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 The study aims to utilise modern statistical techniques to analyze data often sensitive to 

small changes. Quality control charts are valuable tools for monitoring and analyzing data 

and identifying and extracting points that fall outside the control limits. On the other hand, 

wavelet shrinkage is an effective technique for removing noise from data and identifying 

deviations while preserving significant signals, thus enhancing the accuracy of the analysis. 

Alongside using actual data that represents the qualitative feature of children's weights- a 

crucial indicator for evaluating overall health and early detection of nutritional or health 

issues- this chart was simulated using MATLAB. However, weight measurements are 

frequently susceptible to noise and interference due to factors such as measurement errors 

or natural variations. The study concluded that the proposed chart (weighted moving 

average using wavelet shrinkage) is superior to the classical chart because it performs better 

in identifying the differences between the upper and lower limits of the two charts. We also 

observed that the difference between the two limits in the proposed chart is smaller 
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1. Introduction 

 Many manufacturing and non-manufacturing processes employ control charts, the most crucial tool of statistical process 

control (SPC), to identify changes in the quality characteristic of interest. 

When Roberts first presented the exponentially weighted moving average (EWMA) graphic (Technometrics 1959) [1], it was 

known as a geometric moving average chart. Since exponential smoothing is the foundation of EWMA charts, the name was 

modified to reflect this. 

An exponentially weighted moving average chart, or EWMA chart, is a form of control chart used in statistical quality 

control to track variables or attribute-type data, utilising the full output history of the business or industrial process under 

observation. The EWMA chart tracks the exponentially weighted moving average of all previous sample averages, whereas other 

control charts handle logical subsets of data separately [2]. Samples are weighted by EWMA in a geometrically decreasing 

sequence, with the most recent samples contributing the most and the most distant samples contributing the least. The SPC 

literature has suggested several EWMA chart extensions and tweaks to enhance the traditional EWMA chart's detection 

capabilities for particular shift ranges. 

Wavelet shrinkage is a method of reducing noise in signals. e-noising is a technique for lowering signal noise because 

of wavelet shrinking [3]. One method of signal denoising that relies on thresholding the wavelet coefficients is wavelet shrinkage. 

Donoho et al. (1995a) [4] first presented the wavelet shrinkage method for broad curve estimation issues. There are several good 

reasons why wavelet shrinkage can be used for estimation functions. Wavelet shrinkage is an effective tool for removing noise 

to filter data and detect deviations in a way that preserves important signals, which contributes to improving the accuracy of the 

analysis [5]. 
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A quality control chart is a graphical representation of whether a firm's products or processes are meeting their intended 

specifications. If problems appear to arise, the quality control chart can be used to identify the degree to which they vary from 

those specifications and help in error correction. A quality control chart can also be univariate or multivariate, meaning that it 

can show whether a product or process deviates from one or more than one desired result [6]. 

The exponential moving average (EMA) is a technical chart indicator that tracks the price of an investment, such as a stock or a 

commodity, over time. An exponential moving average (EMA) is a type of moving average (MA) that places greater weight and 

significance on the most recent data points. The exponential moving average is also called the exponentially weighted moving 

average. An exponentially weighted moving average reacts more significantly to recent price changes than a simple moving 

average (SMA), which applies equal weight to all observations in the period. The exponentially weighted moving average 

(EWMA) is discussed [7]. 

The EWMA is often used to smooth irregular fluctuations (i.e., noise) in a time series, allowing data analysts to better 

reveal trend and cycle patterns over time. Additionally, the EWMA is frequently used to compute short-term forecasts of time 

series data (e.g., sales and stocks). This discussion includes common applications of the EWMA in management science and 

quality engineering. Furthermore, properties of the EWMA, such as the expected value, variance, and one-step ahead prediction 

variance, are also explored [8]. 

Donoho and Johnstone (1995) pioneered the concept of wavelet shrinkage for signal denoising, and its integration into 

control charting has gained increasing attention [9]. For example, Zhao et al. (2020) demonstrated that incorporating wavelet 

denoising into multivariate process monitoring can significantly enhance fault detection sensitivity [10]. Li and Wang (2021) 

proposed a wavelet-EWMA hybrid model that showed improved detection of small shifts in mean processes under high-noise 

conditions [11]. 

