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 Solving nonlinear ordinary differential equations of fractional orders: 

Differential equations are equations that relate a function to one or more of its derivatives. 

Nonlinear means that the equation is not directly proportional to the function and its 

derivatives. In other words, its variables cannot be separated simply. The dependent 

variable and its derivatives are exponential, i.e. not of first order. Fractional order indicates 

that the derivatives in the equation are not necessarily of integer order (such as the first 

derivative or the second) and can even be a fraction, meaning that the order is a fractional 

number. To solve nonlinear ordinary differential equations with fractional derivation, the 

homotopy analytical method was used because solving these equations is not easy using the 

usual and well-known methods. However, the results of the homotopy method were not as 

accurate as required, so algorithms were used to improve the results of the homotopy 

method. Among these algorithms is the bird flock algorithm (HAM-PSO). In this research, 

the Runge-Kutta algorithm (HAM-OBE) was used to improve the results of the homotopy 

method. Through the examples in the diagram, it is noted that the bird flock algorithm 

(HAM-PSO) improved the results of the homotopy method by an error of 4.17e-02 As for 

the Runge-Kutta algorithm (HAM-OBE), it improved the results by an error of 4.6835e-07 

By comparing the amount of errors with the Runge-Kutta algorithm (HAM-OBE), the 

results were improved by 99.99% compared to the exact solution, where the root mean 

square error (RMSE) was used as a fitness function to know the amount of improvement 

compared to the exact solution. This improvement is useful because nonlinear differential 

equations with spherical debt are useful in physics, chemistry, medical industries, body 

motion, and artificial intelligence. It has life applications such as studying sound waves and 

the movement of objects through fractional derivatives.  
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1. Introduction 

  Fractional-order differential equations, called FDEs, generalize ordinary differential equations to any 

fractional (non-integer) order. The development of fractional differential operators is documented in [3], and the wide range of 

applications of FDEs in science and engineering has led to significant growth in research in this field, with a great deal of interest 

in creating numerical systems to solve them. Among these techniques are Fourier transforms [7], power series method [8], 

fractional differential transform method (FDTM) [9], homotopy analysis method [10], Adomian decomposition method [11], 

and particle swarm optimization (PSO) [12]. Ordinary, partial, and nonlinear fractional equations can be solved using HAM 

[13]. This method was first discovered in a PhD thesis in 1992 by Liao Shijun at Shanghai University. 
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  We show the steps for solving them using the homotopy analytical method with the Runge -Kutta algorithm 

for their optimization. I took numerical examples and solved them approximately with the sequence that we got from collecting 

the iterations of the homotopy method and then taking the final sequence and finding the average square of the error and 

considering it as a fitness function in the Runge -Kutta algorithm for optimization and finding the best value of the auxiliary 

parameter h (Which is a numerical value that the Runge-Kutta algorithm reaches and thus. 

  The parameter h ensures that the approximate Eckel series converges to the exact solution with high accuracy). 

in the virtual homotopy method and takes the fewest steps for solving nonlinear differential equations with fractional ranks using 

(HAM-OBE) This algorithm is a process of optimization of the results of the homotopy analytical method using a method (Runge 

-Kutta optimization algorithm)) the method can be summarized in five steps.  

1 – We take a nonlinear Differential Equation of fractional rank and calculate the initial guess using the equation 𝑦0(𝑥) =

∑ 𝑦(𝑘)𝑛−1
𝑘=0  (0+ )

𝑥𝑘

𝑘!
 

2 – Finding subsequent iterations using the equation 𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ𝐼𝛼(𝐷𝑥
𝛼𝑦𝑚−1(𝑥) + 𝑐𝑦𝑚−1(𝑥)) Using the first 

iteration as a basis for finding a solution to a nonlinear differential equation with fractional ranks by the homotopy analytical 

method (HAM) to arrive at the solution series according to specific iterations.  

3 – The last iteration of the last Q4 is taken, which is the product of summing the resulting iterations 𝑄4 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 

(we will take four iterations in this search)  

4 – The Runge-Kutta optimization algorithm (HAM-OBE) is used to find the best value of the parameter (h) to improve the 

results of the homotopy analytical method, for solving nonlinear differential equations with fractional ranks. We used the mean 

squared error as an appropriate function in the algorithm and a criterion to determine the improvement of results, such as the 

exact solution. 

5 – The final results of the methods (HAM-OBE), (HAM-PSO) and homotopy (HAM) are compared with the exact solution 

using the error ratio (RMSE). 

  In this research, we solve fractional-order initial value problems of the (Riccati) type (Because the Riccati 

equation was solved by the homotopy method and the results of the homotopy method were improved by the bird flock algorithm 

(HAM - PSO), therefore the Riccati equation was improved by Range-Kutta algorithm) using the homotopy Analysis Method 

(HAM) with the Runge-Kutta Optimization Algorithm (HAM-OBE). The (HAM-OBE) selects the best value for the parameter 

(h), thereby improving the (HAM) and (HAM-PSO) results. 

