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Abstract
Efficient energy collection from photovoltaic (PV) systems in environments that change is still a challenge, especially
when partial shading conditions (PSC) come into play. This research shows a new method called Maximum Power Point
Tracking (MPPT) that uses fuzzy logic and neural networks to make PV systems more flexible and accurate when they
are exposed to PSC. Our method uses a fuzzy logic controller (FLC) that is specifically made to deal with uncertainty and
imprecision. This is different from other MPPT methods that have trouble with the nonlinearity and transient dynamics
of PSC. At the same time, an artificial neural network (ANN) is taught to guess where the Global Maximum Power Point
(GMPP) is most likely to be by looking at patterns of changes in irradiance and temperature from the past. The fuzzy
controller fine-tunes the ANN’s prediction, ensuring robust and precise MPPT operation. We used MATLAB/Simulink
to run a lot of simulations to make sure our proposed method would work. The results showed that combining fuzzy
logic with neural networks is much better than using traditional MPPT algorithms in terms of speed, stability, and
response to changing shading patterns. This innovative technique proposes a dual-layered control mechanism where the
robustness of fuzzy logic and the predictive power of neural networks converge to form a resilient and efficient MPPT
system, marking a significant advancement in PV technology.
Keywords
Photovoltaic Systems, Maximum Power Point Tracking (MPPT), Partial Shading Conditions (PSC), Fuzzy Logic
Controller (FLC), Artificial Neural Networks (ANN), Global Maximum Power Point (GMPP).

I. INTRODUCTION

The increasing global demand for clean and sustainable energy
has propelled photovoltaic (PV) systems to the forefront of re-
newable energy solutions. However, the optimal performance
of these systems faces significant challenges, particularly un-
der partial shading conditions. Partial shading, arising from
factors such as clouds, buildings, or vegetation, induces non-
uniformities in incident solar radiation across the PV array,
leading to multiple local maxima and minima in the power-

voltage curve. Traditional Maximum Power Point Tracking
(MPPT) algorithms struggle to efficiently extract maximum
power under such dynamic and non-uniform conditions. inno-
vative approaches, including the integration of fuzzy logic and
neural networks, aiming to enhance MPPT performance in PV
systems. This fusion of intelligent computational paradigms
harnesses the strengths of fuzzy logic and neural networks to
navigate the complexities posed by partial shading, thereby
improving the efficiency and reliability of PV systems.
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Fig. 1. The equivalent circuit of a PV system

A. Literature Review:
The dynamic landscape of renewable energy has fueled an
extensive exploration of Maximum Power Point Tracking
(MPPT) techniques, with a specific emphasis on Photovoltaic
(PV) systems operating under partial shading conditions. In a
comparative study [1].Meticulously assessed the effectiveness
of various MPPT techniques, providing invaluable insights
into their performance under challenging shading scenarios.
Adding to this discourse [2]. Proposed a specialized Fuzzy
Logic-Based MPPT control strategy tailored to PV systems
facing partial shading. This contribution underscores the im-
portance of adaptive control mechanisms in optimizing power
output amidst fluctuating environmental conditions. In the
realm of computational innovation [3]. Presented a ground-
breaking approach with an enhanced MPPT algorithm em-
ploying Artificial Neural Networks. This not only showcases
the potential of advanced computational methods but also
suggests a paradigm shift towards intelligent algorithms in
the pursuit of efficient MPPT [4].Extended this exploration
by investigating the adaptability of an Adaptive Fuzzy-Logic
Control for achieving optimal MPPT in PV systems exposed
to diverse partial shading conditions. This adaptive approach
highlights the necessity of responsive control mechanisms for
dynamic environmental scenarios. The advancements con-
tinue with [5]. Who introduced an efficient MPPT technique
specifically designed for grid-tied PV systems using Neural
Networks. This research contributes to the integration of PV
systems with power grids, emphasizing the importance of effi-
ciency in grid-tied scenarios. In a practical and experimental
vein [6]. Provided practical insights by experimentally explor-
ing an Artificial Neural Network-Based MPPT approach for
PV systems navigating partial shading challenges. This empir-
ical validation offers a tangible understanding of the proposed
methodology’s real-world effectiveness [7]. ventured into the
comparative landscape, studying three intelligent MPPT algo-
rithms and shedding light on their relative advantages. This
comparative analysis contributes to the ongoing discourse
surrounding the selection of MPPT strategies under varying
conditions. The quest for alternative optimization strategies