Applications of SPC in healthcare contexts have also become prominent. According to Kumar and Alvarado (2022), 

control charts have been effectively used to monitor pediatric weight and growth metrics, aiding early detection of nutritional 

imbalances [12]. The relevance of such applications is heightened in scenarios involving frequent measurement noise due to 

non-standardized weighing equipment and physiological variability in children. 

Recent simulation-based studies have further validated the use of advanced SPC tools. For instance, Ahmed et al. (2023) 

compared classical Shewhart, CUSUM, and wavelet-enhanced EWMA charts under various noise scenarios, reporting the 

consistent superiority of wavelet-based methods in terms of Average Run Length (ARL) performance [13]. Meanwhile, Chen et 

al. (2023) emphasized the importance of tightening control limits, facilitated by denoising, to detect subtle shifts that would 

otherwise go unnoticed in traditional frameworks [14]. 

Yilmaz and Ozdemir (2024) conducted a comprehensive simulation study on hybrid control charts and found that charts 

integrating adaptive thresholds and noise reduction techniques, such as wavelets, performed best under small sample sizes and 

short monitoring periods [15]. 

Collectively, these studies support using wavelet-based enhancements for classical EWMA control charts, especially 

in applications involving health-related, noise-prone data, such as monitoring children's weight. The current study expands on 

this growing body of work by demonstrating, through MATLAB simulations, that wavelet shrinkage EWMA charts provide 

superior sensitivity and tighter control bounds than their classical counterparts, as well as processing data noise. 

 

2. Quality Control Charts 

It is a statistical measurement used to monitor production operations and ensure their compliance with the required 

standards. These plates aim to maintain the overall production operation, ensuring the required specifications of high quality and 

fewer units than the production factors within a limited time frame. However, rapid intervention is necessary when any issues 

affect the quality of the final product and its timely delivery as soon as possible [16]. 

Contents of Control Charts: 

Control charts are used to monitor the stability of production processes and evaluate their performance. They rely on three main 

lines [17]: 

1. Middle Line: 

• This line represents the average or central value of the analyzed data. 

• It serves as a reference point to determine the deviation of other values. 

2. Upper Control Limit (UCL): 

• This is the maximum value allowed for the process before it is considered unstable. 

• Points above this line indicate a potential issue that needs to be addressed. 

3. Lower Control Limit (LCL): 

• This is the minimum acceptable value for the process before it becomes unstable. 

• Values below this line indicate a problem that requires immediate action. 
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These lines facilitate the quick identification of any deviations, thereby ensuring process stability and maintaining the quality 

of the final product. 

Exponential Moving Average Chart 

An EWMA (Exponential Weighted Moving Average) chart is a control chart used to monitor a process's stability over 

time. It is beneficial for detecting small shifts in the process because it gives more weight to recent observations while still 

considering past data [8], [18]. 

Key Components of an EWMA Chart: 

1- Data point (𝑥𝑡): The individual observations or measurements over time. 

2- EWMA statistic (𝑧𝑡): 

𝒛𝒕= 𝝀𝑥𝑡+ (𝟏−𝝀)𝒛𝒕−𝟏                                                                            (1) 

Where: 

𝑧𝑡 is the EWMA value at time t. 

λis the smoothing parameter (0  λ  1). Smaller values give more weight to past data. 

𝑥𝑡is the observation at time t. 

𝒛𝒕−𝟏is the EWMA value at time t-1 (starting with the process mean or a specified initial value). 

3- Center Line (CL): The target of the mean value of the process. 

4- Control Limits:  

UCL = CL + L.𝑧                                               (2) 

LCL = CL - L.𝑧                                                (3) 

Where: 

L is the control limit multiplier (typically set to 3 for a 99.73% confidence interval). 

𝑧 = √
𝜆

2−𝜆
is the standard deviation of the EWMA statistic and represent the standard deviation of the process. 

How to Create an EWMA Chart [19]: 

1. Collect Data: Gather the sequential process measurements. 

2. Calculate EWMA: Apply the formula to compute 𝑧𝑡 for each time point. 

3. Determine Control Limits: 

• Use the target mean (CL) and known or estimated process standard deviation ( ). 

