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Abstract
Recently, chaos theory has been widely used in multimedia and digital communications due to its unique properties that
can enhance security, data compression, and signal processing. It plays a significant role in securing digital images and
protecting sensitive visual information from unauthorized access, tampering, and interception. In this regard, chaotic
signals are used in image encryption to empower the security; that’s because chaotic systems are characterized by their
sensitivity to initial conditions, and their unpredictable and seemingly random behavior. In particular, hyper-chaotic
systems involve multiple chaotic systems interacting with each other. These systems can introduce more randomness
and complexity, leading to stronger encryption techniques. In this paper, Hyper-chaotic Lorenz system is considered to
design robust image encryption/ decryption system based on master-slave synchronization. Firstly, the rich dynamic
characteristics of this system is studied using analytical and numerical nonlinear analysis tools. Next, the image secure
system has been implemented through Field-Programmable Gate Arrays (FPGAs) Zedboard Zynq xc7z020-1clg484
to verify the image encryption/decryption directly on programmable hardware Kit. Numerical simulations, hardware
implementation, and cryptanalysis tools are conducted to validate the effectiveness and robustness of the proposed
system.
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I. INTRODUCTION

The current revolution in media exchange, along with the
abundance and volume of information available via the in-
ternet, satellites, mobile devices, and various networks, has
made it simple to obtain the information’s content and made
accessing content easier than ever. Concurrently, Since unlaw-
ful individuals might now access private material, one of the
main issues facing individuals is protecting their data from
these users. High security can usually be ensured conveniently
with encryption, and several encryption schemes have lately
been developed to meet these objectives. Indeed, given to-
day’s computational capabilities, the majority of conventional
ciphering methods, including the linear feedback shift register

(LFSR), advanced encryption standard (AES), international
data encryption algorithm (IDEA), and data encryption stan-
dard (DES), are not fast enough for real-time image/video
encryption due to high pixel correlation and large data vol-
umes [1,2]. Exploiting chaotic dynamics has attracted a lot of
attention lately in the realms of encryption and communica-
tions.

Chaos is among the greatest discoveries in the engineering
and physics fields. A class of dynamic systems that are very
sensitive to disturbances in their unexcited states (initial con-
ditions) or algebraic structures experience chaos, which is a
nonlinear phenomenon that makes it unpredictable how these
systems will evolve in time and space in the future. Both natu-
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ral and artificial systems exhibit chaotic dynamics, and a deep
comprehension of these properties has led to a wide range of
applications in modeling, controlling, and improving the per-
formance of engineering systems. The unique duality property
of deterministic and stochastic properties in chaotic systems
makes them particularly appealing for electronic engineering
applications. This is because the signals produced by chaotic
systems can be utilized as controlled noise sources, provid-
ing a compelling reason to investigate and develop hardware
implementations of these systems [3].

Numerous domains of contemporary human endeavor, in-
cluding architecture, landscaping, economics, finance, health,
psychology, and meteorology, have discovered broad uses
for chaos. Chaotic dynamics has been utilized in engineer-
ing to resemble real-world systems and improve the perfor-
mance of already-existing ones, particularly in secure com-
munications [4, 5], antenna and radar systems [6], biomedical
engineering [7–9], civil, mechanical, robotics [10], power
systems [11–13] etc.

Given that hyperchaotic systems have many positive Lya-
punov exponents, they are characterized by dynamic reactions
that expand in several directions. According to [14], this
feature results in dynamical behavior that is more compli-
cated than that of typical chaotic systems. Using hyperchaotic
systems in image encryption offers several advantages, partic-
ularly in terms of enhanced security and complexity. Hyper-
chaotic systems exhibit more intricate dynamics compared to
regular chaotic systems, and these dynamics can be harnessed
to create stronger encryption schemes.

