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RESEARCH ARTICLE

The Role of Fear and Predator Dependent Refuge
on a Stage Structure Prey-Predator System

Ghaith Jassim Abdulsada , Hiba Abdullah Ibrahim *

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

ABSTRACT

The present paper investigates the role of fear and predator dependent refuge in the prey-predator system. The system
describes the interaction between prey and a stage structure of predator that incorporates Holling II functional response.
The predator splits into two compartments immature (juvenile) and mature (adult). The mature predators can hunt and
reproduce but this capability is not found in the immature predators, the immature depend on their parents. The growth
rate of prey decreases due to the existence of mature predators. The existence, uniqueness, and boundedness of the
solution of the system are investigated. Three equilibrium points of the system are determined. The local stability of the
system is studied. The global stability of the axial equilibrium point is discussed using the appropriate Lyapunov function,
while the basin of attraction of the positive equilibrium point is investigated. The persistence constraints of the system
are established. The local and Hopf bifurcation analyses of the system are examined. Lastly, numerical simulations are
given to ensure the theoretical results with the help of Matlab program (version R2018b). It is found that the effect of
fear plays a substantial role in the dynamic of the system. On the other hand, the refuge’s coefficient continuously affects
the system. Furthermore, the variation of the refuge’s coefficient by utilizing different initial points leads to a change in
the behavior of the system from stable to unstable and conversely.

Keywords: Boundedness, Equilibrium points, Local bifurcation, Persistence constraints, Stability analysis

Introduction

Ecological systems play a conclusive role in the
preservation of ecology. During the last few years,
many ecologists have given important attention to
understanding the prey-predator systems with their
interactions in the environment. Through the clas-
sic models, the Lotka-Volterra model represented the
first model to describe the interaction between preda-
tor and their prey, it was introduced separately by
Lotka1 and Volterra.2 Later, many researchers modi-
fied the Lotka-Volterra model to study the dynamics
of prey-predator models, see.3–5

Many biological factors affect the dynamical behav-
ior of these models, like disease,6–8 harvesting,9,10

cannibalism,11–13 Allee effect,14,15 migration,16,17

and many different factors. Also, the functional

response is the main part of prey-predator models.
Holling types functional responses are widespread in
the literature, especially type-I, type-II, type-III, and
type-IV.18–20

In ecology, many species have life stages that
involve two stages: immature and mature and ev-
ery stage has different behavior. Several studies
of stage structure prey-predator models have been
suggested.21–23 Bahlool21 studied a stage structure
prey-predator model with hunting cooperation and
anti-predator, and she obtained that the conversion
rate and hunting cooperation rate persistently impact
the system.

In the natural world, there were substantial studies
of the effect of fear on the dynamic behavior of eco-
logical models. In an ecosystem, the prey is affected
by the presence of predators as direct, indirect, or
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both.24–26 The predator hunts and devour the prey,
(the direct effect). The existence of predators prompts
fear in the prey which leads to a decrease in the
growth rate of prey, (the indirect effect). Therefore,
the fear plays an important role in the environment.
Therefore, the impact of fear must be taken into re-
gard since there are cases when the existence of fear
leads to forces prey to quit their habitat.24 Ibrahim
and Naji25 suggested the effect of fear on a food chain
model with the Beddington–DeAngelis functional re-
sponse, they obtained that the presence of fear made
a stabilizing effect on the system.

On the other hand, many scholars focused on the
study of prey’s refuge, which is a biological feature
and a critical element influencing the dynamical be-
havior of suggested models. Due to the presence of
predators, the prey flees and seeks refuge, which leads
to a reduced chance of predation. These phenomena
are a helpful preservative measure for prey. Several
studies have proven that refuges have stabilizing27

and destabilizing impacts.28 In light of the foregoing,
prey refuge represented one of the main areas in
mathematical modeling, and many researchers have
made substantial discoveries in this field.29–31 Hague
and Sarwardi31 proposed a harvested prey-predator
model with prey’s refuge in both species, they ob-
served that refuge plays a main role in the dynamics
of the system.

In this paper, a stage structure prey-predator sys-
tem with Holling type II is created by integrating
predation fear and predator-dependent refuge. In the
next section, a mathematical system is formulated,
and then the existence and boundedness of the sys-
tem’s solution are investigated. The stability analysis
(locally and globally) and persistent constraints of
the suggested system are studied respectively. Local
bifurcation near all possible equilibrium points is an-
alyzed. Numerical simulations were carried out to
ensure the obtained results. At last, the conclusions
are discussed. The purpose of this paper is to study
the role of fear and refuge dependent on predators
in the proposed prey-predator model and illustrate
their dynamic behavior. Also, Our study shows that
system 1 is affected by not only the fear effect but
also the predator-dependent refuge. Numerical sim-
ulations illustrated that the high level of fear has a
destabilizing effect which leads to periodic attractors,
whilst the high level of predator-dependent refuge
has a bi-stable case.

Mathematical model

A mathematical model consisting of a stage
structure prey-predator system is suggested, which

Table 1. Parameters explanation.

Parameters Explanation

r The essential growth rate of prey.
m The prey’s fear rate.
k The carrying capacity of the prey is given by

the environment.
a The consumption rate by the predator.
α The refuge rate of prey.
b The half-saturation constant.
e Conversion rate.
β Grown-up rate from an immature predator to

a mature predator.
d1 The natural death of the immature predator.
d2 The natural death of the mature predator.

contains the impact of fear and predator-dependent
refuge. In the absence of the predation process,
the prey x(t ) grows logistically. The predator split
into two parts, immature y(t ) and mature z(t ), it is
supposed that the immature predator cannot hunt
or replicate, relying on their parents (mature), while
part from it enlarges to become mature. Furthermore,
both the immature and mature predators meet
natural death, while the prey’s growth rate reduces
due to fear of predation by mature predators. In
addition, this model contains refuges proportional
to the interactions between the prey and predator
population, where α ∈ [0,1] represented the refuge
rate of prey. Hence, the number of refuges is αxz,
while x(1 − αz) represents the prey population
to be predated by the predator. According to
these suppositions, the mathematical model of
prey-predator with Holling II functional response can
be represented by three differential equations:

dx
dt
=

rx
1+mz

(
1−

x
k

)
−

a (1− αz) xz
b+ (1− αz) x

= F1
(
x, y, z

)
,

dy
dt
=
ea (1− αz) xz
b+ (1− αz) x

− βy − d1y = F2
(
x, y, z

)
,

dz
dt
= βy − d2z = F3

(
x, y, z

)
, (1)

where x(0) ≥ 0, y(0) ≥ 0, and z(0) ≥ 0. All the
above parameters are positive and explained in
Table 1.