  We have proven this by taking two examples and comparing the mean squared error results of the (HAM), 

(HAM-PSO) with the (HAM-OBE). It has also been shown that the (HAM-OBE) method is reliable, efficient, and better than 

previous methods through plotting using MATLAB software. 

 

2. General Concepts 

This section will we will present the basic definitions and concepts of the current research topic, as well as the algorithm for 

solving the homotopy method and the (HAM-OBE) algorithm. 

2.1 Definition 1 [14]. The Gamma function is given in the following form: 

Γ(𝛼) = ∫ 𝑡𝛼−1 
∞

0

𝑒−𝑡𝑑𝑡                                                                                                                             (1) 

2.2 Definition 2 [15]. Fractional integral operator 𝐼𝛼 of order 𝛼 for the Riemann-Liouvills is given as 

𝑰𝜶 𝒇(𝒙) =
𝟏

𝜞(𝜶)
∫ (𝒙 − 𝒖)𝜶−𝟏𝒙

𝟎
𝒇(𝒖)𝒅𝒖 ,   𝒙 > 𝟎, 𝜶 > 𝟎                                                                      (2) 

The operator 𝑰𝜶 has the following properties. 

1. 𝑰𝜶𝒙𝒏 =
𝜞(𝒏+𝟏)

𝜞(𝜶+𝒏+𝟏)
 𝒙𝒏+𝜶                                                                                                                           (3) 

2. 𝑰𝒏𝑰𝜶𝒇(𝒙) = 𝑰𝜶+𝒏𝒇(𝒙)                                                                                                                            (4) 

3. 𝑰𝒏𝑰𝜶𝒇(𝒙) = 𝑰𝜶𝑰𝒏𝒇(𝒙)                                                                                                                            (5) 
2.3 Definition 3 [16]. The following formula determines the maximum absolute errors MSE. 

 MSE=Max {|𝒆𝒙𝒂𝒄𝒕 − Q|}, Q is a numerical solution [16]                                                         (6) 

2.4 Definition 4 [17]. The fractional derivative for the Caputo definition is given as: 

 𝑫𝜶𝒇(𝒙) = 𝑰𝒏−𝜶𝑫𝒏𝒇(𝒙) =
𝟏

𝚪(𝒏−𝛂)
∫ (𝒙 − 𝒖)𝒏−𝜶−𝟏𝒇𝒏(𝒖)𝒅𝒖                                                            

𝒙

𝟎
(7) 

 Where 𝒏 − 𝟏 < 𝜶 ≤ 𝒏 , 𝒏 ∈ 𝑵 , 𝒙 > 𝟎  ,         It has  main properties 

𝑫𝛼𝐼𝛼𝑓(𝑥) = 𝑓(𝑥)                                                                                                                                        (8)  

𝑰𝜶𝐷𝛼𝑓(𝑥)  = 𝑓(𝑥)  − ∑ 𝑓(𝑘)(0+)
𝑥𝑘

𝑘!
                                                                                                           (9)

𝑛−1

𝑘=0
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𝑫𝜶𝒙𝒓 =
𝚪(𝒓 + 𝟏)

(𝒓 + 𝟏 − 𝜶)
𝒙𝒓−𝜶    ,                                                                                                                          (10) 

𝑫𝜶𝒙𝒓 = 𝟎   ,   𝒓 <  𝜶                                                                                                                                         (11) 
2.5 Definition 5. [18]. RMSE It is the root of the square of the difference between the exact solution and the approximate 

solution divided by the number of points used, and the formula is as follows: 

RMSE=√
∑ (𝒆𝒙𝒂𝒄𝒕−𝑸)𝟐𝒏

𝒊=𝟏

𝒏
 , 𝑸 is the approximate solution, 𝑛 is the number of points                     (12) 

 

3. Steps for solving nonlinear differential equations of fractional orders using the homotopy method: 

Let us consider the following initial value problem 

𝑫𝒙
𝜶𝒚 + 𝒄𝒚 = 𝒇(𝒙)       , 𝒙 > 𝟎 , 𝒏 − 𝟏 < 𝜶 < 𝒏                                                                                          (13) 

With the initial conditions 

𝒚(𝒌)(𝒙) = 𝒃𝒌  , 𝒌 = 𝟎, 𝟏,… , 𝒏 − 𝟏 

Where 𝑫𝜶 , (𝒏 ∈ 𝑵), 𝒏 − 𝟏 < 𝜶 ≤ 𝒏, denotes the Caputo fractional derivative, C is a positive constant,𝑓(𝑥) is a known 

continuous and differentiable function. 