Numerous scholarly papers have shown the superior per-
formance and efficacy of chaos-based cryptography in com-
parison to traditional cryptography [15,16]. The foundation of
chaos-based secure communication is the chaos synchroniza-
tion principle, which states that two divergent state trajectories
of identical or non-identical chaotic systems can be brought
into partial, antiphase, phase, or complete synchronous state in
a finite amount of time by developing nonlinear control strate-
gies. The possibility of encrypting and decrypting communica-
tions sent via communication channels is primarily explained
by this theory. The original data could now be recovered as it
was possible to recreate the chaotic sequence that was used for
encryption on the emitter side at the receiving side. The litera-
ture has investigated a number of synchronization strategies,
including generalized synchronization [17], fuzzy synchro-
nization [18], hybrid feedback synchronization [19, 20], and
intelligent control-enhanced synchronization approaches. In
order to confirm the safe operation of the communication
strategy, Bian and Yu [21] conducted a circuit simulation and
presented a novel chaotic communication encryption tech-
nique based on a 6-D hyperchaotic Lorenz system. A 6-D
hyperchaotic system was developed by Wang et al. [22] and

used to wrap up designing the circuits for signal encryption
and decryption in a secure communication strategy. A novel
5-D hyperchaotic system for secure communication based on
Micro Controller Units (MCUs) was suggested by Peng et
al. [23]. A cellular neural network (CNN) based memristive
hyperchaotic system was proposed and its hardware circuit
design was detailed by Xiu et al. [24]. The design and mod-
eling of a 4-D hyperchaotic communication system based on
the chaotic Lorenz attractor were reported by Alibraheemi et
al. [25].

While software-based encryption solutions are widely
used, they may not always provide the highest level of secu-
rity. Hardware-based encryption, on the other hand, involves
implementing encryption algorithms directly on dedicated
chips or processors. This offers several advantages such that:
hardware-based encryption can be more resistant to various
attacks, such as side-channel attacks, compared to software-
based solutions. Moreover, Dedicated encryption chips can
process data more efficiently, leading to better performance
and faster encryption/decryption speeds.

The use of FPGA instead of analogue circuits is better for
several reasons. Analogue chaotic generators in communi-
cation systems require precise synchronization between the
transmitter and receiver, which is challenging due to the vari-
ability of analogue components with age and temperature [26].
Digital hardware, such as FPGA, offers a more reliable so-
lution. FPGAs provide practical advantages over analogue
components, including easier specification of initial condi-
tions, insensitivity to component tolerance, and avoidance of
saturation issues [27]. Additionally, FPGAs can achieve high
frequencies, making them superior for this application [28].

Motivated by the above discussions, in this paper we pre-
sented the following aspects: investigating the hyper-chaotic
dynamics of the four-dimensional Lorenz system. The analy-
sis shows the elegant characteristics of the introduced hyper-
chaotic model that are useful for the cryptographic encryption
process. The hardware implementation of the presented hy-
perchaotic model is shown using FPGA technology. The fixed
point representation is provided to optimize the FPGA re-
source utilization. The chaotic generators are first represented
by a set of nonlinear equations and a system-based model is de-
veloped to represent these equations directly. The complicated
VHDL code is developed from a block design, which is then
utilized to set up the intended FPGA board. When generating
an FPGA programming file, all downstream FPGA develop-
ment processes—such as synthesis and place and route—are
carried out automatically. Then applied a chaotic signal to
encrypt the image, ensuring secure transmission and access in
an open network environment by transforming the meaningful
image into an unrecognized noise-like image.

This paper consists of six sections. Following this intro-
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duction, Sec. II. , introduces the mathematical model of the
presented hyperchaotic Lorenz system. Nonlinear analysis
tools are used to reveal the dynamic behavior of the model and
discuss the elegant features of the introduced hyperchaotic
model. In Sec. III. , the FPGA realization of the introduced
system is investigated, along with the design optimization
aspects. In Sec. IV. , the chaos synchronization model used
in this work has been elaborated. The FPGA implementation
results of the proposed cryptographic system and cryptanaly-
sis measures are given in Sec. V. The main conclusions and
discussion are presented in Sec. VI.