• Compute the upper and lower control limits. 

4. Plot: 

• Plot the EWMA values (𝑧𝑡) over time. 

• Add the center line and control limits. 

4. Wavelet 

Wavelets are mathematical functions that separate data into distinct frequency components and then analyze each one at a scale-

appropriate precision. A general form of the wavelet is: 

𝜓(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
)                            (4) 

Where 𝜓(𝑡) is the mother wavelet, a is the scale parameter, and b is the translation parameter.  

When studying physical scenarios where the signal comprises abrupt spikes and discontinuities, they are superior to conventional 

Fourier approaches [20]. In the fields of electrical engineering, seismic geology, quantum physics, and mathematics, wavelets 

were separately developed. Many novel wavelet applications, including image compression, turbulence, human vision, radar, 

and earthquake prediction, have emerged because of interactions between these domains over the past ten years [21]. 

- Daubechies Wavelet 

Wavelet techniques, such as Daubechies, are used in signal and data processing to remove noise and improve quality. 

By applying small waves to EWMA data, we can improve the accuracy of measurements and uncover hidden patterns in the data 

[22]. 

- Coiflets Wavelet 

At Ronald Coifman's request, Ingrid Daubechies created coiflets, which are discrete wavelets with scaling functions 

that have vanishing moments [23]. 

- Dmey Wavelet 

The discrete variant of the Meyer wavelet function is called a Dmey wavelet. The two-scale equation can be solved 

using Mayer's wavelet, which is essentially a solvent approach [24]. Meyer used Fourier techniques to determine the DTFT of 

the two-scale education coefficients, giving a basis for the approximation space. 
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6. Discrete Wavelet Transformation 

When dilation and translation parameters are discretized from a continuous representation, a discrete wavelet transform 

is produced, with the resultant set of wavelets forming a frame. According to [25], the translation parameter is usually discretized 

by integer multiples of a dilation-dependent step, and the dilation parameters are usually discretized by an exponential sampling 

with a fixed dilation step. Only a subset of scales and positions could be calculated, but it would take a substantial amount of 

effort and produce a lot of data to calculate wavelet coefficients at every scale. Surprisingly, the analysis will be equally as 

accurate and considerably more economical if we select scales and positions based on powers of two, or so-called dyadic scales 

and positions [26].  

Discrete Wavelet Transform (DWT)provides this kind of analysis. Mallat (1999) [23] devised an effective filter-based 

implementation of this technique. As a two-channel sub-band coder, the Mallat method is a classical approach in the field of 

signal processing. This extremely useful filtering algorithm produces a quick wavelet transform or a box where a signal passes 

out of which wavelet coefficients quickly emerge. The original signal can be divided into numerous lower-resolution components 

by iterating the decomposition process, which breaks down consecutive approximations one after the other. The wavelet 

decomposition tree is the name given to this. Accordingly, the original signal goes through two complementary filters (high- and 

low-pass) in the filtering process at its most basic level, emerging as two signals known as approximations and details [27]. 

7.  Proposed Charts 

The proposed method relies on processing the data of the EWMA chart from noise before estimating its control limits 

using wavelet shrinking, which relies on the following algorithm: 

1. Using one of the wavelets (Daubechies, Coiflets, and Dmey), quality characteristics data to obtain DWT coefficients. 

DWT(𝑥𝑡) = (𝑐𝐴, 𝑐𝐷)                          (5) 

Where 𝑐𝐴 is the approximation (low-frequency) coefficients and 𝑐𝐷 is the detail (high-frequency) coefficients. 

2. Estimate the thresholding level (γ) using the Universal thresholding from the first level for DWT coefficients. Compute the 

threshold γ using the universal threshold formula: 

𝛾 = 𝜎√2𝐿𝑛𝑁                                        (6) 

Where 𝜎 is the standard deviation of the detail coefficients𝑐𝐷and N is the number of data points. 