Step one: We integrate both sides of equation (13) using the Riemann-Liouville integral and substituting the initial conditions; 

we get: 

𝒚(𝒙) = ∑ 𝒚(𝒌)𝒏−𝟏
𝒌=𝟎 (𝟎+)

𝒙𝒌

𝒌!
− 𝑰𝜶 (𝒄𝒚) + 𝑰𝜶𝒇(𝒙)                                                                                         (14)  

 

Then we choose the initial approximation (initial guess) to be 

𝑦0(𝑥) = ∑ 𝒚(𝒌)

𝒏−𝟏

𝒌=𝟎

(𝟎+)
𝒙𝒌

𝒌!
                                                                                                                              (15) 

Step two: Now we use the m-th order deformation equation 

𝑫𝒙
𝜶[𝒚𝒎(𝒙) − 𝝌𝒎𝒚𝒎−𝟏(𝒙)] = 𝒉𝑹𝒎−𝟏(�⃗⃗� 𝒎−𝟏, 𝒙)                                                                                       (16) 

With conditions    𝑦𝑚(0) = 0 since n𝜖𝑁 , 𝑛 − 1 < 𝛼 ≤ 𝑛 we get the following iteration formula 

𝐷𝑥
𝛼𝑦𝑚(𝑥) = 𝜒𝑚𝐷𝛼𝑦𝑚−1(𝑥) + ℎ 𝑅𝑚−1(𝑦 𝑚−1(𝑥))                                                                                    (17) 

When 

𝑅𝑚−1(𝑦 𝑚−1(𝑥)) = 𝐷𝑥
𝛼𝑦𝑚−1(𝑥) + 𝐶𝑦𝑚−1(𝑥) − 𝑓(𝑥)(1 − 𝑥𝑚)                                                             (18) 

And also  𝜒𝑚 = {
0 ,          𝑚 ≤ 1
1,   𝑜𝑡ℎ𝑟𝑒𝑤𝑖𝑠𝑒

                                                                                                                   (19) 

To find the approximate iterations …𝑦1(𝑥), 𝑦2(𝑥), 𝑦3(𝑥),…we integrate both sides of equation (17) using the Riemann-

Liouville integral. We obtain: 

 𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ𝐼𝛼[𝑅𝑚−1(𝑦 𝑚−1(𝑥))]                                                                                        (20)  
Now, by substituting the values m=1,2, 3, In to equation (20), we obtain the approximate iteration as follows: 

𝑦1(𝑥) = ℎ 𝐼𝛼(𝐷𝑥
𝛼𝑦0(𝑥) + 𝐶𝑦0(𝑥) − 𝑓(𝑥)(1 − 𝜒𝑚)) 

 

𝑦2(𝑥) = 𝜒2𝑦1(𝑥) + ℎ𝐼𝛼(𝐷𝑥
𝛼𝑦1(𝑥) + 𝐶𝑦1(𝑥)) 

 

𝑦3(𝑥) = 𝜒3𝑦2(𝑥) + ℎ𝐼𝛼(𝐷𝑥
𝛼𝑦2(𝑥) + 𝐶𝑦2(𝑥) 

⋮ 

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ𝐼𝛼(𝐷𝑥
𝛼𝑦𝑚−1(𝑥) + 𝐶𝑦𝑚−1(𝑥))                                                                         (21) 

Step three: finally, to obtain an approximate solution for equation (13), We sum the approximate frequencies  

𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), 𝑦3(𝑥),… , 𝑦𝑚(𝑡) ,in the following form: 

𝑄𝑚−1(𝑥) = ∑𝑦𝑠(𝑥)       

𝑚

𝑠=0

 

4.  Runge-Kutta algorithm for improvement (HAM-OBE): 

It is a scientific algorithm designed to improve the ability to solve nonlinear fractional-order differential equations and produce 

results that are very close or sometimes identical to the exact solution. Moreover, it is one of the latest developments in solving 

fractional-order differential equations. 
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5. Numerical Examples: 

Example 1: Let the fractional-order nonlinear differential equation be 

                                                                                    (Ali etal.m.,2017) 

𝐷𝑥
𝛼𝑦(𝑥) + 𝑦(𝑥) − 𝑦2(𝑥) = 0 ,        0 <  𝛼 ≤ 1                                                                            (22) 

    Let the initial condition be  𝑦(0) =
1

2
  , and the exact solution is 𝑦(𝑥) =

𝒆−𝒙

( 𝟏+𝒆−𝒙 )
  

Solution: 

We choose the initial guess according to equation (15) and we get: 

𝑦(0) =
1

2
  

To find the three approximate iterations following the initial guess we use the deformation equation (20) of order m 

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ𝐼𝛼[𝑅𝑀−1(𝑦 𝑚−1(𝑥))]                                                                             (23) 
Where  

𝑅𝑚−1(𝑦 𝑚−1(𝑥)) = 𝐷𝑥
𝛼𝑦(𝑥) + 𝑦(𝑥) − ∑𝑦𝑖(𝑥)𝑦𝑛−𝑖(𝑥), 𝑛 ≥ 𝑖,                                                (24)

𝑛

𝑖=0

 