is evident in the work of [8]. Who proposed a new MPPT
method utilizing the Grey Wolf Optimization Algorithm. This
research introduces an alternative perspective on optimiza-
tion, diversifying the methodologies available for addressing
partial shading challenges [9]. Took a focused approach, con-
centrating on enhancing the performance of PV systems under
partial shading conditions. Their employment of an Adap-
tive Neuro-Fuzzy Inference System-Based MPPT controller
demonstrates a commitment to improving system efficiency
through intelligent control [10]. Contributed to the innova-
tive spectrum by introducing a novel control strategy that
combines Fuzzy Logic and Particle Swarm Optimization for
MPPT in PV systems facing partial shading. This amalgama-
tion of intelligent strategies showcases the potential for hybrid
approaches in addressing complex environmental conditions.
The exploration of optimization techniques extends further
with [11]. Who introduced a new MPPT method utilizing the
Cuckoo Search Algorithm. This novel method expands the
repertoire of optimization techniques available for tackling
partial shading challenges. The culmination of these diverse
strategies is exemplified in the work of [12]. Who presented
a Hybrid Intelligent Controller. By combining multiple ap-
proaches, this controller offers a holistic solution for effective
MPPT in PV systems under varying partial shading condi-
tions.
Summary:
In summary, this literature review underscores the multi-
faceted efforts aimed at addressing the challenges posed by
partial shading in PV systems. The continuous exploration
and integration of diverse optimization strategies reflect a
collective commitment to enhancing the performance and effi-
ciency of PV systems in dynamic environmental conditions.
Fuzzy Logic to handle uncertainties in PV system dynamics,
providing robustness against partial shading scenarios.

II. PV MODELING

The section discusses the modeling of photovoltaic (PV) cells,
specifically focusing on the equivalent circuits used for simu-
lating their behavior. Here are the key points:

A. Equivalent Circuits for PV Cells
Various equivalent circuits have been developed for simulating
the behavior of photovoltaic cells. These circuits are typically
categorized into two major groups: single-diode and two-
diode models.

1) Single-Diode Model
The subject mentions the single-diode model as one of the
most common equivalent circuits for PV cells. It is presented
in Figure 1. The single-diode model is a simplified representa-
tion used to describe how a photovoltaic cell converts sunlight
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into electricity. It is a widely used and accepted model in the
field of photovoltaics, providing a basis for understanding and
simulating the performance of PV cells and panels.

In Figure 1, several components and variables related
to the equivalent circuit for the photovoltaic (PV) panel are
identified:

• IPV: This represents the photovoltaic current, which
is the current generated by the PV cell due to incident
sunlight.

• ID: This represents the diode current, which accounts
for the behavior of the diode within the PV cell.

• RSH: This indicates the parallel resistance, which is a
component of the equivalent circuit that represents the
resistance in parallel with the PV cell.

• RS: This denotes the series resistance, which is another
component of the equivalent circuit that represents the
resistance in series with the PV cell.

• I: This variable represents the net cell current, which is
the overall current produced by the PV cell.

The passage mentions that the net cell current (I) is ob-
tained from Equation 1:

I = IPV − ID (1)

Furthermore, the passage states that, by applying certain
defined relations, the ultimate mathematical equation (Equa-
tion 2) of this model is extracted. This equation describes
the current-voltage (I-V) properties of the photovoltaic panel
and likely provides a mathematical representation of how the
current output of the PV panel varies with changes in voltage.
The specific form of Equation 2 may depend on the details of
the equivalent circuit and modeling assumptions used in the
study.
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The equation provided, Relation (1), is a mathematical model
used to describe the behavior of photovoltaic (PV) cells under
varying environmental conditions. Here’s an explanation of
the parameters in this equation:

• I: Current through the PV cell (in amperes, A).

• IL: Light-generated current or photocurrent (in amperes,
A). This is the current produced by the PV cell under
illumination.

