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Numerical Solution of Distributed Order Fractional
Differential Equations Using Spectral Mittag-Leffler
Weight Function Based on Chelyshkov
Polynomials

Abdulrazzaq T. Abed *, Ekhlass S. Al-Rawi

Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq

ABSTRACT

In many studies, spectral methods based on one of the orthogonal polynomials and weighted residual methods (WRMs)
have been used to convert the distributed-order fractional differential equation (DOFDEs) into a system of linear or
nonlinear algebraic equations, and then solve this system to obtain the approximate solution. In this paper, a numerical
method is presented for solving DOFDEs. The approximate solution is imposed as an orthogonal Chelyshkov polynomial
with unknown coefficients. The required coefficients are obtained using WRMs, which transform the DOFDEs into a
system of algebraic coefficients. The Mittag-Leffler function is proposed as a suitable weight function. The method has
been applied to several numerical examples, such as oscillatory mathematical model, and the distributed order fractional
Bagley-Torvik equation. Acceptable results were obtained in most tests. The proposed Mittag-Leffler weight method is
compared with the WRMs such as Galerkin method, Petrov-Galerkin method and least square method, and the proposed
weighted function showed more accurate results than the previous methods in most tests. The study showed that the
effect of the test polynomials such as Chebyshev, Jacobi, Legendre, Gegenbauer, Hermite, Taylor, Mittag-Leffler, and
Bernstein polynomials has a small impact on most tests. In addition, the impact of the distributed order on the accuracy
of the solution was studied, and the results show that the distributed order has a strong impact on the accuracy of the
solution, as its impact is direct on the non-homogeneous part, which leads to more complex equations than in cases
where the orders are fixed.

Keywords: Chelyshkov polynomials, Distributed order fractional Bagley-Torvik equation, Distributed order fractional
derivative, Mittag-Leffler weight method, Spectral method, Weighted residual method

Introduction

Distributed order fractional differential equations
(DOFDEs) were first introduced in 1995 by Caputo
in his study describing dissipative elastic dynamics.
This concept has gained widespread due to its na-
ture, which is characterized by presenting models
that are more general than the models presented in
fixed-order differentiation. One of the most important
applications of DOFDEs is the study of dissipation
and decay within viscoelastic solids that have mul-

tiple relaxation times, as it explains the amount of
deformation within the established models of stress
and strain.1,2

The numerical solution is considered one of the
most important alternative methods to obtain a so-
lution that is close to the analytical solution. One
of the numerical methods is to reduce the residual
error function to zero. These methods are known
as spectral-weighted residual methods (WRMs). The
WRMs are depending on the calculus of variation
in finding the minimum approximation.3 Orthogonal
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polynomials are often chosen due to two properties:
the first is that they are analytical in wide fields and
the second is that the orthogonality property reduces
and facilitates mathematical operations.4

A spectral collocation method (SCM) based on
Jacobi, Chebyshev, Legendre, and shifted Legendre
polynomials is presented to solve DOFDEs.5–7 An
operational matrix based on Legendre wavelets is
provided to solve linear and nonlinear DOFDEs.8

A SCM based on fractional Chelyshkov wavelets
is presented to solve DOFDEs.9 A method based
on rational Fibonacci functions is proposed to
solve DOFDEs.10 A numerical method based on
hybrid Hahn functions is presented to solve the
Black-Scholes option pricing partial differential
equation with distributed time order.11

In this work, a group of WRMs will be applied
instead of the clustering method, such as the Galerkin
method, the least squares method, the subdomain
method, and the momentum method. Moreover, a
comparison between these methods is made. The
Mittag-Leffler weight function is proposed and com-
pared to other weighted methods, which will be
important in future research in this field.

In addition, Chelyshkov polynomials are used,
and the results obtained are compared with the
polynomials most used by researchers, whether they
are orthogonal or non-orthogonal polynomials, such
as Jacobi, Legendre, Chebyshev of the first and
second kind, Hermite, and Gegenbauer, Laguerre,
Bernstein, Taylor, and Mittag-Leffler. Due to the
nature of the initial and boundary conditions
in DOFDEs, which contain integer orders, it is
appropriate to use the Caputo derivative within the
distributed order fractional derivative.