Substituting m = 1 in the equation (23) we get 

𝑦1(𝑥) = 𝜒1𝑦0(𝑥) + ℎ𝐼𝛼[𝐷𝑥
𝛼𝑦0(𝑥) + 𝑦0(𝑥) − 𝑦0

2(𝑥)]  ,                                                 𝑥1 = 0 

𝑦1(𝑥) = ℎ𝐼𝛼[ 𝐷𝑥
𝛼
1

2
+

1

2
− (

1

2
)
2

] 

 

𝑦1(𝑥) =
ℎ𝑥𝛼

4Γ(𝛼 + 1)
 

 

When m=2,3 the equation (23) becomes as follows: 

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ[𝑦𝑚−1(𝑥) + 𝐼𝛼𝑦𝑚−1(𝑥) − 𝐼𝛼 ∑𝑦𝑖(𝑥)𝑦𝑛−𝑖(𝑥)],                           (25)

𝑛

𝑖=0

 

           

Where m = 1,2, 3, … 

 

Substituting m = 2 into equation (25) and using the properties of the Riemann–Liouville integral we get 

𝑦2(𝑥) = 𝜒2𝑦1(𝑥) + ℎ[𝑦1(𝑥) + 𝐼𝛼𝑦1(𝑥) − 𝐼𝛼𝑦1
2(𝑥)]      , 𝜒2 = 1  

𝑦2(𝑥) = 𝑦1(𝑥) + ℎ[𝑦1(𝑥) + 𝐼𝛼𝑦1(𝑥) − 𝐼𝛼(2𝑦0(𝑥)𝑦1(𝑥)] 

𝑦2(𝑥) =
ℎ𝑥𝛼

4Γ(𝛼 + 1)
+

ℎ2𝑥𝛼

4Γ(𝛼 + 1)
 

𝑦2(𝑥) = (1 + ℎ)
ℎ𝑥𝛼

4Γ(𝛼 + 1)
 

Substituting m = 3 into equation (25) and using the properties of the Riemann-Liouville integral we get 

𝑦3(𝑥) = 𝜒3𝑦2(𝑥) + ℎ[𝑦2(𝑥) + 𝐼𝛼𝑦2(𝑥) − 𝐼𝛼𝑦2
2(𝑥)]     , 𝜒3 = 1  

𝑦3(𝑥) = 𝑦2(𝑥) + ℎ[𝑦2(𝑥) + 𝐼𝛼𝑦2(𝑥) − 𝐼𝛼(2𝑦0(𝑥)𝑦2(𝑥) + 𝑦1
2(𝑥))] 

𝑦3(𝑥) = (1 + ℎ)2
ℎ𝑥𝛼

4Γ(𝛼 + 1)
−

ℎ3𝑥3𝛼Γ(2α + 1)

16Γ(𝛼 + 1)2Γ(3𝛼 + 1)
 

We add the four approximate iterations 𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), 𝑦3(𝑥) and get the solution 

Approximate  

𝑄𝑚+1(𝑥) = ∑𝑦𝑠(𝑥)

𝑚

𝑠=0

 

                   = = 
1

2
+

ℎ𝑥𝛼

4Γ(𝛼+1)
+ (1 + ℎ)

ℎ𝑥𝛼

4Γ(𝛼+1)
+ (1 + ℎ)2 ℎ𝑥𝛼

4Γ(𝛼+1)
−

ℎ3𝑥3𝛼Γ(2α+1)

16(Γ(𝛼+1))2Γ(3𝛼+1)
 

=
1

2
+ (ℎ2 + 3ℎ + 3)

ℎ𝑥𝛼

4Γ(𝛼 + 1)
−

ℎ3𝑥3𝛼Γ(2α + 1)

16(Γ(𝛼 + 1))2Γ(3𝛼 + 1)
                                        (25) 

We find the mean square error (RMSE) for equation (22) where RMSE=√
∑ (𝑒𝑥𝑎𝑐𝑡−𝑄)2𝑛

𝑖=1

𝑛
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(Q) It is the approximate solution and (n) is the number of points and the square error is considered as a fitness function in the 

Runge-kutta algorithm. To improve, we then apply a set of algorithms to get the best value for the parameter h. 

We substitute the best value for h and different values for α according to a specific period as follows: 

Table (1) shows us When α= 0.75, ℎ1 = −0.4921 , ℎ2 = −0.40205 for the two algorithms (HAM-OBE),  (HAM-PSO) and by 

taking different values for x and substituting them in the solution we get the following table for example (1) 

Table (1) 

HAM-OBE  

 ℎ2=-0.40205 

HAM-PS0 

 ℎ1 =-0.4921 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0.5000 o.5000 0.5000 0.5000 0 