II. HYPERCHAOTIC SYSTEM DYNAMICS

This section will go through the main attractive and elegant
properties of the considered hyperchaotic system. The pre-
sented mathematical model is an extended version of the
Lorenz model but with many advantages for the application as
a chaotic generator for cryptographic applications. The model
is given by (1) as follows [29]:


ẋ = a(y− x)
ẏ =−xz−w
ż = xy−b
ẇ = my

(1)

where a and b are system (1) parameters. The first elegant
property of the presented model is that it has no equilibrium
points, where equating the left side of the model to zero gives
no real solution, satisfying that a and b are nonzero. This
feature is very useful for building chaotic generators (non-
linear oscillators) with no danger that the oscillations would
stop. Furthermore, related to systems with no equilibrium
states, so any attractors of the system are hidden. And this is
increasing the complexity of the system dynamics and making
it a better choice for cybersecurity applications. Also, even
that the system has no equilibrium state, the system solution
is bounded as the hypervolume rate of change is negative as
demonstrated by the Lie type derivative as follows (2):

∇V =
∂ ẋ
∂x

+
∂ ẏ
∂y

+
∂ ż
∂ z

+
∂ ẇ
∂w

=−a (2)

where a is a positive parameter. As a result, system (1) is
dissipative, and its responses contract onto an attractor of zero
measure in 4-D state space as time approaches infinity.

Another elegant feature of the considered chaotic model,
is that the system has two positive Lyapunov exponents. So,
its dynamical responses expand in multi-direction, this fact
leads to dynamics with more complex behavior and render

the model as hyperchaotic system, which is very sensitive to
initial conditions and system parameters, and this is making
it preferred in security applications. The four Lyapunov ex-
ponent of the considered hyperchaotic system are given in
Figs. 1 and 2 . It is commonly recognized that no nonlinear
system control parameter can sustain the chaotic behavior of
a given chaotic system; as a result, factors that do not produce
chaotic behavior produce weak keys. We may distinguish
chaotic from non-chaotic areas of a given system with the use
of the Lyapunov exponents. Each parameter that is utilized
as a key should thus be outside of areas that are not chaotic.
We provide a straightforward approach that involves choos-
ing limiting ranges for the keys around each parameter value
in order to stay out of this scenario. In accordance to Lya-
punov exponents spectrum of introduced hyperchaotic Lorenz
model; the chaotic behavior is maintained for a ∈ [4.5, 10]
and m ∈ [0, 11]. So, the keys should be selected from these
predetermined ranges.

A Poincaré section plotted in Fig. 3 shows the hyper-
chaotic region whose dimension is at least 2.0. The map
shows the symmetry property of the hyperchaotic model and
a dense area. The considered model has a strong nonlinear
interaction that can be shown by finding the higher-order spec-
tra and the relationship between system different frequency
modes. Let x(t) be a stationary random process defined as [30]:

x(t) =
N

∑
n=1

Ane jωnt +A∗
ne− jωnt (3)

where the complex Fourier coefficients are An, the frequency
mode index is n, and the radian frequency is given by w. Then
one could describe the power spectrum as follows:

P(ωk) = E
[
Aωk A∗

ωk

]
(4)

and discrete bispectrum can be defined as,

B(ωk,ω j) = E
[
Aωk Aω j A

∗
ωk+ω j

]
(5)

The time series are split into M sections, each of which
has a length of N, in order to compute the bispectrum. Both
biperiodogram and Fourier transformations are then computed.
They are subsequently averaged over all segments. Bicoher-
ence functions have two distinct frequencies as inputs and
their sum as outputs, but their output is one-dimensional. Bi-
coherence can therefore be thought of as an aspect of the
sum of two frequencies. Pezeshki [31] provides the chaotic
system’s autobispectrum. The Fourier coefficients are used to
compute autobispectrum:

B(ω1,ω2) = E [A(ω1)A(ω2)A∗ (ω1 +ω2)] (6)
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Fig. 1. Lyapunov Exponent of (1), with respect to a.
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Fig. 2. Lyapunov Exponent of (1), with respect to m.

where wn is the angular frequency and A is the Fourier coeffi-
cients. The value of bicoherence square can be provided as
follows:

b(ω1,ω2) = |B(ω1,ω2)|2 /P(ω1)P(ω2)P(ω1 +ω2) (7)

where P(ω1) and P(ω2) are the power spectrums at f1 and
f2.

Fig. 4 shows the bicoherence contours of the consid-
ered system for state x. As it is shown in Fig. 4, the cross-
bicoherence is nonzero and non-constant; hence, the state
relationship is nonlinear with broadband power spectral den-
sity. Due to the broadband spectrum feature of the chaotic
system, it is very suitable to use this system in secure com-
munication applications [32]. All the previously discussed

Fig. 3. Poincaré Map of (1) at the surface z = xy/10.

Fig. 4. Bicoherence and PSD of (1).

measures emphasize the usefulness of the presented model as
a chaotic generator.

III. FPGA REALIZATION

The discrete integration approach can be employed to decrease
FPGA resource utilization when designing chaotic generators
like the Lorenz attractor; however, it may introduce round-
ing errors and cause the result to not converge. As long as
the differential equation solutions converge at a certain step
size, the issue of fixed-point approximation inaccuracies will
always exist and may be tolerated [33]. One of the first-order
numerical approach for resolving ODEs is the Euler method.
A diminished Taylor series expansion serves as the foundation
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Fig. 5. Optimized FIX-32-18 FPGA realization of the hyperchaotic Lorenz system (1).

for the forward Euler technique. The dynamical system given
by n ODEs with n- state variables in equation (8), can be
expressed using the forward Euler technique for FPGA imple-
mentation as time course solution that given by the system of
equations (9) stated as follows:

dx1

dt
= f1 (x1, . . . ,xn)

dxn

dt
= fn (x1, . . . ,xn)

(8)

by applying the forward method of Euler:

x1(t +dt) = x1 + f1 (x1(t), . . . ,xn(t))dt
...

xn(t +dt) = xn + fn (x1(t), . . . ,xn(t))dt

(9)

It is mentioned in previous studies that chaotic oscillator
may exhibit abnormalities if their step size (dt) is big [34].
ODEs can also be solved numerically using other methods,
such as the fourth order Runge-Kutta technique (RK-4) [35].

32-Bits Fixed-point FPGA Implementation
Fixed-point representation is a method of representing num-
bers with a specific number of fractional and integer bits in
digital systems like Field-Programmable Gate Arrays (FP-
GAs). Unlike floating-point representation, which uses sepa-
rate bits to represent the mantissa and exponent, fixed-point

representation allocates a fixed number of bits to represent
both the integer and fractional parts of a number. This is par-
ticularly useful in FPGA designs where hardware resources
are limited, and fixed-point arithmetic can be implemented
more efficiently than floating-point arithmetic. A prevalent
signed fixed-point encoding notation is Qm.n provides m in-
teger bits, n fractional bits, and 1 sign bit. Its accuracy is 2−n,
and its corresponding limit is between −2m and 2m −2−n. In
system generator model, a 32-bit fixed-point data format with
13 integer bits, 18 fractional bits, and 1 bit to represent the
sign of the signal. The format has been used to realize Lorenz
hyperchaotic system (1) in this work. The system generator
model has been optimized to meet the constraints by including
delay blocks to cut critical paths and meet the timing closure.
Critical long time pathways can be divided into small pieces to
satisfy the timing constraints by introducing delay blocks [36].
Fig. 5, shows the optimized design of the presented Lorenz
hyperchaotic system (1).