Also, the flow chart of the suggested system is
shown in Fig. 1.

Moreover, the solution of system 1 with initial
values (x(0), y(0), z(0)) is uniformly bounded (U.B)
shown in the next Theorem.

Theorem 1: System 1 has U.B solutions.
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Fig. 1. Block diagram for system 1.

Proof: let (x(t ), y(t ), z(t )) be any solution of system
1, then from the 1st equation it is obtained that

dx
dt
≤ rx

(
1−

x
k

)
(2)

By applying a series of mathematical operations, it
is obtained

x (t ) ≤
kx0

x0 +
(
k− x0

)
e−rt

.

Therefore, when t →∞, it is obtained that x(t ) ≤ k.
Let R(t ) = x(t )+ y(t )+ z(t ).
Now, by deriving R(t ) for time (t ), and due to the

meaning’s biological of the parameters of system
1 and the bound of x(t ), then dR

dt + LR ≤ B, where
L = min{µ, d1, d2}, B = k(r + µ) and µ is a suitable
positive constant.

By applying the Gronwall Lemma32 of the above
inequality, it is obtained

R (t ) ≤
B
L
+

(
R0 −

B
L

)
e−Lt ,

Moreover, for t →∞, then R(t ) ≤ B
L . Hence, all

solutions of system 1 are U.B. �

Stability analysis of system 1

In this part, the existence of the equilibrium points
(EP) of system 1 is investigated, and then their local
stability is studied too. System 1 has three EP, as
shown below.

The trivial equilibrium point (T.EP), is given by
x̄0 = (0,0,0) always exists.

The axial equilibrium point (A.EP), given by
x̄1 = (k,0,0) always exists.

The positive equilibrium point (P.EP), given by
x̄2 = (x∗, y∗, z∗), where

x∗ =
d2b

(
β + d1

)
(1− αz∗)

(
βea− d2

(
β + d1

)) , (3)

y∗ =
d2

β
z∗, (4)

B1(z)4
+ B2(z)3

+ B3(z)2
+ B4z+ B5 = 0, (5)

Where

B1 = −akα2m
(
βea− d2

(
β + d1

))2
< 0,

B2 = −akα (α − 2m)
(
βea− d2

(
β + d1

))2
,

B3 = ak (2α −m)
(
βea− d2

(
β + d1

))2
,

B4 =− ak
(
βea− d2

(
β + d1

)) ((
βea− d2

(
β + d1

))
+ αrbβe

)
< 0,

B5 = rbβea
(
k
(
βea− d2

(
β + d1

))
− d2b

(
β + d1

))
.

There are different cases for P.EP x̄2. It is clear that
the sign of the coefficients of the above polynomial
depends on B2, B3, and B5.

Now, by using Descartes’ rule of signs,33 the pos-
sibility of reaching the root of Eq. (5) has been
discussed as illustrated below:

If B5 > 0, there are three cases will be discussed,

Case I: In the range m
2 < α < 2m leads to B2 >

0, B3 > 0, then the polynomial equation has either
three or one positive root.
Case II: If α > 2m leads to B2〈0, B3〉0, then the
polynomial equation has either three or one posi-
tive root.
Case III: If α < m

2 leads to B2 > 0, B3 < 0, then
the polynomial equation has either three or one
positive root.

According to the above cases, the P.EP exists in the
int .R3

+
if the following constraints are met:

d2
(
β + d1

)
< βea (6)

with one of the following sets of constraints.

B2 > 0, B3 > 0,B5 > 0
B2 < 0, B3 > 0,B5 > 0
B2 > 0, B3 < 0,B5 > 0

 (7)

Now, after finding all possible EP (biologically
acceptable) of system 1, the linearization technique
that depends on the Jacobian matrix (J.M) is used
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to investigate the local stability of these points,
followed by the calculated of the eigenvalues which
describe the nature of these points. The J.M at T.EP
is determined by

J (x̄0) =

r 0 0
0 −

(
β + d1

)
0

0 β −d2

 (8)

So, the eigenvalues of J(x̄0) are λ01 = r > 0, λ02 =

−(β + d1) < 0, λ03 = −d2 < 0. Thus x̄0 is a saddle
point.

The J.M at A.EP is given by

J (x̄1) =

−r 0 −ak
b+k

0 −
(
β + d1

) eak
b+k

0 β −d2

 (9)

Now, the characteristic equation of J(x̄1) can be
given as follows:

((−r)− λ)
(
λ2
− T1λ+ D1

)
= 0 (10)

where

T1 = −
(
β + d1 + d2

)
< 0,

D1 = d2
(
β + d1

)
−
βkea
b+ k

.

So, the eigenvalues of J(x̄1) are λ11 = −r < 0, λ12 =
T1
2 +

1
2

√
T1

2
− 4D1, λ13 =

T1
2 −

1
2

√
T1

2
− 4D1.

It is clear that the two eigenvalues λ12 and λ13
that get from Eq. (10) have negative real parts and
x̄1 is locally asymptotically stable (LAS) under the
following constraint holds.

βkea
b+ k

< d2
(
β + d1

)
(11)

The J.M at P.EP is determined by

J (x̄2) =

a11 0 a13
a21 a22 a23
0 a32 a33

 (12)

where

a11 =

(
r

1+mz∗

)(
1−

2x∗

k

)
−

abz∗ (1− αz∗)(
b+ (1− αz∗) x∗

)2 ,
a13 =−

((
rmx∗

(1+mz∗)2

)(
1−

x∗

k

)

+
abx∗ (1− 2αz∗)+ a(x∗)2(1− αz∗)2(

b+ (1− αz∗) x∗
)2

)
,

a21 =
eabz∗ (1− αz∗)(
b+ (1− αz∗) x∗

)2 ,
a22 = −

(
β + d1

)
,

a23 =
eabx∗ (1− 2αz∗)+ ea(x∗)2(1− αz∗)2(

b+ (1− αz∗) x∗
)2 ,

a32 = β,

a33 = −d2.