0.4620 0.4580 0.4518 0.4750 0.1 

0.4361 0.4294 0.4197 0.4502 0.2 

0.4135 0.4045 0.3923 0.4256 0.3 

0.3928 0.3817 0.3681 0.4013 0.4 

0.3734 0.3604 0.3464 0.3775 0.5 

0.3550 0.3403 0.3268 0.3543 0.6 

0.3375 0.3212 0.3091 0.3318 0.7 

0.3206 0.3028 0.2933 0.3100 0.8 

0.3044 0.2852 0.2791 0.2891 0.9 

0.2886 0.2682 0.2666 0.2689 1.0 

 

 Table (2) shows the improvement of the root mean square error ratio using the Runge- Kutta(HAM-OBE) algorithm to 

improve the results of the homotopy analytical method and the (HAM-PSO) algorithm to solve the Riccati equation for 

example (1) when α=0.75 

Table (2) 

RMSE  

7.29e-02 h in Classical Method 

4.17e-02 Optimal h by HAM-PSO (-0.4921) 

4.6835e-07 Optimal h by HAM-OBE (-0.40205) 

 

 Table (3) shows us When α= 0.85, ℎ1 = −0.5176 , ℎ2 = −0.46999 for the two methods (HAM-OBE), 

(HAM-PSO) and by taking different values for x and substituting them in the solution we get the following table for example 

(1) 

Table (3) 

HAM-OBE  

 ℎ2=-0.46999 

HAM-PS0 

 ℎ1=-0.5176 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0.5000 o.5000 0.5000 0.5000 0 

0.4682 0.4669 0.4627 0.4750 0.1 

0.4428 0.4403 0.4332 0.4502 0.2 

0.4193 0.4159 0.4064 0.4256 0.3 
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HAM-OBE  

 ℎ2=-0.46999 

HAM-PS0 

 ℎ1=-0.5176 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0.3970 0.3927 0.3816 0.4013 0.4 

0.3757 0.3705 0.3586 0.3775 0.5 

0.3551 0.3491 0.3371 0.3543 0.6 

0.3351 0.3284 0.3171 0.3318 0.7 

0.3157 0.3083 0.2987 0.3100 0.8 

0.2967 0.2887 0.2818 0.2891 0.9 

0.2782 0.2696 0.2664 0.2689 1.0 

 

 Table (4) shows the improvement of the root mean square error ratio using the Runge -Kutta algorithm to improve the 

results of the homotopy analytical method and the (HAM-PSO) algorithm to solve the Riccati equation for example (1) when 

α=0.85 

Table (4) 

RMSE  

4.43e-02 h in Classical Method 

1.69e-02 Optimal h by HAM-PSO (-0.5176) 

9.6897e-07 Optimal h by HAM-OBE (-0.46999) 

 

 Table (5) shows us when α= 0.95, ℎ1 = −0.5904 ℎ2 = −0.5826  for the two algorithms (HAM-OBE), (HAM-PSO) 

and by taking different values for x and substituting them in the solution we get the following table for example (1) 

 

Table (5) 

HAM-OBE  

 ℎ2=-0.5826 

HAM-PS0 

 ℎ1=-0.5904 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0.5000 o.5000 0.5000 0.5000 0 

0.4735 0.4733 0.4714 0.4750 0.1 

0.4488 0.4485 0.4449 0.4502 0.2 

0.4248 0.4245 0.4195 0.4256 0.3 

0.4013 0.4009 0.3949 0.4013 0.4 

0.3782 0.3777 0.3712 0.3775 0.5 

0.3555 0.3549 0.3485 0.3543 0.6 

0.3331 0.3325 0.3268 0.3318 0.7 

0.3111 0.3104 0.3062 0.3100 0.8 

0.2894 0.2887 0.2868 0.2891 0.9 

0.2681 0.2673 0.2687 0.2689 1.0 
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Table (6) shows the improvement of the root mean square error ratio using the Runge-Kutta (HAM-OBE) algorithm to improve 

the results of the homotopy analytical method and the (HAM-PSO) algorithm to solve the Riccati equation for example (1) when 

α=0.95 

Table (6) 

RMSE  

1.41e-02 h in Classical Method 

1.6e-03 Optimal h by HAM-PSO (-0.5904) 

8.0481e-07 Optimal h by HAM-OBE (-0.5826) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) shows the convergence of the solution using the homotopy analytical method for the exact solution with a change in 

the value of k, where k is the α fractional order of the nonlinear differential equation for example (1). 
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Figure (2) shows the convergence of the approximate solution using the Runge-Kutta optimization algorithm (HAM-OBE) and 

(HAM-PSO) to the exact solution with the change in the value of k, which is α in the differential equation for example (1) 

 

Example 2: Let the fractional-order nonlinear differential equation be 

(Yang and Hou,2013) 

𝐷𝛼𝑦(𝑥) = 1 + 𝑦2(𝑥)  ,       𝑛 − 1 < 𝛼 < 𝑛        , 𝑛 ∈ 𝑁                                                                    (26) 

  Let the initial condition be  𝑦(𝑟)(0) = 0 ,      𝑟 = 0,1,2,𝑚 − 1, and the exact solution is  