In Section 2, the basic concepts of the research
are presented. In section 3, the proposed method is
presented. Section 4 involved a set of numerical ex-
amples and finally the conclusions.

Fundamental concept

In this section, the concept of distributed-order dif-
ferentiation is presented, followed by the Chelyshkov
polynomial, and finally, a simplified concept of
weighted residual methods is given.

Fractional and distributed order fractional derivatives

Definition 1: Let u(t ) be a continuous function and
differentiable n times on [a, b], and suppose α > 0,
the Caputo fractional derivative is defined as:12

C
0Dαt u (t ) =

1
0 (n− α)

∫ t

a
(t − s)n−α−1 dn

dsn u (s) ds (1)

where n− 1 < α < n. If u(t ) = t p then,

C
0Dαt t p

=
0 (p+ 1)

0 (p− α + 1)
t p−α, p ≥ n (2)

In Caputo’s concept, the initial conditions in the
FDEs must be of the integer order. Furthermore, the
derivative of the constant function is always zero.13

Definition 2: The direct definition of distributed
order fractional derivative in the sense of Caputo is
presented as:14

k1,k2
CDp(α)u(t ) =

∫ k2

k1

p(α)C
0Dαt u(t )dα, (3)

where p(α) is the distributed order defined on the
support [k1, k2].

Suppose p(α) =
∑
∞

i=1 aiδ(α − αi) then Eq. (3) is re-
duced to an infinite multi-term fractional derivative
i.e.

k1,k2
CDp(α)u(t ) =

∞∑
i=1

ai
C
aDαi

t u(t ), (4)

where k1 ≤ αi ≤ k2, ai are constants for all i = 1,2,
. . . ,N, also this derivative can be written in discrete
form and approximated as follows:

k1,k2
CDp(α)u(t ) ∼=

N∑
i=1

wi p(αi)C
aDαi

t u(t ), (5)

where, wi is the weights which are obtained from
numerical integration.

For special cases the distributed order fractional
derivative of the function u(t ) = t p is computed as
follows using Eq. (2) and Eq. (5):

k1,k2
CDp(α)u (t ) =

N∑
i=1

wi p (αi)
0 (p+ 1)

0 (p− αi + 1)
t p−αi ,

p ≥ dk2e, (6)

Chelyshkov polynomials and approximation

Definition 3: The Chelyshkov polynomials (CPs)
are defined by:15

CNn (t ) =
N∑

k=n

γNnktk, n ∈ IN (7)

where t ∈ I = [0,1] , IN
= {0,1, . . . ,N}, and γNnk =

(−1)k−n
(

N − n
k− n

) (
N + k+ 1

N − n

)
.

Eq. (7) represents CPs of Degree N. The interval
I can be generalized to Ib = [0, b] according to the
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following relationship:16

CNn (t ) =
N∑

k=n

γNnk

(
t
b

)k

, n ∈ IN (8)

The following is obtained by applying the dis-
tributed order fractional derivative represented by
Eqs. (6) and (7):

k1,k2
CDp(α)CNn (t ) =
N∑

k=n
γNnk

N∑
i=1

wi p (αi)
0(k+1)

0(k−αi+1) tk−αi , k ≥ dαie

0, k < dαie

 (9)

where, wi is the weight of quadratic numerical inte-
gration.