IV. CHAOTIC SYSTEMS SYNCHRONIZATION

Despite being aperiodic and appearing randomly in the time
domain, chaotic systems may be synchronized and employed
for data encryption in secure communication systems to send
text, picture, video, and audio files [37]. The highly unpre-
dictable and random-look nature of chaotic signals is the most
attractive feature of deterministic chaotic systems that may
used for data encryption schemes [38].
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Fig. 6. The proposed FPGA image encryption/ decryption system with the Lorenz hyperchaotic master-slave synchronization
model.

Up to Pecora and Carroll’s demonstration that it is feasible
for two or more dynamically chaotic and/or hyperchaotic enti-
ties to synchronize, the chaos or hyperchaos synchronization
remained irrelevant [39]. Additive masking, chaotic switch-
ing, chaotic parameter modulation, chaotic shift keying, and
chaotic frequency modulation are among some of the common
approaches for chaos-based secure transfer of confidential in-
formation signals [40].

In this work the the XOR-masking method has been imple-
mented to facilitate synchronization between the master and
slave chaotic systems, leveraging its numerous advantages.
This approach offers robustness against external disturbances
and noise, which are common challenges in chaotic systems,
and able to enhance the stability of synchronization, ensuring
reliable and consistent communication between the systems
even in the presence of perturbations. These features are par-
ticularly valuable in practical applications where, the computa-
tional efficiency of this method makes it suitable for real-time
synchronization tasks, enabling rapid response and seamless
integration into dynamic environments. The synchronization
scheme is shown in Fig. 6.

V. EXPERIMENTAL RESULTS

The objective was to assess the performance and effectiveness
of the proposed hyperchaotic-based cryptosystem through
encryption and decryption processes applied to this image.
The cryptosystem utilizes hyperchaotic dynamics, which are
characterized by complex, unpredictable behavior ideal for
cryptographic applications.

During the encryption phase, the plain image undergoes
a series of transformations based on hyperchaotic dynamics.
These transformations typically involve nonlinear operations.
This process scrambles the image content in a highly chaotic
manner, making it unintelligible to unauthorized parties with-
out the appropriate decryption key.

Subsequently, the encrypted image is subjected to the
decryption process using the same hyperchaotic-based cryp-
tosystem. The decryption algorithm reverses the operations
applied during encryption, effectively recovering the original
plain image from the encrypted data. This process demon-
strates the ability of the cryptosystem to securely restore the
original content from the encrypted form, provided the correct
decryption key is utilized.
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The experimentation with the ”Lena” colour plain image
serves to validate the efficiency and the feasibility of the pro-
posed cryptosystem in real-world scenarios. By employing a
widely recognized test image, researchers can assess various
aspects of the cryptosystem’s performance, including encryp-
tion speed, decryption accuracy, resistance to attacks, and
preservation of image quality. The results obtained from this
experimental testing provide valuable insights into the prac-
tical applicability and robustness of the hyperchaotic-based
cryptosystem for securing digital images and other sensitive
data.

A. Cryptanalysis
This section assesses the recommended hyperchaotic-based
image cryptosystem’s performance efficiency using a vari-
ety of security test techniques. As is often known, a good
cryptosystem should have a large amount of keyspace to foil
explorer efforts, strong resilience to various attacks, and high
sensitivity to the key or keys [41]. In this work, the fol-
lowing popular measures were investigated: key sensitivity,
histogram, information entropy, correlation coefficients of
neighboring pixels, and other typical statistics used as indica-
tors of the effectiveness of the proposed image cryptosystem
design.

1) Histogram Check
The histograms common metric are often used to measure
and visualize the values of pixels (pixel brightness levels)
distributed in a photograph. The original color image may
be regarded as a 24-bit image since it has three bands (R, B,
and B), each of which is an 8-bit image. Therefore, for each
of these three bands, which range from 0 to 255, there are
256 (28) potential brightnesses. Consequently, 256 values
indicating the distribution of the picture pixels and their levels
of intensity will be shown by the histogram [42].