𝑦(𝑥) = tan(𝑥)   
Solution: 

We choose the initial guess according to equation (15) and we get: 

𝑦0(𝑥) = 0                                                                                                                                                    (27)  
To find the three approximate iterations following the initial guess we use the deformation equation (20) of order m 

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ𝐼𝛼[𝑅𝑀−1(𝑦 𝑚−1(𝑥))]                                                                                   (28) 
Where  
𝑅𝑚−1(𝑦 𝑚−1(𝑥)) = 𝐷𝑥

𝛼𝑦𝑚−1(𝑥) − 𝑦𝑚−1
2 (𝑥) − 1(1 − 𝜒𝑚)                                                               (29) 

Substituting m = 1 in the equation (28) we get 

𝑦1(𝑥) = 𝜒1𝑦0(𝑥) + ℎ𝐼𝛼[𝐷𝑥
𝛼𝑦0(𝑥) − 𝑦0

2(𝑥) − 1]  ,                                                                        𝜒1 = 0 

𝑦1(𝑥) = ℎ𝐼𝛼[ 𝐷𝑥
𝛼(0) − (0)2 − 1] 

𝑦1(𝑥) =
−ℎ𝑥𝛼

Γ(𝛼 + 1)
 

When m=2,3 the equation (28) becomes as follows: 

𝑦𝑚(𝑥) = 𝜒𝑚𝑦𝑚−1(𝑥) + ℎ[𝑦𝑚−1(𝑥) − 𝐼𝛼𝑦𝑚−1 
2 (𝑥)]                                                                          (30) 

Substituting m = 2 into equation (30) and using the properties of the Riemann–Liouville integral we get 

𝑦2(𝑥) = 𝜒2𝑦1(𝑥) + ℎ[𝑦1(𝑥) − 𝐼𝛼𝑦1
2(𝑥)]      , 𝜒2 = 1  

𝑦2(𝑥) = 𝑦1(𝑥) + ℎ[𝑦1(𝑥) − 𝐼𝛼(2𝑦0(𝑥)𝑦1(𝑥))] 
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𝑦2(𝑥) = 𝑦1(𝑥) + ℎ[𝑦1(𝑥) − 𝐼𝛼(2(0)𝑦1(𝑥))] 

𝑦2(𝑥) = −(1 + ℎ)
ℎ𝑥𝛼

Γ(𝛼 + 1)
 

Substituting m = 3 into equation (30) and using the properties of the Riemann–Liouville integral we get 

𝑦3(𝑥) = 𝜒3𝑦2(𝑥) + ℎ[𝑦2(𝑥) − 𝐼𝛼𝑦2
2(𝑥)]     , 𝜒3 = 1  

𝑦3(𝑥) = 𝑦2(𝑥) + ℎ[𝑦2(𝑥) − 𝐼𝛼(2𝑦0(𝑥)𝑦2(𝑥) + 𝑦1
2(𝑥))] 

𝑦3(𝑥) =
−(1+ℎ)2ℎ 𝑥𝛼

Γ(𝛼+1)
−

ℎ3Γ(2𝛼+1)𝑥3𝛼

(Γ(𝛼+1))
2
Γ(3𝛼+1)

  

 

We add the four approximate iterations 𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), 𝑦3(𝑥) and get the solution 

Approximate  

𝑄𝑚+1(𝑥) = ∑𝑦𝑠(𝑥)

𝑚

𝑠=0

 

                 =0 −
ℎ𝑥𝛼

Γ(𝛼+1)
− (1 + ℎ)

ℎ𝑥𝛼

Γ(𝛼+1)
− (1 + ℎ)2 ℎ𝑥𝛼

Γ(𝛼+1)
−

ℎ3Γ(2α+1)𝑥3𝛼

(Γ(𝛼+1))2Γ(3𝛼+1)
 

                  = 

= −(ℎ2 + 3ℎ + 3)
ℎ𝑥𝛼

Γ(𝛼 + 1)
−

ℎ3Γ(2α + 1)𝑥3𝛼

(Γ(𝛼 + 1))2Γ(3𝛼 + 1)
                                        (30) 

We find the mean square error (RMSE) for equation (26) where RMSE=√
∑ (𝑒𝑥𝑎𝑐𝑡−𝑄)2𝑛

𝑖=1

𝑛
 

(Q) It is the approximate solution and (n) is the number of points and the square error is considered as a fitness function in the 

Runge-kutta algorithm. To improve, we then apply a set of algorithms to get the best value for the parameter h. 