One of the most important properties that charac-
terize these functions is the orthogonality property
with weighting w(x) = 1, which is given according
to the following relationship:∫ b

0
CNn(t )CNk(t )w(t )dx =

{ b
(k+n+1) , n = k

0, n 6= k

}
,

n, k ∈ IN (10)

Consider the weighted space L2
w(I), which is defined

by:15

L2
w(I) ={
f : I→ R; f is measurable on I,

∫ 1

0
| f (t )|2dx <∞

}
(11)

The inner product and the norm are provided by:

〈 f, g〉wv =

∫ 1

0
f (t )g(t )dx, ‖ f‖w = 〈 f, f 〉

1
2 w (12)

Suppose SN = span{CN0(t ), CN1(t ), . . . ,CNN(t )} a
finite-dimensional base and a subspace of L2

w(I). For
any function u(t ) ∈ L2

w(I) there exists a unique ap-
proximation uN(t ) ∈ SN and satisfied the following
conditions:

‖u− uN‖w ≤ ‖u−U‖w ∀ U ∈ SN (13)

Furthermore, it can be expanded uN(t ) by a
Chelyshkov polynomials as:

uN (t ) =
N∑

k=0

akCNk (t ) (14)

Multiply both sides of relation 14 by CNn(t )w(t ) and
integrated the results from 0 to b:∫ b

0
uN (t )CNn (t ) w (t ) dt

=

N∑
k=0

ak

∫ b

0
CNk (t )CNn (t ) w (t ) dt

The following result is obtained by applying the
orthogonality property in Eq. (10)

an =
(2n+ 1)

b

∫ b

0
uN (t )CNn (t ) w (t ) dt, n ∈ IN (15)

that is:

an =

〈
u,CNn

〉
w〈

CNn,CNn
〉
w
, n ∈ IN (16)

Theorem 1: Suppose Dnu(t ) ∈ C[0,1], n ∈ IN+1 and
let uN(t ) be the best approximate to the function u(t ) then
the bound of error is given by:17

‖u− uN‖w ≤
Q

0 (1+ (N + 1))
1

√
(2N + 3)

where Q = sup
0<x≤1

{∣∣D(N+1)u (t )
∣∣} (17)

Weighted residual methods (WRMs)

Let us assume the following DOFDEs:3

Au (t ) = f (t ) , (18)

where A is a distributed order fractional operator and
u is an unknown function defined on the Hilbert space
H(a, b), first of all, this function is approximated by
writing it as a linear combination of an expansion
functions φk(t ) as follows:

u (t ) ≈ uN (t ) =
N∑

k=0

ckφk (t ) (19)

Substitute uN(t ) in Eq. (18) to get the following
residual function:

R (t ) = AuN (t )− f (t) 6= 0 (20)

The following theorem is a fundamental theorem to
reduce R(t ) to the minimum.

Theorem 2: Suppose R(t ) be a function defined on
H(a, b), let the value of the following integral be verified
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for any given positive function w(t ) defined on H(a, b)18

i.e.∫ b

a
R (t ) w (t ) dt = 0, (21)

then,

R (t ) = 0, ∀ x ∈
(
a, b

)
These methods are divided into several types, such as

the Galerkin method (GLM), the Petrov Galerkin method
(PGM), and the least squares method (LSM). In PGM
methods, the expansion function is not relied upon, but
other functions analytical in H(a, b) are used. Several
methods fall under this method, for instance, the collo-
cation method (COM), subdomain method (SDM), and
momentum method (MNM).3

Methodology

In this section, the proposed spectral Mittag-Leffler
weight method based on Chelyshkov polynomials
(SMLWM-CPs) is presented.

New Mittag-Leffler weight method (MLWM)

Definition 4: The Mittag-Leffler function of two pa-
rameters α and β is defined by:19

Eα,β (t ) =
∞∑
j=0

t j

0
(
α j + β

) (22)

In this research, the truncated Mittag- Leffler func-
tion is suggested to be the weight function; which is
defined by:

Mk (t ) =
k∑

j=0

t j

0
(
j + 1

) (23)

Proposition 1: If the weight function is defined as
wk(t) = Mk(t ) in the integral represented by Eq. (21),
then the residual R(t ) is vanished.