Now, the characteristic equation of the J(x̄2) of
system 1 is given as follows

λ3
+ H1λ

2
+ H2λ+ H3 = 0 (13)

where

H1 = − (a11 + a22 + a33)

H2 = a11a22 + a11a33 + a22a33 − a23a32

H3 = a11 (a23a32 − a22a33)− a13a21a32

whilst,

1 = H1H2 − H3

=− a11a22 (a11 + a22)− a11a33 (a11 + a33)

− (a22 + a33) (a22a33 − a23a32)+W1 +W2.

Here,

W1 +W2 = −2a11a22a33 + a13a21a32 (14)

Applying the Routh-Hawirtiz Criterion,34 the char-
acteristic equation’s roots 13 have negative real parts
if the next constraints are met

H1 > 0, H3 > 0 and 1 = H1H2 − H3 > 0.

Thus, Direct calculation detects that these con-
straints hold provided that

r
1+mz∗

<
2rx∗

k (1+mz∗)
+

abz∗ (1− αz∗)(
b+ (1− αz∗) x∗

)2 (15)

z∗ <
1

2α
(16)
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eax∗
(
b
(
1− 2αz∗

)
+ x∗

(
1− αz∗

)2)
< d2

(
β + d1

) (
b+

(
1− αz∗

)
x∗
)2 (17)

2rd2
(
β + d1

)
(1+mz∗)

+
βeabz∗ (1− αz∗)(
b+ (1− αz∗) x∗

)2 (( rmx∗

(1+mz∗)2

)

×

(
1−

x∗

k

)
+
abx∗ (1− 2αz∗)+ a(x∗)2(1− αz∗)2(

b+ (1− αz∗) x∗
)2

)

< 2d2
(
β + d1

) ( 2rx∗

k (1+mz∗)
+

abz∗ (1− αz∗)(
b+ (1− αz∗) x∗

)2
)

(18)

Then x̄2 is LAS under the above constraints 15–18.

Global stability of system 1

In this part, the global stability of system 1 is stud-
ied as shown in the next theorems, through applying
suitable Lyapunov functions. The basin of attraction
of trajectory to the dynamical system can be de-
scribed as the state space or a particular region in it,
depending on the state variables of the system.

Theorem 2: Suppose that the A.EP is LAS, then it is
globally asymptotically stable (GAS) if the following
constraint is met

ak
b+ k

< d2 (19)

Proof: Consider the following function

p1
(
x, y, z

)
=

x∫
k

u− k
u

du+ y + z (20)

Obviously, the function p1 is positive definite.
So, p1(k,0,0) = 0 and p1(x, y, z) > 0, ∀ (x, y, z) ∈
R3
+

with (x, y, z) 6= (k,0,0). Now, Eq. Eq. (20) is de-
rived with respect to t, and then, using several simple
computations, it’s obtained

dp1

dt
=
(
x− k

) ( r
1+mz

(
1−

x
k

)
−

a (1− αz) z
b+ (1− αz) x

)
+

(
ea (1− αz) xz
b+ (1− αz) x

− βy − d1y
)
+
(
βy − d2z

)
,

dp1

dt
≤
−r
(
x− k

)2
k (1+mz)

− d1y −
(
d2 −

ak (1− αz)
b+ (1− αz) x

)
z

Applying constraint 19 gives that, the derivative of
p1(x, y, z) will be negative definite. Therefore, p1 is
a Lypunov function, and the A.EP is a GAS. �

Theorem 3: Suppose that system 1 has a unique P.EP
that is LAS, then it has a basin of attraction that
satisfies the following constraints:

r
R1

<
abz (1− αz)

R2R∗2
+
r (x+ x∗)
kR1

(21)

q12
2 < q11q22 (22)

q13
2 < q11q33 (23)

q23
2 < q22q33 (24)

Proof: Consider the following function

p2
(
x, y, z

)
=

(x− x∗)2

2
+

(
y − y∗

)2
2

+
(z− z∗)2

2
(25)

Clearly, the function p2 is positive definite. So,
p2(x∗, y∗, z∗) = 0 and p2(x, y, z) > 0, ∀ (x, y, z) ∈
R3
+

with (x, y, z) 6= (x∗, y∗, z∗). Now, Eq. (25) is de-
rived with respect to t , and by using several simple
computations, it’s obtained

dp2

dt
=
(
x− x∗

) ( rx
1+mz

(
1−

x
k

)
−

a (1− αz) xz
b+ (1− αz) x

)
+
(
y − y∗

) ( ea (1− αz) xz
b+ (1− αz) x

− βy − d1y
)

+
(
z− z∗

) (
βy − d2z

)
,

dp2

dt
=− q11

(
x− x∗

)2
− q22

(
y − y∗

)2
− q33

(
z− z∗

)2
+ q12

(
x− x∗

) (
y − y∗

)
− q13

(
x− x∗

) (
z− z∗

)
− q23

(
y − y∗

) (
z− z∗

)
where q11 =

abz(1−αz)
R2R∗2

+
r(x+x∗−k)

kR1
, q22 = β + d1, q33 =

d2, q12 =
eabz(1−αz)

R2R∗2
,

q13 =
rmx∗

(
k− x∗

)
kR1R∗1

+
ax∗

(
b+ x

)
(1− α (z+ z∗))
R2R∗2

+
aα2xx∗zz∗

R2R∗2
,

q23=
eax∗

(
b+ x

)
(α (z+ z∗)−1)
R2R∗2

−

(
β+

eaα2xx∗zz∗

R2R∗2

)
,

with

R1 = (1+mz) , R∗1 =
(
1+mz∗

)
,
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Fig. 2. The system’s trajectories 1 with data set 38 and starting from various initial points approach asymptotically x̄2 = (7.6,3.8,7.7).
(a) Phase portrait of system 1. (b) Time series of phase portrait (a).

R2 =
(
b+ (1− αz) x

)
, R∗2 =

(
b+

(
1− αz∗

)
x∗
)
.

