM, and VIM with varying iterations and terms-are contrasted in 
the above tables. 
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