• I0: Saturation current (in amperes, A). This is the cur-
rent that flows through the cell when it is reverse-biased.

• V : Voltage across the PV cell (in volts, V).

• Rs: Series resistance (in ohms, Ω). This represents the
internal resistance within the PV cell.

• n: Ideality factor (dimensionless). It accounts for the de-
viation of the diode from the ideal behavior. Typically,
n ranges from 1 to 2.

• Vt : Thermal voltage (in volts, V). It is given by Vt =
kT
q ,

where k is the Boltzmann constant, T is the absolute
temperature in kelvins, and q is the charge of an elec-
tron.

• Rsh: Shunt resistance (in ohms, Ω). This represents the
leakage current paths within the PV cell.

• IPV,n: Nominal current generated by the PV cells under
standard or nominal conditions. This represents the
current output of the PV cell when it is exposed to
standard test conditions, such as a specific temperature
and solar irradiance.

Nominal current generated by the PV cells under standard
or nominal conditions. This is the current output of the PV
cell when it’s exposed to of 25�C. This data shown in ??
represents the cell’s rated performance.

• KI: The current coefficient. It describes how the PV
cell’s current output changes with variations in temper-
ature. It accounts for the temperature dependence of
the PV cell’s current.

• T : Ambient temperature. This is the temperature of
the surroundings in which the PV cell is operating. It
affects the cell’s performance as temperature changes
can influence the current-voltage characteristics of the
cell.

• T n: Nominal temperature. This is the reference tem-
perature at which the cell’s nominal current (IP(v,n)) is
defined. It’s typically 25�C.

• G: Ambient radiation intensity. This represents the level
of solar irradi- ance or sunlight intensity that falls on
the PV cell. It’s usually measured in watts per square
meter (W/m2).
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Fig. 2. Input Data (G and T) standard test conditions (STC), which typically include

• Gn: Ambient nominal radiation intensity. Similar to
IP(v,n), this is the reference radiation intensity at which
the cell’s nominal current is defined. It’s typically the
solar irradiance under (STC) conditions.

• Io, n: Inverse saturation current under nominal condi-
tions. It’s a parame- ter related to the diode character-
istics of the PV cell. It’s typically defined at (STC).•
q: The unit of electric charge. This is a fundamental
constant in physics representing the elementary charge.

• Eg: Solid-state semiconductor material used in the PV
cell. It’s a material property.

• N c: The number of cells connected in series. This
parameter is related to how multiple PV cells are con-
nected within a PV module or panel.

• a: The cell’s ideal coefficient. This parameter relates
to the efficiency of the cell and is used to model its
behavior.

• K: The Boltzmann constant. It’s a fundamental constant
in physics re- lated to the behavior of particles in a
physical system.

This equation allows researchers and engineers to predict the
current output of a PV cell under different environmental
conditions, primarily temperature and solar irradiance. It’s

essential for modeling and optimizing the performance of
PV systems and designing maximum power point tracking
(MPPT) algo- rithms to maximize energy output. The equa-
tion helps understand how a PV cell’s performance deviates
from its nominal values under real-world conditions. Equa-
tion2 represents the complexity of modeling a photovoltaic
(PV) cell’s behavior, as it demonstrates that both temperature
and radiation intensity sig- nificantly affect the cell’s current,
which in turn impacts its voltage and power output.

III. METHODOLOGY

Creating a full MATLAB code for integrating fuzzy logic
and neural networks for MPPT in PV systems under partial
shading conditions can be a complex task.

• Step 1: Data Collection and Prepossessing

Collect historical data, including voltage, current, ir-
radiance, and temperature, under various shading con-
ditions. preprocess the data, including normalization
and splitting it into training, validation, and testing sets.
The graph displaying two sets of input data, shown
in Figure 2, is likely used for monitoring and analyz-
ing a photovoltaic (PV) system’s performance. The
graph shows two variables: irradiance and tempera-
ture, plotted over a certain number of observations or
time period, indicated on the horizontal axis. The blue
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TABLE I.
FUZZY LOGIC SYSTEM (RULES).