Therefore, under constraints 21–24 gives that

dp2

dt
≤
−1
2
[√
q11

(
x− x∗

)
−
√
q22

(
y − y∗

)]2
−

1
2
[√
q11

(
x− x∗

)
+
√
q33

(
z− z∗

)]2
−

1
2
[√
q22

(
y − y∗

)
+
√
q33

(
z− z∗

)]2
Clearly, the derivative of p2(x, y, z) will be negative

definite and p2 is a Lypunov function. Furthermore,
P.EP is a GAS in the interior of a basin of attraction. �

Persistence of system 1

In this section, the persistence of system 1 is inves-
tigated. So, system 1 persists if all species are present
for all positive times. In the next theorem, the method
given by Freedman and Waltman35 which depended
on the Butler-McGhee lemma is applied to system 1.

Theorem 4: System 1 persists provided that the fol-
lowing constraint holds

d2 <
βeak(

b+ k
) (
β + d1

) (26)

Proof: Presume that p is a point belonging to the
Int . R3

+
and O(p) is the orbit via p.

The omega limit set of the O(p), is denoted by�(p).
Then, according to Theorem 1, the �(p) is bounded.

Just now, to show that x̄0 /∈ �(p), suppose the op-
posite.

Due to x̄0 is a saddle point and by using the Butler-
McGhee lemma, there exists at least one other point
p0 belonging to the stable manifold of x̄0 (ωs(x̄0)) and
�(p).

Moreover, ωs(x̄0) represents the R2
+

(yz) space and
O(p0) is the entire orbit via p0 contained in �(p).

Now, if p0 is lying on one of the boundary
axes of R2

+
(yz), then the positive particular axis

is contained in �(p), which leads to a contradiction
with boundedness.

On the other hand, p0 belongs to the Int . R2
+

(yz)
and due to the non-existence of an equilibrium point
in the Int . R2

+
(yz) the orbit via p0 that is contained in

�(p) has to be unbounded which guides to contradic-
tion. Therefore, x̄0 /∈ �(p).

Just now, to show that x̄1 /∈ �(p), suppose the op-
posite too.

Due to x̄1 is a saddle point if the above constraint 26
holds and by using the Butler-McGhee lemma, then
p1 ∪ ω

s(x̄1) ∩�(p). Moreover, since ωs(x̄1) is R2
+

(xy)
space (similarly, R2

+
(xz) space).

Note that, if p1 is lying on one of the boundary
axes of R2

+
(xy), it is obtained contradiction such as in

the above part of the proof. Whilst if p1 ∈ Int .R2
+

(xy),
then due to the non-existence of an equilibrium
point in Int . R2

+
(xy) then O(p1) ⊂ �(p) is unbounded

which contradicts with the bound of �(p). Therefore,
x̄1 /∈ �(p).

So �(p) has to be in the Int . R3
+
, which ensures the

persistence of system 1. �

Local bifurcation

A bifurcation occurs when a small variation in pa-
rameter values results in a large transformation in
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Fig. 3. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of r. (a) Phase portrait
approaches to periodic attractor for r = 0.8. (b) Time series of phase portrait (a). (c) Phase portrait approaches to P.EP for r = 3. (d) Time
series of phase portrait (c).

the system’s behavior. In this part, Sotomayor’s theo-
rem36 is used to investigate the local bifurcation near
the EP of system 1. There are three types of local
bifurcation, such as saddle-node bifurcation (S-NB),
transcritical bifurcation (TB), and pitchfork bifurca-
tion (PB). Now, the presence of non-hyperbolic EP is a
necessary condition but not sufficient for bifurcation
to happen. Therefore, the elect bifurcation parameter
is picked so that the EP will be non-hyperbolic at a
particular value of that parameter. Now, system 1 can
be rewritten in the form

dX
dt
= F (X ) (27)

with X = (x, y, z)T ,F = (F1, F2, F3)T . Then depending
on the J.M of system 1, simple computation appears
that for any non-zero vector V = (v1, v2, v3)T ), it is

obtained from the next second and third directional
derivative

D2F
(
x, y, z

)
(V,V ) =

[
τi j
]
3×1 (28)

where

τ11 = 2

[
−r

k (1+mz)
+

abz(1− αz)2(
b+ (1− αz) x

)3
]
v1

2

+2

[
−rm

(
k− 2x

)
k(1+mz)2 +

(
−ab

(
b+ x

)
+ abαz

(
2b+ x

)(
b+ (1− αz) x

)3
)]

×v1v3 + 2

[
rm2x

(1+mz)3

(
1−

x
k

)
+

abαx
(
b+x

)(
b+(1−αz) x

)3
]
v3

2,
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Fig. 4. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of m. (a) Phase portrait
approaches to P.EP for m = 0.7. (b) Time series of phase portrait (a). (c) Phase portrait approaches to periodic attractor for m = 0.9.
(d) Time series of phase portrait (c).

τ21 =2

[
−eabz(1− αz)2(
b+ (1− αz) x

)3
]
v1

2

+ 2

[
eab

(
b+ x

)
− eabαz

(
2b+ x

)(
b+ (1− αz) x

)3
]
v1v3

− 2

[
beaαx

(
b+ x

)(
b+ (1− αz) x

)3
]
v3

2,

τ31 = 0.

Theorem 5: System 1 at A.EP possesses a TB when
the parameter d2 passes through the value d∗2 =

βeak
(b+k)(β+d1) .

Proof: From the J(x̄1) which is given in Eq. (9), sys-
tem 1 at A.EP and d2 = d∗2 possess the following J.M

denoted by, J(x̄1, d∗2)

J
(
x̄1, d∗2

)
=


−r 0 −ak

b+k

0 −
(
β + d1

) eak
b+k

0 β −
βeak

(b+k)(β+d1)



Now, A.EP is a non-hyperbolic point since J(x̄1, d∗2)
has a zero eigenvalue denoted by λ∗z = 0 (which
means the eigenvalue in the z− direction).

let V [1]
= (v[1]

1 , v[1]
2 , v[1]

3 )T is the eigenvector corre-
sponding to λ∗z = 0.

Consequently J(x̄1, d∗2)V [1]
= 0 leads to V [1]

=

(ξ1v[1]
3 , ξ2v[1]

3 , v[1]
3 )T where ξ1 = −

ak
r(b+k) < 0, ξ2 =

eak
(b+k)(β+d1) > 0 and v[1]

3 is any non-zero real number.
As well, let ϕ[1] = (ϕ[1]

1 , ϕ[1]
2 , ϕ[1]

3 )T is the eigenvec-
tor corresponding to λ∗z = 0 of J(x̄1, d∗2)T .
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Fig. 5. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of k. (a) Phase portrait
approaches to A.EP for k = 1. (b) Time series of phase portrait (a). (c) Phase portrait approaches to P. EP for k = 15. (d) Time series of
phase portrait (c).