The encrypted image’s histogram count should be statisti-
cally distinct from the plain image’s histogram. This is nec-
essary to prevent statistical attacks, which rely on identifying
patterns in the pixel intensity levels. A uniform histogram in
the encrypted image makes it difficult for attackers to infer any
meaningful information from the pixel distribution. Moreover,
the encrypted image’s histogram should also be aesthetically
different from the plain image’s histogram. This means that
the visual representation of the pixel intensity levels should be
distinct and unintelligible, making it difficult for an attacker to
visually identify any patterns or features of the original image.
The histograms of the red (R), green (G), and blue (B) bands
of the encrypted image should be somewhat uniform in form.
This uniformity is important because it indicates that the pixel
values are unpredictable and do not follow any discernible
pattern. A uniform distribution in the histograms of the R,

G, and B bands makes it difficult for attackers to exploit any
correlations between the color channels.

Fig. 7a, and Fig. 7d show the plain colored Lena image
and its histograms spectrum, respectively. The histograms of
the encrypted images of the respective original Lena, R, G,
and B depicted in Fig. 7b, is provided in Fig. 7e. The recov-
ered image Fig. 7c is consistent with the plain image displayed
in Fig. 7a, in their appropriate arrangements respectively. It is
clear from Figs. 7d and 7e that the pattern of distribution of the
encrypted image histograms distinct considerably from that of
the initial image, while the pixel intensities of the encrypted
image have a flat distribution (uniform). These findings show
that the proposed cryptosystem algorithm provides excep-
tional resilience against statistical attacks. Stated otherwise,
the histograms of the encrypted picture have equal distribu-
tion. Consequently, the encrypted pictures provide no details
about the original pictures. Moreover, Fig. 7f that shows the
histogram distribution of the recovered picture, which is pre-
cisely the same as Fig. 7d that shows the histogram of the
plain image. Consequently, it is possible to successfully and
precisely extract and recover the original image.

2) Keyspace Analysis
In the situation of a pirate force attack happens, one impor-
tant aspect of the security in any system of cryptography is
the keyspace [43]. In our study, the hyperchaotic Lorenz
system, denoted by equation (1), generates the secret keys
components. Thus, the parameters (a, b, and m), as well as
the system (1) initial condition values (x(0),y(0),z(0),w(0)),
are included in the secret keys list. Hyperchaotic systems
are very sensitive to even little changes in the initial con-
ditions and model characteristics, as was mentioned in the
introductory section. If every utilized key undergoes 10−15

step modification, the total keyspace may be calculated as
follows: (1016)7 = 10112 = 2372. These results show that the
employed encryption method’s keyspace is sufficiently big to
fend off all types of brute force attempt.

3) Key Sensitivity Analysis
Strong key sensitivity is necessary in any cryptography sys-
tem to validate strong and secure encryption techniques. This
implies that effective recovery of the ciphered picture is im-
possible, even with minor modifications to the encryption
and decryption keys. This ensures that the cryptosystem tech-
nique is secure from brute force threats [44]. The unified
average changing intensity (UACI) and net pixel change rate
(NPCR) are often computed to assess the key sensitivity as-
pects. These measures evaluate the effect of slight variations
in the secret keys on the original image retrieval. Greater
resistance against different types of pirate assaults is shown
by higher NPCR and UACI scores for the encryption tech-
nique [45]. The percentage of variation in the degree of pixel
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(a) Plain Lena (b) Encrypted Lena (c) Decrypted Lena

(d) Plain Lena histogram (e) Encrypted Lena histogram (f) Decrypted Lena histogram

Fig. 7. The results of the histogram distribution.

number modification between two images is computed by the
NPCR. However, the average brightness of the discrepancies
between the two pictures is determined by UACI. The NPCR
and UACI may be evaluated using the next given formulas
(10) and (11), respectively [46]:

NPCR =
∑

M
i=1 ∑

N
j=1 |sign(I(i, j)−D(i, j))|

M ·N
×100% (10)

UACI =
1

255
∑

M
i=1 ∑

N
j=1 |I(i, j)−D(i, j)|

M ·N
×100% (11)

where equation (10) provides the following: M×N gives the
image size; I(i, j) provides the plain image; D(i, j) represents
the recovered image; (i, j) confers the pixel image location;
and if I(i, j) ̸= D(i, j), then |sign(·)| = 1; and if not, then
|sign(·)|= 0. Table I illustrates the results of key sensitivity
comparative assessments of NPCR and UACI.

4) Correlation Coefficients Analysis

The correlation coefficients are employed to quantify the de-
gree of data unpredictability in the encrypted pictures. They
are computed by comparing the values of two neighboring
pixels. The plain image has a substantial amount of connec-
tivity between two head-to-head pixels. This value, however,
ought to be as low as practical for the encrypted image, that
is, the least amount of correlation that may exist between
two adjacent pixels. Reducing the correlation between an
encrypted image’s adjacent pixels is a necessary feature of a
high-security image encryption system [47].
Correlation coefficient values are typically calculated for a cer-
tain number of neighboring pixels in the diagonal (D), vertical
(V), and horizontal (H) arrangements. According to [48], the
correlation coefficients of two head-to-head pixel x, y values
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TABLE I. NPCR AND UACI OF THE PLAIN AND ENCRYPTED IMAGES.

Test Lena R Band G Band B Band
NPCR 99.563980 99.563980 99.563980 99.563980
UACI 30.4252 32.9877 30.6866 27.6013

TABLE II. CORRELATION RESULTS OF THE PLAIN AND ENCRYPTED IMAGES, RESPECTIVELY.

Direction Plain Image Encrypted Image
Lena R Band G Band B Band Lena R Band G Band B Band

Vertical 0.9855 0.9900 0.9846 0.9540 -0.0108 -0.0180 -0.0241 -0.0275
Horizontal 0.9786 0.9833 0.9728 0.9314 -0.0109 -0.0135 -0.0132 -0.0179
Diagonal 0.9632 0.9698 0.9562 0.9098 0.0261 -0.0807 0.0034 -0.0124

in an image are calculated:

rxy =
cov(x,y)√
D(x)

√
D(y)

(12)

In (12), x and y signify the two neighbouring pixel values,
cov(x,y) presents the covariance function, and D(.) denotes
the variance. The values cov(x,y) and D(.) can be computed
as in equations (13) and (14), respectively [49]:

cov(x,y) =
∑

N
i=1 (xi −E(x))(xi −E(y))

N
(13)

D(k) =
∑

N
i=1 (ki −E(k))2

N
(14)

where the average is E(k), which may be computed using
(15), and the total number of chosen pixels in the image is
represented by N in (10) as in the following:

E(k) =
∑

N
i=1 ki

N
(15)

In our study, we selected pairs of neighboring pixels in vertical,
horizontal, and diagonal layouts from the original and its
encrypted pictures for the correlation confection computation.
The obtained correlation confections of neighboring pixels
for the original image and its consistent encrypted image are
displayed in Table II.

As can be observed in Table II, the encrypted image ex-
hibit a very small correlation compared to the initial image
pixels’ highly strong correlation. This indicates that the cryp-
tosystem technique being used is quite resilient against brute
force attempt.

Additionally, the correlation coefficient plots of the unen-
crypted Lena picture and its consistent encrypted image are
shown in horizontal, vertical, and diagonal orders in figures

within Table III. It can be seen from these figures that the
plain image show a very weighty correlation of the related
pixels. In other words, all of the pixel points in the plain
image and are concentrated along with the diagonal alliance.
On the other hand, conversely, the corresponding encrypted
picture pixel dots are dispersed over the plane. This confirms
that there are much less correlations between different pixels
in the encrypted image. An ideal quality of an encryption
technique is the capacity to transform closely related pixels
of a plain picture into unrelated pixels of an encrypted image.
Because of this increased unpredictability, it is harder for at-
tackers to do statistical analysis on the encrypted picture. This
illustrates the high level of security efficacy provided by the
proposed system of cryptography, which is based on a Lorenz
hyperchaotic system.