We substitute the best value for h and different values for α according to a specific period as follows: 

Table (7) shows us when α= 0.85, ℎ1 = −0.3840 , ℎ2 = −0.38742 for the two algorithms           (HAM-OBE),  (HAM-PSO) 

and by taking different values for x and substituting them in the solution we get the following table for example (2) 

Table (7) 
HAM-OBE  

 ℎ2=-0.38742 

HAM-PS0 

 ℎ1 =-0.3840 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0 0 0 0 0 

0.1297 0.1292 0.1508 0.1003 0.1 

0.2392 0.2382 0.2774 0.2027 0.2 

0.3487 0.3471 0.4029 0.3093 0.3 

0.4632 0.4607 0.5329 0.4228 0.4 

0.5858 0.5822 0.6707 0.5463 0.5 

0.7186 0.7137 0.8187 0.6841 0.6 

0.8637 0.8517 0.9790 0.8423 0.7 

1.0225 1.0140 1.1532 1.0269 0.8 

1.1965 1.1857 1.3428 1.2602 0.9 

1.3871 103736 1.5492 1.5574 1.0 

 

 Table (8) shows the improvement of the root mean square error ratio using the Runge- Kutta algorithm (HAM-OBE) 

to improve the results of the homotopy analytical method and the (HAM-PSO) algorithm to solve the Riccati equation for 

example (2) when α=0.85 

 

 



 EDUSJ, Vol, 34, No: 3, 2025 (1-15) 

10 

 

 

Table (8) 

RMSE  

2.916e-01 h in Classical Method 

1.69e-02 Optimal h by HAM-PSO (-0.3840) 

3.6210e-06 Optimal h by HAM-OBE (-0.38742) 

 

 Table (9) shows us when α= 0.90, ℎ1 = −0.3841, ℎ2 = −0.38408 for the two algorithms(HAM- OBE), (HA-MPSO) 

and by taking different values for x and substituting them in the solution we get the following table for example (2) 

 

Table (9) 

HAM-OBE  

 ℎ2=-0.38408 

HAM-PS0 

 ℎ1=-0.3841 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0 0 0 0 0 

0.1132 0.1132 0.1318 0.1003 0.1 

0.2165 0.2165 0.2499 0.2027 0.2 

0.3232 0.3232 0.3687 0.3093 0.3 

0.4380 0.4380 0.4924 0.4228 0.4 

0.5643 0.5643 0.6241 0.5463 0.5 

0.7049 0.7049 0.7660 0.6841 0.6 

0.8623 0.8623 0.9201 0.8423 0.7 

1.0388 1.0388 1.0885 1.0296 0.8 

1.2365 1.2366 1.2727 1.2602 0.9 

1.4575 1.4576 1.4743 1.5574 1.0 

 

 Table (10) shows the improvement of the root mean square error ratio using the Runge -Kutta algorithm (HAM-OBE) 

to improve the results of the homotopy analytical method and the (HAM-PSO) algorithm to solve the Riccati equation for 

example (2) when α=0.90 

Table (10) 

RMSE  

1.370e-01 h in Classical Method 

1.1084e-04 Optimal h by HAM-PSO (-0.3841) 

3.0259e-06 Optimal h by HAM- OBE (-0.38408) 

 

 Table (11) shows us when α= 0.95, ℎ1=-0.3769  , ℎ2 = −0.37688  for the two algorithms (HAM-OBE),  (HAM-PSO) 

and by taking different values for x and substituting them in the solution we get the following table for example (2) 
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Table (11) 

HAM-OBE  

 ℎ2=-0.37688 

HAM-PS0 

 ℎ1=-0.3769 

HAM 

 ℎ =-1 

Exact solution 𝑥 

0 0 0 0 0 

0.0982 0.0982 0.1150 0.1003 0.1 

0.1946 0.1947 0.2251 0.2027 0.2 

0.2977 0.2977 0.3375 0.3093 0.3 

0.4118 0.4119 0.4554 0.4228 0.4 

0.5410 0.5410 0.5812 0.5463 0.5 

0.6888 0.6888 0.7172 0.6841 0.6 

0.8586 0.8587 0.8654 0.8423 0.7 

1.0538 1.0539 1.0277 1.0296 0.8 

1.2775 1.2776 1.2060 1.2602 0.9 

1.5329 1.5330 1.4023 1.5574 1.0 

 

 Table (12) shows the improvement of the root mean square error ratio using the Runge -Kutta algorithm (HAM-OBE) 

to improve the results of the homotopy analytical method and the (HAM-PSO) algorithm to solve the Riccati equation for 

example (2) when α=0.95 

 

Table (12) 

RMSE  

7.1e-03 h in Classical Method 

9.4974e-05 Optimal h by HAM-PSO (-0.3769) 

2.4390e-05 Optimal h by HAM-OBE (-0.37688) 
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Figure (3) shows the convergence of the solution using the homotopy analytical method for the exact solution with a change in 

the value of k, where k is the α fractional order of the nonlinear differential equation for example (2). 