Therefore, J(x̄1, d∗2)Tϕ[1]
= 0 leads to ϕ[1]

=

(0, δϕ[1]
3 , ϕ[1]

3 )T where δ =
β

(β+d1) > 0 and ϕ[1]
3 any

non-zero real number.
Moreover,

∂F
∂d2
= (0,0,−z)T

Then ∂F
∂d2

(x̄1, d∗2) = (0,0,0)T , which leads to
(ϕ[1])T ∂F

∂d2
(x̄1, d∗2) = 0. Furthermore,

D
∂F
∂d2

(
x̄1, d∗2

)
=

0 0 0
0 0 0
0 0 −1


Then,

(
ϕ[1])T (D ∂F

∂d2

(
x̄1, d∗2

)
V [1]

)
= −ϕ[1]

3 v[1]
3 6= 0.

Over and above that using Eq. (28) with
x̄1, d∗2 and V [1] gives D2F (x̄1, d∗2)(V [1],V [1]) =
2(v[1]

3 )2(−rξ
2
1
k +(rm− ab

(b+k)2 )ξ1+ αabk
(b+k)2 ,

eabξ1
(b+k)2−

eabαk
(b+k)2 ,0)T

Then(
ϕ[1])T D2F

(
x̄1, d∗2

) (
V [1],V [1])

=
2 δeab(
b+ k

)2 (ξ1 − αk)ϕ[1]
3

(
v[1]

3

)2
6= 0.

Therefore, according to Sotomayor’s theorem,
system 1 at x̄1 has a TB as the parameter d 2 passes
via the bifurcation value d∗2. �

Theorem 6: Presume that constraints 16–17
and the following sufficient constraints are hold
then, system 1 at P.EP possesses a S-NB when
the parameter r passes through the value r∗ =
k(1+mz∗)
(k−2x∗) (Q + abz∗(1−αz∗)

(b+(1−αz∗)x∗)2 ), where Q = a13a21a32
a23a32−a22a33

,
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Fig. 6. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of a. (a) Phase portrait
approaches to A.EP for a = 0.2. (b) Time series of phase portrait (a). (c) Phase portrait approaches to P. EP for a = 0.7. (d) Time series of
phase portrait (c).

ai j, ∀i, j = 1,2,3,4 are the elements of J.M given by
Eq. (12).

2x∗ < k (29)

δ1

(
−r∗η2

1
k (1+mz∗)

+
abz∗(1−αz∗)2η2

1(
b+(1−αz∗) x∗

)3− r∗mη1
(
k−2x∗

)
k(1+mz∗)2

+
−abη1

(
b+ x∗

)
+ abη1αz∗

(
2b+ x∗

)(
b+ (1− αz∗) x∗

)3
+

r∗m2x∗

(1+mz∗)3

(
1−

x∗

k

)
+

abαx∗
(
b+ x∗

)(
b+ (1− αz∗) x∗

)3
)

+ δ2

(
−eabz∗η2

1(1− αz∗)2(
b+ (1− αz∗) x∗

)3
+
eab

(
b+ x∗

)
η1 − eabαz∗η1

(
2b+ x∗

)(
b+ (1− αz∗) x∗

)3

−
beaαx∗

(
b+ x∗

)(
b+ (1− αz∗) x∗

)3
)
6= 0 (30)

Proof. From the J(x̄2) which is given in Eq. (12),
system 1 at P.EP and r = r∗ possess the following J.M
denoted by, J(x̄2, r∗). Simple computation appears
that A3 = 0 in the characteristic equation defined by
Eq. (13) and then x̄2 be a non-hyperbolic EP with
λ∗x = 0 (zero eigenvalue).

J
(
x̄2, r∗

)
=

 Q 0 a13
a21 a22 a23
0 a32 a33


let V [2]

= (v[2]
1 , v[2]

2 , v[2]
3 )T is the eigenvector corre-

sponding to λ∗x = 0.
Consequently J(x̄2, r∗)V [2]

= 0 leads to V [2]
=

(γ1v[2]
3 , γ2v[2]

3 , v[2]
3 )T where γ1 = −

a13
Q > 0, γ2 =

a13a21−a23Q
a22Q > 0 and v[2]

3 is any non-zero real number.
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Fig. 7. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of b. (a) Phase portrait
approaches to P.EP for b = 10. (b) Time series of phase portrait (a). (c) Phase portrait approaches to A. EP for b = 14. (d) Time series of
phase portrait (c).

As well, let ϕ[2] = (ϕ[2]
1 , ϕ[2]

2 , ϕ[2]
3 )T is the eigenvec-

tor corresponding to λ∗x = 0 of J(x̄2, r∗)T .
Therefore, J(x̄2, r∗)Tϕ[2]

= 0 leads to
ϕ[2]
= (η1ϕ

[2]
3 , η2ϕ

[2]
3 , ϕ[2]

3 )T where η1 =
−a21
Q <

0, η2 =
−a32
a22

> 0 and ϕ[2]
3 any non-zero real number.

Moreover,

∂F
∂r
=

(
x

(1+mz)

(
1−

x
k

)
,0,0

)T
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Fig. 8. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of α. (a) Phase portrait
approaches to periodic attractor for α = 0.04. (b) Time series of phase portrait (a). (c) Phase portrait approaches to P. EP for α = 0.08.
(d) Time series of phase portrait (c). (e) Phase portrait approaches to P. EP for α = 0.2 at initial point (4, 4, 4). (f) Time series of phase
portrait (e). (g) System 1 approaches asymptotically to chaotic attractor for α = 0.2 at initial point (6, 6, 6). (h) Time series of phase portrait
(g). (I) System 1 is bi-stable between two forms of attractors P.EP and chaotic attractor for α = 0.2.
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Fig. 8. Continued.

Then ∂F
∂r (x̄2, r∗) = ( x∗

(1+mz∗) (1−
x∗
k ),0,0)T , which

leads to(
ϕ[2])T ∂F

∂r
(
x̄2, r∗

)
=

x∗

(1+mz∗)

(
1−

x∗

k

)
η1ϕ

[2]
3 6= 0.