Proof: For all k = 1,2, . . . ,N, the functions Mk(t )
are analytic on H(0, b). Suppose R(t ) 6= 0, then ei-
ther R(t ) > 0, or R(t ) < 0, if it is positive for some
subinterval [a1, b1] in [0, b]. Since Mk(t ) > 0, ∀ k, in
addition, the value of Mk(t ) = 0 only if t = 0. But
the value of the following integral is positive and not
equal to zero,

∫ b

0
R(t )Mk(t )dt =

∫ b1

a1

R(t )
k∑

j=0

t j

0( j + 1)
dt > 0, (24)

which is a contradiction with the hypotheses. There-
fore R(t ) = 0.

The proposed (SMLWM-CPs) method

Consider the following DOFDEs of order dk2e:1

k1,k2
CDp(α)

{Lu (t )} + k1,k2
CDp(α)

{Gu (t )} = f (t ) t ∈
[
0, b

]
(25)

with initial or boundary conditions

L0u (0) = ai, i = 1,2, . . . ,m (26)

L0u (0) = ai, L1u
(
b
)
= b j, i+ j = m, (27)

where L,L0 and L1 are linear operators, G is a nonlin-
ear operator, m is the number of initial or boundary
conditions and

k1,k2
CDp(α)

{Gu(t )} =
∫ k2

k1

G
{
p(α)C

0Dαt u(t )
}

dα (28)

Suppose the approximate solution of Eq. (25) can
be written as spectral Chelyshkov polynomials as
follows:

uN(t ) =
N∑

j=0

q jCN j(t ) (29)

Substituting Eq. (29) in Eq. (25) to compute the
residual error:

N∑
j=0

q jk1,k2
CDp(α)

{LCN j(t )} + k1,k2
CDp(α)G


N∑

j=0

q jCN j(t )


= f (t ) (30)

To get the best unknown coefficients q j, Eq. (30) are
Multiplied by the Mittag-Leffler weights Mi(x), i =
1,2 . . . ,N −m and integrate the result:

∫ b

0

 N∑
j=0

q jk1,k2
CDp(α)

{LCN j(t )} + k1,k2
CDp(α)

×G


N∑

j=0

q jCN j(t )


Mi(t )dt =

∫ b

0
f (t )Mi(t )dt

(31)

Which leads to N −m of a nonlinear system of
equations. To eliminate the computational efforts
resulting from performing direct integration, the inte-
grals are calculated approximately. First, in Eq. (31),
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the distributed order fractional derivative is calcu-
lated approximately using Eq. (6), so it can obtain:

∫ b

0

 N∑
j=0

q j

Ns∑
n=1

w1n p(αn)C
0Dαn

t {LCN j(t )}

+

Ns∑
n=1

w2nG

p(αn)C
0Dαn

t

N∑
j=0

q jCN j(t )


Mi(t ) dt

=

∫ b

0
f (t )Mi(t )dt (32)

Finally, the fully discrete is finally, full scheme
of the N-m nonlinear algebraic equation is obtained
by calculating the integral again approximately in
Eq. (32), thus it can obtain:

Nh∑
h=1

v1h

 N∑
j=0

q j

Ns∑
n=1

w1n p(αn)C
0Dαn

t {LCN j(th)}

+

Ns∑
n=1

w2nG

p(αn)C
0Dαn

t

N∑
j=0

q jCN j(th)


− f (tn)

Mi(th) = 0, (33)

where Ns =
k2−k1

s , Nh =
b
h , v1h,w1n and w2n are the

weights of the quadrature Simpson integration, s and
h are the step size of the numerical integration.

By applying the initial or boundary conditions, it
can obtain:

L0

N∑
k=0

ckCNk(0) = ai, i = 1,2, . . . ,m (34)

L0

N∑
k=0

ckCNk(0) = ai, L1

N∑
k=0

ckCNk(b) = b j, i+ j = m.

(35)

The approximate solution is then evaluated by solv-
ing the previous system of N nonlinear algebraic
equation using the Newton method. If the nonlinear
part G is equal to zero, then the system of N linear
algebraic equation is computed using Gauss-Jordan
Elimination. The MATLAB is used to implement the
proposed method.