5) Entropy Evolution
The pattern of distribution of an image’s pixel values from
0 and 255 is determined by its entropy [50]. It establishes
how ambiguous and unpredictable the image is. Since 8 bits
specify each of the 256 intensity levels of a pixel picture,
the ideal hypothetical amount of information entropy in the
encrypted image is 8. In practical terms, the information
entropy value of the encrypted image need to be as near to 8
as achievable.
The image entropy measure is expressed as given in the
following formula (16), adopted from [51]:

H(s) =
255

∑
i=1

p(si) log2

(
1

p(si)

)
(16)

where, p(.) denotes the probability of the pixel value in (16).
The calculated entropy values of the plain color (Lena picture)
and its R, G, and B bands, together with their corresponding
encrypted images, are shown in Table IV.
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TABLE III. CORRELATION PLOTS OF THE PLAIN, ENCRYPTED AND DECRYPTED IMAGES, RESPECTIVELY.

B. Hardware Co-Simulation Of Image Encryption And De-
cryption System

The proposed model is formulated using the FPGA Zedboard
Zynq xc7z020-1clg484. The image encryption and, decryp-
tion process are co-simulated with FPGA hardware as in Fig. 8.
When JTAG port is connected, serial image signal data are

transmitted via a USB JTAG port to FPGA. Then serial sam-
ples were returned to PC using the Simulink / Matlab Viewer
to test the image.

The right insets images in the top and bottom of Fig. 8,
represent the results of the encrypted and decrypted images in
the FPGA hardware co-simulation, respective. The encrypted
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TABLE IV. ENTROPY INFORMATION OF THE PLAIN AND
ENCRYPTED IMAGES.

Original Image Encrypted Image
Lena 7.271855 7.999292
R Band 7.253102 7.999200
G Band 7.594037 7.999303
B Band 6.968426 7.999375

image has proved to be the same for system generators and,
co-simulation. The summary of system resource utilization,
power consumption and timing of the proposed Lorenz hy-
perchaotic cryptographic system are shown in Fig. 9. These
reports are provided using the Xilinx Vivado HLx Edition
2020.2 software. The power report of the FPGA within Fig. 9
demonstrates that the power consumption is within the ex-
pected range and meets the design specifications. This in-
dicates that the FPGA is operating efficiently and its power
usage is appropriate for the proposed application, and that the
digital encryption/decryption system are meeting the design
constraints.

VI. CONCLUSIONS

On a final note, the proposed hyperchaotic Lorenz based en-
cryption and decryption algorithm is demonstrated to be an ef-
fective system for encrypting and decrypting of colour images.
Additionally, it has been demonstrated that the suggested
scheme satisfies every security analysis tests, producing a sys-
tem with strong security efficacy and resilience to cryptanaly-
sis assaults. FPGAs provide a flexible and high-performance
platform for accelerating cryptographic operations, including
image encryption. The FPGA resource utilization, power con-
sumption and timing reports have been measured. Finally, the
real-time evaluation of the system proposed was co-simulated
using the ZedBoard Zynq-7000 FPGA SoC xc7z020-1clg484
development kit. Future work may be directed for leveraging
AI in image encryption and decryption on FPGAs to combine
the reconfigurable hardware’s efficiency with the intelligent
processing capabilities of AI. This approach allows for real-
time processing, benefiting applications requiring high secu-
rity and quick response times. Additionally, the adaptability
of FPGAs enables continuous optimization and scaling of
AI models, ensuring robust and secure image encryption and
decryption solutions.
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