So, applying Sotomayor’s theorem, system 1 has the
first constraint of S-NB. While the TB and PB cannot
happen at r = r∗.

Furthermore, using Eq. (28) with x̄2, r∗ and V [2]

gives

(
ϕ[2]

)TD2F (x̄2, r∗)
(
V [2],V [2]

)
= 2ϕ[2]

3

(
v[2]

3

)2

×

[
δ1

(
−r∗η2

1
k (1+mz∗)

+
abz∗(1− αz∗)2η2

1(
b+ (1− αz∗) x∗

)3
−
r∗mη1

(
k− 2x∗

)
k(1+mz∗)2 +

−abη1
(
b+ x∗

)
+abη1αz∗

(
2b+ x∗

)(
b+ (1− αz∗) x∗

)3
+

r∗m2x∗

(1+mz∗)3

(
1−

x∗

k

)
+

abαx∗
(
b+ x∗

)(
b+ (1− αz∗) x∗

)3
)

+δ2

(
−eabz∗η2

1(1− αz∗)2(
b+ (1− αz∗) x∗

)3
+
eab

(
b+ x∗

)
η1 − eabαz∗η1

(
2b+ x∗

)(
b+ (1− αz∗) x∗

)3
−

beaαx∗
(
b+ x∗

)(
b+ (1− αz∗) x∗

)3
)]

Obviously, due to constraint 30 leads to
(ϕ[2])TD2F (x̄2, r∗)(V [2],V [2]) 6= 0. Therefore,
according to Sotomayor’s theorem, system 1 at
x̄2 has a S-NB as the parameter r passes via the
bifurcation value r∗. Otherwise, if constraint 30
is not valid, then system 1 has no any type of
bifurcation. �

Theorem 7: Presume that constraints 15–17 along
with the following sufficient constraints hold

W1 +W2 < 0 (31)
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Fig. 9. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of e. (a) Phase portrait
approaches to A.EP for e = 0.1. (b) Time series of phase portrait (a). (c) Phase portrait approaches to P. EP for e = 0.8. (d) Time series of
phase portrait (c).

p3 < 0 (32)

[
H1
(
d∗2
)
H2
(
d∗2
)]′
< H3

′
(
d∗2
)

(33)

where Hi; i = 1,2,3 are illustrated in Eq. (13) and
W1 +W2 given in Eq. (14). System 1 undergoes a Hopf
bifurcation (H.B) around the equilibrium point x̄2 as
the parameter d2 passes through the positive value d∗2.

Proof: According to the H.B theorem36 for the three
autonomous systems, system 1 undergoes a H.B as
the parameter d2 passes via the positive value d∗2
provided that:

The J(x̄2) of system 1 has a pair of complex
eigenvalues which are simple ρ1(d2)± iρ2(d2), they
convert purely imaginary at d2 = d∗2, while the 3rd

eigenvalue rests real and negative. Furthermore, the
transversality constraint dρ1(d2)

dd2
| d2=d∗2 6= 0 should be

met.

The above 1st constraint will be satisfied if the
following constraint met 1 = H1H2 − H3 = 0, which
represented the coefficients of the characteristic
equation illustrated by Eq. (13). Using simple
computations, it would be obtained as equivalent to

p1d2
2
+ p2d2 + p3 = 0 (34)

where p1 = −(a11 + a22) > 0,

p2 = (a11 + a22)2
− a23a32,

p3 = −a11a22 (a11 + a22)+ a32 (a22a23 + a13a21) .

Obviously, by using the signs of elements of J(x̄2)
that given in Eq. (12) with the sufficient con-
straints 15–16, 31, and 32 which leads to a11 < 0,
a13 < 0, a23 > 0, W1 +W2 < 0, and p3 < 0, therefore
Eq. (34) has a unique positive root represented by
d∗2 that satisfies H1(d∗2)H2(d∗2) = H3(d∗2). Moreover, as
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Fig. 10. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of d1. (a) Phase portrait
approaches to P. EP for d1 = 0.005. (b) Time series of phase portrait (a). (c) Phase portrait approaches to A.EP for d1 = 0.3 (d) Time series
of phase portrait (c).

d2 = d∗2 then the characteristic Eq. (13) will be

(λ+ H1)
(
λ2
+ H2

)
= 0 (35)

So, Eq. (35) has the next roots

λ1 = −H1
(
d∗2
)

and λ2,3 = ±i
√
H2
(
d∗2
)
= ±iρ2

(
d∗2
)
.

Again, by using the signs of elements of J(x̄2) with
the given constraint 17 guarantees that Hi > 0 for
all i = 1,2,3. Therefore, the 1st constraint of the H.B
follows.

Presently to investigate the occurrence of the
transversality constraint, replace ρ1(d2)+ iρ2(d2),
here d2 in the neighborhood of d∗2, in the Eq. (35) with
take the derivative concerning d2 and by comparing
the two sides and equaling their real and imaginary

parts, it is obtained the following result

9
(
d2
)
ρ1
′
(
d2
)
−8

(
d2
)
ρ2
′
(
d2
)
= −2

(
d2
)

8
(
d2
)
ρ1
′
(
d2
)
+9

(
d2
)
ρ2
′
(
d2
)
= −0

(
d2
) (36)

where 2(d2) = H1
′(d2)[ρ1(d2)]2

− H ′(d2)[ρ2(d2)]2
+

H2
′(d2)ρ1(d2) + H3

′(d),

9
(
d2
)
=3
[
ρ1
(
d2
)]2
+ 2H1

(
d2
)
ρ1
(
d2
)
− 3

[
ρ2
(
d2
)]2

+ H2
(
d2
)
,

0
(
d2
)
= 2H1

′
(
d2
)
ρ1
(
d2
)
ρ2
(
d2
)
+ H2

′
(
d2
)
ρ2
(
d2
)
,

8
(
d2
)
= 6ρ1

(
d2
)
ρ2
(
d2
)
+ 2H1

(
d2
)
ρ2
(
d2
)
.