Results and discussion

In this section, numerical examples are presented
to illustrate the efficiency of the proposed method

in solving DOFDEs, a numerical comparison is made
between the well-known WRMs and the proposed
Mittag-Leffler weighted function. In addition, a nu-
merical comparison is made using the method that
relies on the Chelyshkov polynomial and the meth-
ods that rely on famous polynomials such as Jacobi,
Legendre, etc. The effect of the support function
on the accuracy of the approximate solution is also
clarified, and the comparison between the approx-
imate solution resulting from distributed order and
fixed order is presented. Finally, an applied exam-
ple of the oscillator mathematical system described
in20 is given. The integral was calculated using the
Simpson-1/3 method with a fixed step size of 0.05.
The approximate solution uN(t ) generated by the
proposed method is compared with the analytical
solution of a given problem using the following root
mean square (RMS) criteria:21

RMS =

√√√√ M∑
i=1

(u (ti)− uN (ti))2

M
(36)

where ti ∈ [0, b], ∀i, u the exact solution.
If the analytical solution is not obtained, then

the error function E(t ) is computed by substituting
the approximate solution to the given DOFDE. Fi-
nally, the area under the square error is evaluated as
follows:22

LSE =
∫ b

0
[E(t )]2 dt =

∫ b

0
[k1,k2

CDp(α)LuN(t )− f (t )]2 dt ,

(37)

which represents a good quantitative criterion for
knowing the accuracy of the approximate solution.
Clearly, as N tends to∞ then LSE tends to zero.

Example 1: Consider the following generalized Bagley-
Torvik DOFDE:23

u′′ + p1 k1,k2
CDp(α)u+ p2u = f (t ) , k1 < α < k2 (38)

where, p1, p2 are constants, with initial conditions:

u (0) = u′ (0) = 0, (39)

In this example, three different cases of the distributed-
order generalized Bagley-Torvik problem are taken as
follows:

Case 1. p1 = p2 = 1, k1 = 0, k2 = 1, p(α) = δ(α −
0.5), where δ(.) is the Dirac delta function, f (t ) =
6t+ t3

+
3.2t2.5

0(0.5) , and the exact solution is u(t ) = t3.
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When N = 3 the numerical solution is close
to the following solution: u3(x) = x3

+ 1.514×
10−17x2, with RMS = 1.5611× 10−18, and LSE =
1.1864× 10−34. It should be noted that since the
Dirac delta function is equal to zero when α 6= 0.5,
then this distributed order is reduced to the following
differential equation:

u′′ + p1 u(0.5)
+ p2u = f (t ) ,

which is of a constant order.

Case 2. p1 = 0.5, p2 = 1.5, k1 = 0, k2 = 1, p(α) =
6α(1− α), and f (t ) = 8. The approximate solution
when N = 5 is computed as: u5(t ) = 0.1644t5

−

0.7817t4
− 0.1631t3

+ 4.0055t2 with errors LSE =
1.44× 10−06.

Case 3. p1 = 2, p2 = 0.5, k1 = 0, k2 = 1, p(α) =
0(4− α), and f (t ) = 2− 3t3. The numerical solution
when N = 5 is evaluated by: u5(t ) = 0.0573t5

−

0.0008t4
− 0.8988t3

+ 1.0888t2 and LSE =
9.8123× 10−04.

In Table 1, the effect of the degree of polynomials
from a practical perspective on the accuracy of the
solution was studied. It was found that choosing the
appropriate degree of N may reduce large arithmetic
operations and may have high arithmetic accuracy.
This is because the proposed method relies on cre-
ating a square matrix with capacity N + 1, which
requires calculating its inverse once to get the ap-
proximate solution. In addition, the effect of the type
of polynomials used and the WRMs on the accuracy
of the experimental solution was studied, and it was
found that the WRMs have a strong effect on the
speed of convergence of the solution and its accuracy,
in contrast to the effect of polynomials, as shown in
Tables 2 and 3 and Fig. 1(a) to (c).