3. Use the soft threshold rule on the DWT coefficients at the estimated threshold level (γ) by keeping or killing (converting 

them to zero) to obtain modified coefficients with little noise. Modify the wavelet coefficients using the soft thresholding 

rule [28]: 

�́�𝑖 = 𝑠𝑖𝑔𝑛(𝑐𝑖) × 𝑚𝑎𝑥(|𝑐𝑖| − 𝛾, 0 )      (7) 

for each wavelet coefficient 𝑐𝑖∈ 𝑐𝐴 ∪ 𝑐𝐷 and�́�𝑖 is the threshold coefficient, 𝑠𝑖𝑔𝑛(𝑐𝑖)represent the sign function of the coefficient 

𝑐𝑖 

4. Finding the inverse of the DWT coefficients for de-noise data while preserving 99.97% of the data energy. Reconstruct the 

denoised data by applying the IDWT on the threshold wavelet coefficients: 

�̆�𝑡 = IDWT(�́�𝐴, �́�𝐷)                                (8) 

Where �́�𝐴 and �́�𝐷 are the threshold approximation and detail coefficients, respectively, and �̆�𝑡 is the denoised data at time 𝑡. 

5. Using de-noised data to create proposed EWMA charts. 

8. Stimulation Study  

To conduct a comparative study of the Discrete Wavelet Transform (DWT) using three wavelet families (Daubechies 

20, Coiflet 5, and Dmey)- where the numbers (20, 5) refer to the number of coefficients used in the wavelet filter- with Shewhart 

Weighted Moving Average, 20 normally distributed random samples with a mean of (10) and a variance of (2) were generated. 

The original data, the data generated by the wavelet transform, and the weighted moving average curve were plotted in graphs 

to illustrate the differences between the four methods, as shown in Figure 1. 
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Figure 1. Original and Denoise Data (Simulation Data) 

 

Table 1 shows the results of Simulation experiments that were conducted 1000 times to evaluate the performance of the 

classical chart (using formulas 1, 2, and 3) with the proposed chart (using formulas 5-8) for different wavelets using sample sizes 

(20, 40, 60, 80, 100), varying the sample size allows assessment of the control chart's sensitivity and stability under different 

data volumes. Smaller samples test robustness under data scarcity, while larger samples evaluate performance in detecting subtle 

shifts over time. Different arithmetic means (10, 100) and standard deviations (2, 10). The average, upper and lower limits were 

calculated for each case and summarized in Tables 1-3 for comparison. 

 

Table 1. Results of the Simulation (Mean = 10, Sigma = 1) 

Method Sample Size UCL LCL Target Mean-D 

Classical 20 10.7091 9.1206 9.9149 1.5885 

db20 10.6037 9.2225 9.9131 1.3812 

Coiflets 10.6049 9.2241 9.9145 1.3808 

Dmey 10.5992 9.2255 9.9123 1.3737 

Classical 40 11.1397 8.9428 10.0413 2.1969 

db20 10.5566 9.5229 10.0398 1.0337 

Coiflets 10.5708 9.5337 10.0522 1.0371 

Dmey 10.5834 9.5185 10.0509 1.0649 

Classical 60 11.3139 9.1743 10.2441 2.1396 

db20 10.6704 9.8128 10.2416 0.8576 

Coiflets 10.6813 9.8150 10.2482 0.8663 

Dmey 10.6865 9.8148 10.2507 0.8717 

Classical 80 11.1842 9.2678 10.2260 1.9164 

db20 10.6153 9.8426 10.2289 0.7727 

Coiflets 10.6035 9.8567 10.2301 0.7468 

Dmey 10.6153 9.8426 10.2289 0.7727 

Classical 100 11.2726 8.9944 10.1335 2.2782 

db20 10.4682 9.8130 10.1406 0.6552 

Coiflets 10.4478 9.8234 10.1356 0.6244 

Dmey 10.6080 9.8500 10.2290 0.758 
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Table 2. Results of the Simulation (Mean = 10, Sigma = 2) 