Now, using Cramer’s rule for solving the linear sys-
tem 36 for the unknowns ρ1

′(d2) and ρ2
′(d2) gives
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Fig. 11. The system’s trajectories 1 with data set 38 and starting from various initial points with different values of d2. (a) Phase portrait
approaches to P. EP for d2 = 0.03. (b) Time series of phase portrait (a). (c) Phase portrait approaches to A.EP for d2 = 0.1 (d) Time series
of phase portrait (c).

that

ρ1
′
(
d2
)
= −

2
(
d2
)
9
(
d2
)
+ 0

(
d2
)
8
(
d2
)[

9
(
d2
)]2
+
[
8
(
d2
)]2 ,

ρ2
′
(
d2
)
= −

0
(
d2
)
9
(
d2
)
−2

(
d2
)
8
(
d2
)[

9
(
d2
)]2
+
[
8
(
d2
)]2 (37)

Therefore, the transversality constraint is satisfied
if

2
(
d∗2
)
9
(
d∗2
)
+ 0

(
d∗2
)
8
(
d∗2
)
6= 0

Clearly, ρ1(d∗2 ) = 0 and ρ2(d∗2 ) =
√
H2(d∗2 ), so that

2
(
d∗2
)
= −H1

′
(
d∗2
)
H2
(
d∗2
)
+ H3

′
(
d∗2
)
,

9
(
d∗2
)
= −2H2

(
d∗2
)
,

0
(
d∗2
)
= H2

′
(
d∗2
)√

H2
(
d∗2
)
,

8
(
d∗2
)
= 2H1

(
d∗2
)√

H2
(
d∗2
)
.

Accordingly, the following result is obtained

ρ1
′
(
d∗2
)
= 2H2

(
d∗2
)

×

[
H3
′
(
d∗2
)
−
(
H1
′
(
d∗2
)
H2
(
d∗2
)
+ H1

(
d∗2
)
H2
′
(
d∗2
))][

9
(
d∗2
)]2
+
[
8
(
d∗2
)]2

So, ρ1
′(d∗2) > 0 under constraint 33 and then the

transversality constraint was met. Therefore H.B oc-
curs at d2 = d∗2. �
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Numerical simulations

Numerical simulation outcomes are equally sub-
stantial to those obtained from the analysis. The
goal is to confirm the findings analytically and study
the impacts of different parameter values on the dy-
namics behavior of system 1. Each of the numerical
simulation outcomes of system 1 appears in some fig-
ures using the MATLAB program. Now, the following
presumptive set of parameters is utilized.

r = 2, m = 0.2, k = 10, a = 0.4, α = 0.1, b = 2,

e = 0.3, β = 0.1, d1 = 0.01, d2 = 0.05. (38)

It is clear that for the given set of data in
Eq. (38) and starting from various initial points,
system 1 approaches asymptotically to P. EP,
x̄2 = (7.6,3.8,7.7) as illustrated in Fig. 2.

Now, the effect of changing the value of intrinsic
growth rate r of system 1 is investigated. Clearly, for
r ∈ (0,0.9) then the system’s trajectory 1 results in a
periodic attractor Int .R3

+
, which means losing the sta-

bility of the P.EP. While for r ≥ 0.9 then the system’s
trajectory 1 approaches to P.EP, x̄2 = (8.5, 3.9, 8.0).
Now, the obtained outcomes are offered at deter-
mined values in Fig. 3.

The impact of varying the value of fear rate m of
system 1 is studied. It is clear that for m ∈ (0,0.8)
then the system’s trajectory 1 starting from various
initial points approaches to P. EP, x̄2 = (3.6,2.6,5.3).
However, for m ≥ 0.8 then the system’s trajectory 1
approaches to a periodic attractor in the Int . R3

+
. Just

now, the obtained outcomes are presented at partic-
ular values in Fig. 4.

The effect of varying the value of carrying capacity
k of system 1 is investigated. Obviously, for k ∈ (0,2)
then the system’s trajectory 1 approaches to A.EP,
x̄1 = (1,0,0), which means losing the stability of the
P.EP and the extinction of the predators (mature and
immature). Furthermore, for k ≥ 2 then the system’s
trajectory 1 approaches to P.EP, x̄2 = (12.5,4.2,8.5)
in the Int . R3

+
. The obtained outcomes are presented

at particular values in Fig. 5.
The influence of varying the value of the maxi-

mum attack rate a of system 1 is studied. Clearly, for
a ∈ (0,0.3) then the system’s trajectory 1 approaches
to A.EP, x̄1 = (10,0,0). Moreover, for a ≥ 0.3 then
the system’s trajectory 1 approaches to P.EP x̄2 =

(6.5,4.4,8.9) in the Int . R3
+

. The obtained outcomes
are presented at particular values in Fig. 6.

The impact of varying the value of half-saturation
level b of system 1 is studied. It is clear that for
b ∈ (1,10) then the system’s trajectory 1 approaches
to P.EP, x̄2 = (9.8,0.7,1.4). Also, for b ≥ 14

then the system’s trajectory 1 approaches to A.EP
x̄1 = (10,0,0). The obtained outcomes are presented
at particular values in Fig. 7.

The effect of varying the value of the refuge rate of
prey α of system 1 is investigated. For α ∈ (0,0.06)
then the system’s trajectory 1 approaches to a peri-
odic attractor in the Int . R3

+
. Also, for α ∈ [0.06,0.2)

then the system’s trajectory 1 approaches to P.EP,
x̄2 = (6.2,4.5,9.1). Moreover, at the initial points (4,
4, 4) and (6, 6, 6) with α = 0.2 leads to the system’s
trajectory 1 approaches to different attractors P.EP,
complex dynamics containing chaos, which means
appearing of bi-stable case. The obtained outcomes
are presented at particular values in Fig. 8.

The impact of changing the value of the conver-
sion rate e of system 1 is studied. For e ∈ (0,0.2)
then the system’s trajectory 1 approaches to A. EP,
x̄1 = (10,0,0). Also, for e ≥ 0.2 then the system’s
trajectory 1 approaches to P.EP x̄2 = (8.9,4.7,9.5).
The obtained outcomes are presented at particular
values in Fig. 9.

The impact of varying the value of the grown-up
rate from an immature predator β of system 1 is
a quantitative effect, then the system’s trajectory 1
approaches asymptotically to the P.EP.

The impact of changing the value of the death
rate of immature predator d1 of system 1 is studied.
For d1 ∈ (0,0.2) then the system’s trajectory 1
approaches to P.EP, x̄2 = (7.6,3.9,7.9). Also, for
d1 ≥ 0.2 then the system’s trajectory 1 approaches
to A.EP x̄1 = (10,0,0). The obtained outcomes are
presented at particular values in Fig. 10.