To know the effect of the distribution function on
the accuracy of the experimental solution and to com-
pare it with cases in which the ranks are a fixed
value, a numerical comparison is made by taking
several possibilities for the distribution function and
comparing them with the fixed cases of the fractional
derivatives, which are shown in Table 4 and Fig. 2.

Table 1. Explains the convergent of the proposed method. In Ex1.

RMS LSE

Degree of polynomials Case 1 Case 1 Case 2 Case 3

N = 3 1.56× 10−18 1.19× 10−34 0.1264 0.0121
N = 5 1.59× 10−18 3.32× 10−36 1.44× 10−6 9.8123× 10−4

N = 7 2.18× 10−18 4.94× 10−36 9.72× 10−7 5.8797× 10−6

N = 9 3.60× 10−17 2.25× 10−36 1.25× 10−7 8.4637× 10−7

Table 2. Explains the effect of WRMs on the approximate solution. In Ex1.

RMS LSE

(WRM) Case 1 when N = 3 Case 1 when N = 3 Case 2 when N = 5 Case 3 N = 5

GLM-CPs 1.56× 10−18 2.49× 10−33 0.0013 4.4456
COM-CPs 1.62× 10−18 9.22× 10−34 8.07× 10−06 0.0214
SDM-CPs 1.56× 10−18 9.71× 10−35 1.75× 10−06 6.3301× 10−04

MNM-CPs 1.62× 10−18 2.97× 10−34 1.65× 10−06 0.0037
MLWM-CPs 1.56× 10−18 1.19× 10−34 1.44× 10−06 9.8123× 10−04

LSM-CPs 1.56× 10−18 9.62× 10−35 1.27× 10−06 5.2613× 10−04

Table 3. Shows the effect of the expansion function on the approximate solution of Ex1 using SMLWM.

RMS LSE

Polynomials Case 1, with N = 3 Case 2, with N = 5 Case 3, with N = 5

Chelyshkov 1.5611× 10−18 1.4425× 10−06 9.8123× 10−04

Chebyshev first kind24 1.5760× 10−18 1.4425× 10−06 9.8123× 10−04

Chebyshev second kind25 1.5611× 10−18 1.4425× 10−06 9.8123× 10−04

Bernstein26 3.1061× 10−18 1.4425× 10−06 9.8123× 10−04

Legendre27 1.5763× 10−18 1.4425× 10−06 9.8123× 10−04

Jacobi28 1.5763× 10−18 1.4425× 10−06 9.8123× 10−04

Gegenbauer29 1.5611× 10−18 1.4425× 10−06 9.8123× 10−04

Hermite30 2.2171× 10−18 1.4425× 10−06 9.8123× 10−04

Laguerre31 1.0116× 10−17 1.4425× 10−06 9.8123× 10−04

Taylor32 1.5611× 10−18 1.4425× 10−06 9.8123× 10−04

Mittag-Leffler19 1.5611× 10−18 1.4425× 10−06 9.8123× 10−04
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Fig. 1. (a) to (c) illustrate the comparison between weighted weight methods and the efficiency of the Mittag-Leffler method in Ex1. cases 1
to 3 respectively, while (d) to (f) illustrate the effect of polynomials on the approximate solution in Ex1 cases 1 to 3 respectively.

Table 4. A numerical comparison showing the effect of distributed order on the accuracy of
the approximate solution. In Ex1 case 2 when N = 5; using the proposed method.

p(α) 6α(1− α) 0(3− α) sin(α) cos(απ )

RMS 1.44× 10−06 2.94× 10−06 3.13× 10−06 4.30× 10−05

Example 2: Suppose the following non-linear
DOFDE:4

C
0,2D

p(α)u2
=

∫ 2

0

[
p(α)C

aDαt u(t )
]2 dα = f (t ),

0 < t < 1, (40)

with initial conditions:

u(0) = u′(0) = 0, (41)

where f : (t ) = 18t2[ t4
−1

lnt ], p(α) = 0(4− α), and the
exact solution is u(t ) = t3. The approximate solution

when N = 3 is: u3(t ) = t3
− 3.24× 10−07t2. with

RMS = 1.8023× 10−08. This solution is shown in
Fig. 3(a) and (e).