Method Sample Size UCL LCL Target Mean-D 

Classical 20 11.4182 8.2412 9.8297 3.177 

db20 11.2075 8.4450 9.8262 2.7625 

Coiflets 11.2098 8.4481 9.8290 2.7617 

Dmey 11.1984 8.4509 9.8247 2.7475 

Classical 40 12.2795 7.8856 10.0825 4.3939 

db20 11.1132 9.0458 10.0795 2.0674 

Coiflets 11.1415 9.0673 10.1044 2.0742 

Dmey 11.1668 9.0370 10.1019 2.1298 

Classical 60 12.6278 8.3486 10.4882 4.2792 

db20 11.3407 9.6256 10.4832 1.7151 

Coiflets 11.3626 9.6300 10.4963 1.7326 

Dmey 11.3731 9.6296 10.5013 1.7435 

Classical 80 12.3683 8.5355 10.4519 3.8328 

db20 11.2305 9.6851 10.4578 1.5454 

Coiflets 11.2071 9.7134 10.4602 1.4937 

Dmey 11.2160 9.7000 10.4580 1.516 

Classical 100 12.5453 7.9887 10.2670 4.5566 

db20 10.9364 9.6261 10.2812 1.3103 

Coiflets 10.8956 9.6468 10.2712 1.2488 

Dmey 10.9211 9.6433 10.2822 1.2778 

 

Table 3. Results of the Simulation (Mean = 100, Sigma = 10) 

Method Sample Size UCL LCL Target Mean-D 

Classical 20 107.0908 91.2062 99.1485 15.8846 

db20 106.0374 92.2249 99.1312 13.8125 

Coiflets 106.0491 92.2405 99.1448 13.8086 

Dmey 105.9923 92.2547 99.1235c 13.7376 

Classical 40 111.3974 89.4278 100.4126 21.9696 

db20 105.5661 95.2292 100.3976 10.3369 

Coiflets 105.7077 95.3365 100.5221 10.3712 

Dmey 105.8339 95.1848 100.5093 10.6491 

Classical 60 113.1391 91.7429 102.4410 21.3962 

db20 106.7035 98.1281 102.4158 8.5754 

Coiflets 106.8128 98.1502 102.4815 8.6626 

Dmey 106.8653 98.1482 102.5067 8.7171 

Classical 80 111.8417 92.6777 102.2597 19.164 

db20 106.1527 98.4256 102.2892 7.7271 

Coiflets 106.0353 98.5670 102.3012 7.4683 

Dmey 106.0799 98.4998 102.2898 7.5801 

Classical 100 112.7265 89.9437 101.3351 22.7828 

db20 104.6819 98.1303 101.4061 6.5516 

Coiflets 104.4780 98.2341 101.3560 6.2439 

Dmey 104.6054 98.2163 101.4108 6.3891 

 

9. Discussion Simulation Study 

From Tables 1-3, the results of the analysis show us the following: 

The D values represent the width of the control limits (UCL - LCL) for each method. A smaller D indicates that the 

control limits are more tightly constrained, suggesting that the process is more stable and sensitive to small deviations. 

Conversely, a larger D means the control limits are wider, allowing for more variation in the data. 

Table 1 shows the results for Simulations with Mean = 10, Sigma = 1 



EDUSJ, Vol, 34, No: 3, 2025 (55-68) 
 

61 

 

For a sample size of 20, the classical chart has a D value of 1.5885. The db20 chart has a D = 1.3812, indicating that 

the control limits are narrower, meaning better sensitivity to variations and dealing with the noise problem. The other wavelet 

methods (Coiflets and Dmey) also show smaller D values than the Classical method, with Coiflets (Mean-D = 1.3808) and Dmey 

(Mean-D = 1.3737) providing similarly narrow control limits. 

For a sample size of 40, the classical chart has a D = 2.1969, showing wider control limits compared to the wavelet 

methods. The wavelet methods (db20, Coiflets, and Dmey) again show narrower D values, with db20 (D = 1.0337) and Coiflets 

(D = 1.0371) being particularly effective at narrowing the control limits and dealing with the noise problem. For a sample size 

of 60, the classical chart still has wider control limits (D = 2.1396) compared to the wavelet methods. Wavelet methods continue 

to perform better, with db20 (D = 0.8576), Coiflets (D = 0.8663), and Dmey (D = 0.8717) providing much narrower control 

limits. 