 

 

 

                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4) shows the convergence of the approximate solution using the Runge-Kutta optimization algorithm (HAM-OBE) and 

(HAM-PSO) to the exact solution with the change in the value of k, which is α in the differential equation for example (2) 
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6. Conclusion 

 In this research, the analytical method of homotopy was presented to find a series of approximate solutions that give 

the solution with acceptable accuracy and an error rate that must be reduced due to its importance in scientific calculations that 

require the solution of nonlinear ordinary differential equations with fractional orders. Therefore, an algorithm was presented to 

reduce the error rate and improve the results, which is the second-order Runge-Kutta algorithm to improve the solution (HAM-

OBE). Examples were solved and the root mean square error (RMSE) was used as a measure to compare the approximate solution 

of the homotopy method (HAM), the particle swarm optimization algorithm (HAM-PSO), and the second-order Runge-Kutta 

algorithm (HAM-OBE) with the exact solution. It was shown that the (HAM-OBE) algorithm reaches the best value for the 

parameter affecting the accuracy of the solution, and with this new value of the parameter h, the accuracy of the solution increased 

by reducing the error rate. Thus, we can conclude. The homotopy analytical method gave an acceptable solution, but many 

mathematical, physical and other problems need more accuracy as a result of the progress of science. Many algorithms were 

proposed to improve the solution, including the (HAM-OBE) algorithm, which made the solution more accurate and closer to 

the exact solution, as in the following table, which summarizes the results of improving the solutions of the homotopy method 

and the bird flock algorithm (HAM-PSO) by the Runge-Kutta algorithm (HAM-OBE) 

In Table (13), we have noticed that the Rangi-Kuna algorithm has been improved. 

The error rate compared to the bird flock algorithm is about 95% as in Table (13). 

 

Table (13) 

RMSE   

Optimal h by HAM-

OBE 

Optimal h by    HAM-

PSO 

h in Classical 

Method 

Value of α Examples 

4.6835e-07 4.17e-02 7.29e-02 α=0.75 1 

9.6897e-07 1.69e-02 4.43e-02 α=0.85  

8.0481e-07 1.6e-03 1.41e-02 α=0.95  

3.6210e-06 1.69e-02 2.916e-01 α=0.85 2 

3.0259e-06 1.1084e-04 1.370e-01 α=0.90  

2.4390e-05 9.4974e-05 7.1e-03 α=0.95  
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كوتا لحل المعادلات التفاضلية غير -تحسين الطريقة التحليلية للتقارب باستخدام خوارزمية تحسين رونج

 الخطية من الدرجة الكسرية

 
 (2)، قيس إسماعيل ابراهيم*)1(شوان سلو عبدال

 

 (1,2) قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الموصل، الموصل، العراق
: المستخلص  

مع الدالة ومشتقاتها. بمعنى    طرديا المعادلات التفاضلية هي معادلات تربط دالة بواحدة أو أكثر من مشتقاتها. غير خطية تعني أن المعادلة ليست متناسبة  

في المعادلة ليست بالضرورة   آخر، لا يمكن فصل متغيراتها ببساطة. المتغير التابع ومشتقاته أسّي، أي ليس من الدرجة الأولى. يشير الترتيب الكسري إلى أن المشتقات

لحل المعادلات التفاضلية الاعتيادية غير الخطية ذات    لترتيب هو عدد كسري. من رتبة عدد صحيح )مثل المشتقة الأولى أو الثانية( يمكن أن تكون كسرية، أي أن ا

سهلا بالطرائق الاعتيادية المتعارف عليها .ولكن نتائج طريقة هوموتوبي لم تكن  لان حل هذه المعادلات ليس      الرتب الكسرية استخدمت طريقة هوموتوبي التحليلية

وفي هذا البحث تم    (HAM-PSO)بالدقة المطلوبة لذلك استخدمت خوارزميات لتحسين نتائج طريقة هوموتوبي ومن هذه الخوارزميات خوارزمية سرب الطيور  

-HAM)لتحسين نتائج طريقة هوموتوبي ومن خلال اول مثال في البحث نلاحظ ان خوارزمية سرب الطيور    (HAM-OBE)كوتا  -استخدام خوارزمية رونجي

PSO)    4.17حسنت نتائج طريقة هوموتوبي بمقدار خطاء يساويe-02   كوتا  -اما خوارزمية رونجي(HAM-OBE)    4.6835حسنت النتائج بمقدار خطاءe-07   

 حسنت النتائج  (HAM-OBE)كوتا -وبمقارنة مقدار الخطائين  نجد ان خوارزمية رونجي

كدالة لياقة لمعرفة مقدار التحسين قياسا للحل المضبوط وهذا  (RMSE)قياسا للحل المضبوط. حيث استخدم الجذر التربيعي لمربع متوسط الخطاء  %99.99بمقدار  

وحركة الاجسام والذكاء الصناعي    التحسين مفيد في الحياة لان المعادلات التفاضلية غير الخطية ذات الرتب الكسرية مفيدة في علوم الفيزياء والكيمياء والصناعات الطبية

 تية وحركة الاجسام من خلال المشتقات ذات الرتب الكسرية. ولها تطبيقات حياتية مثل دراسة الموجات الصو

 