The values of RMS when using Chelyshkov
polynomials with the Galerkin method, momen-
tum method, and collocation method are 9.7913×
10−07,1.5093× 10−07,4.5723× 10−07 respectively

Example 3: Suppose the following linear DOFDE:4

0,2
CDp(α)u = f (t ) , 0 < t < 1, (42)
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Fig. 2. Show the effect of changing the distributed order on approximate solutions and compare them with cases in which the orders
are fixed.

with boundary conditions:

u (0) = 0, u (1) = 1, (43)

Case 1. f (t ) = 6t[ t2
−cosh(2)−sinh(2)ln(t )

(lnt )2−1 ], p(α) =
sinh(α)0(4− α), and the exact solution is
u(t ) = t3. The approximate solution when N = 3
is: u3(t ) = t3

− 9.97× 10−07t2
+ 5.03× 10−7t . with

RMS = 1.4264× 10−08. (See Fig. 3(b) and (f)).

Case 2. f (t ) = [ t5
−t3

lnt ], p(α) = 0(6−α)
5! , The exact solu-

tion is u(t ) = t5. The approximate solution using N =
5 is u5(t ) = t5

+ 2.25× 10−08t4
+ 7.44× 10−09t3

−

2.14× 10−08t2
+ 6.72× 10−09t + 3.27× 10−17. with

RMS = 9.8307× 10−11. (See Fig. 3(c) and (g)).

Example 4: Consider the following system of oscillator
DOFDE:7

u′′ + ω2u+ v (t ) = f (t ) , 0 < t < π, (44)

0,1
CDp1(α)v (t )− µ0,1

CDp2(α)u (t ) = 0,

with initial conditions:

u (0) = u′ (0) = 0, (45)

where ω,µ are constant, u(t ) represent the displacement,
v(t ) is the dissipation force and f (t ) is the external force.

The previous system can be rewritten as a single
DOFDE as follows:

0,1
CDp1(α)u′′ + ω2

0,1
CDp1(α)u+ 0,1

CDp1(α)v (t )

= 0,1
CDp1(α) f (t ) (46)

which implies the following linear equation of two
distributed order terms:

0,1
CDp1(α)u′′ + ω2

0,1
CDp1(α)u+ µ0,1

CDp2(α)u (t )

= 0,1
CDp1(α) f (t ) (47)

Atanakovic and others studied the characteristics
of the analytical solution to this problem in the case
p1(α) = aα, p2(α) = bα and found the relationship
between the functions u and v as follows:15

v (t ) = µL−1

{
ln (a)+ ln (s)
ln
(
b
)
+ ln (s)

}
∗ L−1

{
bs− 1
as− 1

}
∗ u (t )

(48)

where (*) is the convolution integral. As a special case
if we take a = b = 0.1, then. Eq. (47) reduces to the
following FDE:

u′′ + (ω2
+ µ)u = f (t ) (49)

Consider f (t ) = sin(σ t ), then the exact solution is
u(t ) = 1

ω2+1−σ 2 [sin(σ t )− σ
√
ω2+1

sin(
√
ω2 + 1t )].

The following approximate solution is calculated by
applying the proposed method to solve Eq. (48) with
ω = 3, σ = 3.6, µ = 1, and N = 20; which illustrated
in Fig. 3(d) and (h).

u20(t ) = −0.0003t16
+ 0.0015t15

− 0.0054t14

+ 0.0149t13
− 0.0354t12

+ 0.0720t11

− 0.0923t10
+ 0.0457t9

− 0.0984t8
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Fig. 3. (a) to (d) illustrate the comparison between exact and numerical solution (a), (b) in Ex2 case 1 and 2, (c) in Ex3 and (d) in Ex4, while
(e) to (g) illustrate the absolute error of the approximate solution (e), (f) in Ex2 case 1 and 2, (g) in Ex3 and (h) in Ex4.
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+ 0.3557t7
− 0.0408t6

− 0.6711t5

− 0.0057t4
+ 0.6013t3

− 0.0002t2

With RMS = 6.3026× 10−07.