For a sample size of 100, the classical chart has a D = 2.2782, indicating wider control limits. The wavelet methods 

continue to show narrower D values, with db20 (D = 0.6552), Coiflets (D = 0.6244), and Dmey (D = 0.758) being more effective 

at narrowing the control limits. 

Table 2 shows the results for Simulations with Mean = 10, Sigma = 2 

For a sample size of 20, the classical chart has a D = 3.177, indicating wider control limits compared to the wavelet 

methods. The wavelet methods (db20, Coiflets, and Dmey) have smaller D values, with db20 (D = 2.7625) providing the 

narrowest control limits. For a sample size of 40, the classical chart shows a D value of 4.3939, significantly wider than the 

wavelet methods. Wavelet charts (db20, Coiflets, and Dmey) provide much narrower control limits, with db20 (D = 2.0674) 

showing the best performance. 

For a sample size of 60, the classical chart (D = 4.2792) has wider control limits than the wavelet charts. db20 (D = 

1.7151) and Coiflets (D = 1.7326) have narrower control limits, which is more desirable for better sensitivity to small shifts in 

the data. For a sample size of 100, the classical chart (D = 4.5566) shows wide control limits. The wavelet charts again perform 

better, with db20 (D = 1.3103) providing the narrowest control limits, followed by Coiflets (D = 1.2488) and Dmey (D = 1.2778). 

Table 3 shows the results for Simulations with Mean = 100, Sigma = 10 

For a sample size of 20, the classical chart has a D = 15.8846, indicating very wide control limits. The wavelet charts have 

significantly narrower D values, with db20 (D = 13.8125) performing best in narrowing the control limits. For a sample size of 

40, the classical chart (D = 21.9696) shows very wide control limits. The wavelet charts perform much better, with db20 (D = 

10.3369) showing the best control limits, followed by Coiflets (D = 10.3712) and Dmey (D = 10.6491). 

For a sample size of 60, the classical chart (D = 21.3962) still shows very wide control limits. The wavelet charts provide 

narrower control limits, with db20 (D = 8.5754) and Coiflets (D = 8.6626) performing well. For a sample size of 100, the classical 

chart shows a D = 22.7828, indicating very wide control limits. The wavelet charts show much narrower D values, with db20 (D 

= 6.5516) providing the best performance, followed by Coiflets (D = 6.2439) and Dmey (D = 6.3891). 

The db20 wavelet chart consistently produces the narrowest control limits (smallest D) across all sample sizes and experiment 

conditions, indicating that it offers better performance in terms of sensitivity to small shifts in the data. The Classical chart, on 

the other hand, produces much wider control limits (larger D values), suggesting that it is less sensitive to smaller variations in 

the data. As the sample size and variability increase, the wavelet methods continue to perform better in providing narrower 

control limits, which is preferable in a quality control setting where detecting small shifts is critical. 

10. Real Data 

Children's weight data were collected from Lalla Private Hospital (Appendix) to design the proposed chart and the 

classical chart in the first stage. Where 60 observations were taken in the case of constructing the chart, and then 60 new 

observations were taken in the case of using these boards as an effective tool for monitoring and controlling the process in the 

second stage. 

10.1. First Phase: Constructing and interpreting the proposed chart. 

Real data of children's weights were taken from Lalla Private Hospital, and these real data and smoothing results were 

plotted using wavelet transforms (formulas 5-8) as shown in Figure 2: 
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Figure 2. Original and Denoise for Real Data 

 

To construct the proposed chart and compare it with the classical chart (EWMA chart) for data taken from children's 

weights (see Appendix A). Using the special programming of the MATLAB program, the classical chart analysis was performed 

using the proposed chart (EWMA wavelet chart), as shown in Figure 3: 

 
Figure 3. Classic EWMA Chart for Real Data 
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Figure 4.  EWMA Control Chart with Daubechies Wavelet for Real Data 

 

From Figures 3 and 4, notice the following: 

Since Phase I charts are under control, it suggests that: The process (in this case, the data collection of children's weight) is stable 

and consistent. The control limits for both the classical and wavelet-smoothed charts have been properly set. Now, proceed to 

Phase II, where you apply these control charts to new data (the second set of 60 observations) and monitor if the process continues 

to be stable. The goal is to use these charts to detect any significant shifts or deviations from the expected range (i.e., out-of-

control signals).  