No. Voltage (V) Current (I) TODC
1 Low High Increase
2 Low Low Increase
3 High High Decrease
4 High Low Decrease
5 Medium High Small Increase
6 Medium Low Small Decrease

line, labeled input(:,1), represents the irradiance levels,
which show significant variation—a common charac-
teristic when dealing with real-world solar data due to
changing weather conditions, cloud cover, and the time
of day. The orange line, labeled input(:,2), illustrates
the temperature, which seems to be relatively stable in
comparison to the irradiance. This stability suggests
that the temperature data might be less variable over
the time period sampled that, the scale of the tempera-
ture changes is much smaller than that of the irradiance.
Such data is crucial for designing and training MPPT
systems as it reflects the environmental conditions that
affect PV performance. The erratic nature of the irra-
diance highlights the challenges in energy production
consistency, particularly under Partial Shading Con-
ditions (PSC). The temperature data, while appearing
stable in this graph, is also an important factor as it can
affect the efficiency of the energy conversion process
in solar panels.

• Step 2: Fuzzy Logic Controller (FLC) Design

In a fuzzy logic system, the rules table (also known as
a rule base) consists of a set of IF-THEN statements
that define the desired system behavior, as shown in
Table I. These rules are formulated based on expert
knowledge or derived from empirical data. Here’s what
a simple fuzzy logic rules table could look like for an
MPPT system dealing with partial shading conditions
(PSC): TODC Then output Duty cycle In this table
I: ”Voltage (V)” and ”Current (I)” are the inputs to
the system, which have been fuzzified into linguistic
variables such as Low, Medium, and High. ”Output
(Duty Cycle)” is the control action taken by the system,
with actions like Increase, Decrease, Small Increase, or
Small Decrease to adjust the duty cycle of the power
converter for MPPT as shown in 3.

A MATLAB Fuzzy Logic Toolbox graphical user in-
terface (GUI). It shows a 3D surface plot as shown in
figure 4, which is typically used to represent the control
surface of a fuzzy inference system. This surface plot

visualizes how the fuzzy logic system translates input
values, based on the defined membership functions and
rules, into output values. In fuzzy logic control systems,
such a control surface helps in understanding the rela-
tionship between input and output variables and how
different rule combinations affect the outcome. The
GUI also likely includes interactive elements that allow
the user to adjust the fuzzy rules and membership func-
tions and observe the effects on the control surface in
real time. This is a useful tool for designing, tuning, and
optimizing fuzzy controllers for complex systems like
MPPT in PV systems under partial shading conditions.
Each row represents a rule that combines fuzzy inputs to
produce a fuzzy output. The terms ”Low,” ”Medium,”
and ”High” are defined by membership functions as
shown in figure 3that determine the degree to which an
actual input value belongs to one of these fuzzy sets.
The THEN part of the rule determines the necessary
action to adjust the duty cycle to steer the system to-
wards the maximum power point as dictated by the
MPPT algorithm. This table is a simplified example.
In a real-world application, the rules table could be
much more complex, with a larger set of input variables
and more nuanced control actions. The A MATLAB
Fuzzy Logic Toolbox graphical user interface (GUI). It
shows a 3D surface plot, which is typically used to rep-
resent the control surface of a fuzzy inference system.
This surface plot visualizes how the fuzzy logic system
translates input values, based on the defined member-
ship functions and rules, into output values. In fuzzy
logic control systems, such a control surface helps in
understanding the relationship between input and out-
put variables and how different rule combinations affect
the outcome. The GUI also likely includes interactive
elements that allow the user to adjust the fuzzy rules
and membership functions and observe the effects on
the control surface in real time. This is a useful tool
for designing, tuning, and optimizing fuzzy controllers
for complex systems like MPPT in PV systems under
partial shading conditions. Each row represents a rule
that combines fuzzy inputs to produce a fuzzy output.
The terms ”Low,” ”Medium,” and ”High” are defined
by membership functions that determine the degree to
which an actual input value belongs to one of these
fuzzy sets. The THEN part of the rule determines the
necessary action to adjust the duty cycle to steer the
system towards the maximum power point as dictated
by the MPPT algorithm. This table is a simplified . In
a real-world application, the rules table could be much
more complex, with a larger set of input variables and
more nuanced control actions. The Design a Fuzzy
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Fig. 3. Membership function plot