The impact of changing the value of the death
rate of mature predator d2 of system 1 is studied.
For d2 ∈ (0,0.1) then the system’s trajectory 1
approaches to P.EP, x̄2 = (8.2,2.6,9.0). Also, for
d2 ≥ 0.1 then the system’s trajectory 1 approaches
to A.EP x̄1 = (10,0,0). The obtained outcomes are
presented at particular values in Fig. 11.

Results and discussion

In this paper, the effect of fear and predator de-
pendent refuge of a prey-predator system with the
stage structure of a predator is investigated. The
system’s behavior is studied theoretically as well as
numerically. System 1 contains three non-negative EP
denoted by T.EP, A.EP, and P.EP, two of them lying
on the boundary axis and the third in the positive
quadrant.

The system’s behavior of the solution is studied
theoretically. The T.EP is detected to be the unsta-
ble point (saddle), while the A.EP and P.EP are LAS
if constraints 11 and 15–18 are met, respectively.
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The persistence constraints are established. The lo-
cal bifurcation is investigated by using Sotomayor’s
theorem.

Numerical simulations are used to ensure the the-
oretical results obtained. By using the hypothetical
data given in Eq. (38) the following outcomes are ob-
tained. Beginning from different sets of initial points,
the system’s trajectories 1 with data in Eq. (38)
approach asymptotically to P.EP, this means the the-
oretical conclusions on the stability of equilibrium
are confirmed. Decreasing the intrinsic growth rate
r below a critical value leads to losing the stability
of the P.EP while system 1 persists at periodic at-
tractor in Int . R3

+
. Increasing the fear rate m above

a critical value leads to losing the stability of the
P.EP, while system 1 persists at periodic attractor in
Int .R3

+
. Decreasing the carrying capacity k, maximum

attack rate a, and conversion rate e below a specific
value leads to losing the persistence of system 1 and
the trajectory approaches asymptotically to the A.EP.
Increasing the half saturation level b, the death rate
of immature predator d1 and death rate of mature
predator d2 above a specific value leads to losing the
persistence of system 1 and the trajectory approaches
asymptotically to the A.EP. It is observed that de-
creasing the refuge rate of prey α below the specific
value leads to losing the stability of system 1 and it
persists at periodic attractor in Int . R3

+
, while increas-

ing α above the specific value leads to an approach
to different attractors as the solution starts from
different initial points (bi-stable case). Decreasing
(increasing) the grown-up rate β below (above) a spe-
cific value leads to the persisting of system 1 at a P.EP.
β has quantitative effects on the dynamic of system 1.

Conclusion

The P.EP is eliminated when the growth rate of prey
and refuge decreases below a specific level, which
leads to the system approach to periodic attractor
in Int . R3

+
. While the high level of fear has a desta-

bilizing effect which leads to a periodic attractor in
Int . R3

+
. On the other side, the rising level of predator-

dependent refuge and using different initial points
leads to an approach to different attractors (P.EP and
complex dynamics containing chaos) which means
a bi-stable case. The P.EP is eliminated when the
carrying capacity, maximum attack rate, and con-
version rate fall below a specific level, which leads
to extinction in predators (mature and immature).
As a result, trajectories approach asymptotically to
the A.EP. When the half saturation level and death
rates of immature and mature predators rise above
a particular level, then the P.EP is eliminated and
trajectories approach asymptotically to the A.EP.

System 1 persists if all species are present for all
positive time, which means that the trajectories ap-
proach asymptotically to P.EP.

Therefore, the above conclusions illustrated that
system 1 is very sensitive to changing the parame-
ters values and initial points (especially). Now, the
future direction of this paper will be discussed in the
following.

For the proposed model, which consists of a prey-
predator model involving the fear effect, predator
dependent refuge, and the stage structure in a preda-
tor, it is possible to modify it so that it represents
different real-world systems that are important to
study too. Different types of functional responses can
be used for describing the predation process in ad-
dition to combining with epidemic diseases that can
be contracted by any of their species. Additionally,
studying the effect of time delays that affect an eco-
logical system.
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دور الخوف والملجأ المعتمد على المفترس في نظام الفريسة والمفترس 

 ذات المراحل العمرية

 

 هبة عبدالله ابراهيم،  غيث جاسم عبدالساده

 .قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

 

 الحدود، نقاط الاتزان، التشعب المحلي، قيود الثبات، تحليل الاستقرار. الكلمات المفتاحية:

 ةالخلاصا

 ة

نظام الفريسة المفترسة. حيث يصف النظام التفاعل بين الفريسة تناول هذا البحث دور الخوف والملجأ المعتمد على المفترس في 

ينقسم المفترس إلى قسمين غير ناضج حيث   والمفترس ذي المراحل العمرية مع دالة استجابة وظيفية من النوع هولنك الثاني.

لكن هذه القدرة لا توجد في )حدث( وناضج )بالغ(. يمكن للحيوانات المفترسة الناضجة أن تكون قادرة على الصيد والتكاثر و

الحيوانات المفترسة غير الناضجة، كما تعتمد الحيوانات المفترسة غير الناضجة على والديها. يتناقص معدل نمو الفرائس بسبب 

التحقق في وجود وتفرد وحدود حل النظام. وتم تحديد ثلاث نقاط توازن للنظام. تم دراسة  تموجود الحيوانات المفترسة الناضجة. ي

الاستقرار المحلي للنظام. تمت مناقشة الاستقرار العالمي لنقطة التوازن المحورية باستخدام دالة ليابونوف مناسبة، في حين تم 

يود استمرار النظام. تمت دراسة التشعب المحلي وتشعب هوبف دراسة حوض الجذب لنقطة التوازن الإيجابية. كما وتم تحديد ق

. R2018b)للنظام. وأخيرا، تم إجراء عمليات المحاكاة العددية للتأكد من النتائج النظرية بأستخدام برنامج الماتلاب )الاصدار 

مل الملجأ يؤثر بشكل مستمر على وقد وجد أن تأثير الخوف يلعب دورا كبيرا في ديناميكية النظام. ومن ناحية اخرى، فأن معا

النظام. علاوة على ذلك فأن اختلاف معامل الملجأ مع اختلاف النقاط الاولية يؤدي إلى تغير في سلوك النظام من المستقر إلى 

 غيرالمستقر والعكس.
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