 

Table 4: Results between the classic chart and the proposed chart for real data 

Method UCL LCL Target D 

Classical 19.9419 4.9614 12.4517 14.9805 

db20 15.5273 9.3761 12.4517 6.1512 

Coiflets 15.5730 9.2830 12.4280 6.2900 

Dmey 15.8390 9.3112 12.5751 6.5278 

 

Table 4 Classical chart: The control limits for the classical chart have a wide range (UCL = 19.9419, LCL = 4.9614), 

which results in a large D value of 14.9805. This suggests that the classical chart has a broader tolerance for fluctuations, possibly 

due to its lack of noise-reduction techniques. 

Proposed Charts (Wavelet Transforms): Wavelet shrinkage (using methods like db20, Coiflets, and Dmey) results in 

narrower control limits, with D values significantly smaller than the classical chart. db20: D = 6.1512, Coiflets: D = 6.2900, and 

Dmey: D = 6.5278. The reduction in D indicates that the wavelet-based methods have narrower control limits, which can lead 

to more sensitive detection of outliers or shifts in the process. Essentially, these charts are “tighter” and can detect small changes 

more effectively. 

 Target: The target value (12.4517 for the classical chart and around 12.4 for the wavelet methods) remains 

consistent across the methods. This indicates that the central tendency of the data is similar across both the classical and proposed 

charts. 

Implications of Narrower Control Limits: Increased Sensitivity: The narrower control limits provided by the proposed 

charts (wavelet-based) are beneficial for the early detection of deviations from the target. The classical chart, with its wide limits, 

might miss small shifts or outliers that the proposed charts would detect. 

Potential for Fewer False Alarms: Narrower control limits, especially when dealing with real data (which may have noise), can 

help reduce false alarms and more accurately reflect deviations in the process. The proposed charts (db20, Coiflets, and Dmey) 
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seem to provide better performance than the classical chart, as indicated by their smaller D values, meaning tighter control limits. 

The Classical chart might be less sensitive and could miss smaller deviations in the process, while the wavelet-based charts are 

more refined in detecting these shifts. 

10.2. Second Phase: Use the classic and proposed chart. 

These charts can be installed in Figures (3) and (4) and used in the future to control and monitor the exponentially 

weighted moving average (EWMA) of children’s weights. On this basis, these charts were used to collect 60 new observations 

(see Appendix B) and summarized in the following table. 

 
Figure 5.  Use EWMA Control Chart for Real Data with Fixed UCL and LCL 

 

After installing the classic EWMA Control Chart and using new data for these charts, notice the following: 

1- One point occurs outside the control limits of the classical chart, and the process is out of control. 

2- Several points occur outside the control limits of the proposed chart, and the process is out of control, which indicates the 

superiority of the proposed chart compared to the classic chart due to the removal of the noise present in the proposed chart and 

the narrowing of the control limits. This means that the proposed charts were more accurate and addressed part of the noise 

problem. 

3- The process is out of control in two charts for Children's weight data from Lalla Private Hospital.   
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Figure 6.  Use EWMA Control Chart with Daubechies(db1) Wavelet for Real Data 

 

11. Conclusions  

1. The proposed EWMA chart with wavelet shrinkage is superior to the classical EWMA chart in both simulation and real data 

analysis.  

2. The proposed EWMA chart dealt with noise data, and the classical chart, with its broader control limits, may miss small 

shifts in the process, leading to less effective monitoring and control. 

3. The proposed charts are handy for situations where data contains noise or outliers. They can be effectively applied in fields 

such as quality control, process monitoring, and health assessments, where accurate deviation detection is critical. 

4. The proposed wavelet-based EWMA control chart is more effective than the classical chart for monitoring children's 

weights, especially in the presence of noise and natural fluctuations.  

The classical chart, while useful, does not offer the same level of precision or ability to filter out noise, making the proposed 

chart a superior choice for real-time health data monitoring. 