Conclusion

In this work, a method based on Chelyshkov poly-
nomials is presented and the Mittag-Leffler function
is proposed as the weight function. The proposed
method converts DOFDEs into a system of algebraic
equations. This system is solved to obtain the desired
approximate solution. The proposed method was ap-
plied to solve linear and nonlinear DOFDE with initial
or boundary conditions, and the method showed ac-
ceptable results in most tests. The effect of WRMs on
the solution was also studied and compared to the
proposed method, showing the strength of the effect
of these methods on the approximate solution, while a
comparison was made between polynomials, and the
results showed that the effect of polynomials is almost
minimal. This method has proven effective for solving
this type of equation. In the future, researchers sug-
gest applying the method to solve fractional ordinary
differential equations of variable order.
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الحل العددي للمعادلات التفاضلية الكسرية ذات الترتيب الموزع باستخدام 

بالاعتماد على متعددات حدود  Mittag-Lefflerدالة الوزن الطيفية 

 تشيليشكوف

 

 عبدالرزاق طلال عبد، اخلاص سعدالله احمد

 قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل، العراق.

 

متعددات حدود تشيليشكوف، طريقة  مشتقة الترتيب الموزع الكسرية، الطريقة المتبقية الموزونة، الطريقة الطيفية، الكلمات المفتاحية:

 .تورفيك الكسرية ذات الترتيب الموزع-ليفلر، معادلة باجلي-الوزن ميتاج

 ةالخلاص

في العديد من الدراسات، تم استخدام الطرق الطيفية المعتمدة على إحدى متعددات الحدود المتعامدة والطرق المتبقية الموزونة 

(WRMs( لتحويل المعادلة التفاضلية الكسرية ذات الترتيب الموزع )DOFDEs إلى نظام من المعادلات الجبرية الخطية أو غير )

. تم فرض الحل DOFDEsالخطية، ومن ثم حل هذا النظام للحصول على الحل التقريبي. في هذا البحث تم تقديم طريقة عددية لحل 

ت المطلوبة باستخدام التقريبي على شكل متعددات حدود تشيليشكوف المتعامدة ذات معاملات غير معروفة. يتم الحصول على المعاملا

WRMs والتي تحول ،DOFDEs  إلى نظام من المعاملات الجبرية. تم تقديم دالةMittag-Leffler  كدالة مناسبة للوزن. وقد تم

تورفيك الكسرية ذات الترتيب الموزع. تم -تطبيق الطريقة على عدة أمثلة عددية، مثل النموذج الرياضي التذبذبي، ومعادلة باجلي

مثل طريقة  WRMsليفلر الوزنية المقترحة مع -لى نتائج مقبولة في معظم الاختبارات. تمت مقارنة طريقة ميتاجالحصول ع

جاليركين وطريقة المربعات الصغرى، وأظهرت الدالة الموزونة المقترحة نتائج أكثر دقة من الطرق -جاليركين وطريقة بيتروف

تأثير متعددات حدود الاساسية مثل متعددات حدود تشيبيشيف، جاكوبي، ليجيندر،  السابقة في معظم الاختبارات. أظهرت الدراسة أن

جيجنباور، هيرميت، تايلور، ميتاج ليفلر، وبرنشتاين لها تأثير ضئيل في معظم الاختبارات. بالإضافة إلى ذلك تمت دراسة تأثير 

أثير قوي على دقة الحل، حيث أن تأثيره يكون مباشراً على الترتيب الموزع على دقة الحل، وأظهرت النتائج أن الترتيب الموزع له ت

 الجزء غير المتجانس، والذي يؤدي إلى معادلات أكثر تعقيداً مما كانت عليه في الحالات التي تكون فيها الرتب ثابتة.
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