5. Further comparative studies are recommended to evaluate the performance of the proposed graph against other rapidly 

developing techniques, such as machine learning-based methods, to identify scenarios where the modified EWMA with 

wavelet shrinkage demonstrates superior performance. 
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Appendix  

Table A. Children's Weight Data in Lalla Private Hospital (Phase I) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.  Children's Weight Data in Lalla Private Hospital (Phase II) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 21.5 21 14.4 41 14 

2 15.5 22 18.6 42 24 

3 26.5 23 8.5 43 15 

4 34 24 5.2 44 10.5 

5 3.7 25 3.6 45 31.5 

6 8.5 26 18.5 46 9.5 

7 17 27 9.4 47 16.7 

8 9 28 8.6 48 11.1 

9 5 29 2.7 49 4.6 

10 10.2 30 14.2 50 6.4 

11 10 31 26.2 51 10.8 

12 11 32 3.2 52 9.5 

13 14 33 5.4 53 4.2 

14 20 34 12 54 17.36 

15 21 35 14 55 5.49 

16 8.2 36 10 56 9.4 

17 24 37 5.7 57 7 

18 27 38 7.1 58 14.2 

19 4.4 39 17.5 59 16.3 

20 5.2 40 5.1 60 3.95 

1 17 21 12.2 41 6.5 

2 12 22 8.2 42 11.5 

3 20.7 23 8 43 16 

4 9.6 24 18 44 19 

5 28.8 25 8.7 45 15.4 

6 17.2 26 11.5 46 3.5 

7 14 27 2.5 47 25.3 

8 11.7 28 12 48 29.8 

9 8.9 29 12 49 13.7 

10 13.5 30 21 50 5.900 

11 9.4 31 2 51 8.7 

12 2.6 32 6 52 19 

13 18 33 10 53 23 

14 16.8 34 13.5 54 10.4 

15 5 35 13.4 55 4 

16 3.55 36 10.5 56 35 

17 2.9 37 8.7 57 18 

18 2.7 38 29 58 38 

19 5.6 39 13 59 12.5 

20 3.8 40 12 60 10.300 
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 محاكاة لوحات السيطرة النوعية للمتوسط المتحرك الموزون الأسي مع التقليص المويجي: دراسة 

 
 ( 4)، بيخال صمد صديق *(3)، طه حسين علي (2)دلشاد محمود صالح  ،(1)إسراء عوني حيدر 

 

 قسم الإحصاء والمعلوماتية، كلية الادارة والاقتصاد، جامعة صلاح الدين، أربيل، العراق   (4 ,3 ,2 ,1)
 

 الخلاصة: 

أدوات قيمة لمراقبة السيطرة النوعية  لوحات  تهدف هذه الدراسة إلى توظيف تقنيات إحصائية حديثة لتحليل البيانات التي غالبًا ما تكون حساسة للتغيرات الطفيفة. تعُد  

من الأساليب الفعّالة  (Wavelet Shrinkage) البيانات وتحليلها، وتحديد النقاط الخارجة عن حدود الرقابة واستخلاصها. ومن جهة أخرى، تعُد تقنية تقليص المويجات

ن من دقة التحليل. وبالإضافة إلى استخد خاصية الام بيانات فعلية تمثل  في إزالة الضوضاء من البيانات وتحديد الانحرافات مع الحفاظ على الإشارات المهمة، مما يُحسِّّ

باستخدام   ه اللوحاتمحاكاة هذ  تتم  —والتي تعُد مؤشراً مهماً لتقييم الصحة العامة والكشف المبكر عن المشكلات الصحية أو التغذوية    —وزان الأطفال  لأنوعية  ال

ومع ذلك، فإن قياسات الوزن غالباً ما تكون عرضة للتشويش والتداخل بسبب عوامل مثل أخطاء القياس أو التغيرات الطبيعية. وقد خلصت .   MATLABبرنامج 

، نظراً لأدائه الأفضل في الكشف عن لوحة التقليديةباستخدام تقليص المويجات( يتفوق على ال وزون الأسي  الممتحرك  المتوسط  ال)  لوحات المقترحةالدراسة إلى أن ال

 .قلكان أ ةالمقترح  لوحة. كما لوحظ أن الفرق بين الحدين في الوحتينالفروق بين الحدين الأعلى والأدنى لل

 