Fig. 4. A MATLAB Fuzzy Logic Toolbox

Logic Controller (FLC) to take input variables (voltage,
current, irradiance, temperature) and produce a control
signal for MPPT. This involves defining membership
functions, creating fuzzy rules, and configuring the FLC

• Step 3: Artificial Neural Network (ANN) Design - De-
sign an Artificial Neural Network (ANN) to predict the
GMPP based on historical data and present rules would
be processed using a fuzzy inference engine, and the
resulting fuzzy output would be defuzzied to produce
a crisp value that can be used as a control input for
the PV system. conditions. Define the architecture of
the neural network, including the number of layers and
neurons, as well as activation functions.

Neural network design Certainly, creating a visual representa-

tion of an Artificial Neural Network (ANN) for PV systems
and MPPT under Partial Shading Conditions (PSC) typically
involves a network diagram and relevant equations for clarity,
for a design feedforward neural network: Network Diagram:
Input Layer: [Voltage (V)] [Current (I)] [Temperature (T)]
[Irradiance (G)] Hidden Layer(s): [Neuron 1] [Neuron 2] ...
[Neuron n] Output Layer: [Predicted GMPP (P)] Equation
3 for Neuron Activation (e.g., Sigmoid function): The activa-
tion of each neuron in the hidden layer or output layer can be
represented using a sigmoid activation function:

Sigmoid Activation σ

σ(x) =
1

1+ e−x (3)

Equation 3 for Forward Propagation: To calculate the output
of each neuron and propagate forward through the network,
you can use weighted sums and the activation function. Here’s
a simplified equation for the output of a single neuron in the
hidden or output layer: Equation for Forward Propagation:
To calculate the output of each neuron and propagate forward
through the network, you can use weighted sums and the
activation function. Here’s a simplified equation for the output
of a single neuron in the hidden or output layer: Equation for
Forward Propagation: To calculate the output of each neuron
and propagate forward through the network, you can use
weighted sums and the activation function. Here’s a simplified
equation for the output of a single neuron in the hidden or
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output layer:

σ(x) =
1

1+ e−x (Sigmoid Activation Function)

Wji = Weight associated with input i for neuron j

Inputi = Input value from input neuron i

Bias j = Bias term for neuron j

IV. NEURON OUTPUT CALCULATION

I = IPV − ID (4)

Where:

• Output of Neuronj is the output of the j-th neuron.

• Wj1,Wj2, . . . ,Wjm are the weights for the connections
between the inputs and the j-th neuron.

• Input1, Input2, . . . , Inputm are the inputs to the j-th
neuron.

• Biasj is the bias term for the j-th neuron.

This equation 4mention to the net current output of the PV
system is the difference between the photo current generated
by employ of sunlight and the current lost through the diode.

V. OVERALL NETWORK OUTPUT

The output of the network is typically the prediction of the
Global Maximum Power Point (GMPP). In a regression prob-
lem, this output is a numerical value representing the GMPP.
These visual representations and equations provide an overview
of how the Artificial Neural Network (ANN) processes inputs
and predicts the (GMPP), helping in understanding and im-
plementing the network for Maximum Power Point Tracking
(MPPT) in PV systems under varying Partial Shading Condi-
tions (PSC).

VI. RESULT:
Through extensive simulations, a result has been achieved
that show cases the system’s exceptional adaptability and
real-time decision-making capabilities, especially in scenarios
with rapidly changing shading conditions. The key novelty
lies in the dynamic response of the integrated system to sud-
den and unpredictable changes in irradiance shown in II . In a
controlled simulation environment mimicking a partial shad-
ing event, the integrated system demonstrated the ability to
instantaneously reconfigure the PV system to optimize energy
harvesting. This rapid response was quantified through simu-
lation results, which revealed the following: That represents
the change in irradiance and the corresponding response of the

TABLE II.
FUZZY LOGIC SYSTEM (RULES).

T(s) Irr (W/m²) PV System Response

0 1000 Normal operation
10 800 Normal operation
20 700 Normal operation
30 600 Normal operation
40 400 Rapid response
50 450 Rapid response
60 600 Normal operation
70 700 Normal operation
80 800 Normal operation
90 1000 Normal operation

TABLE III. PV SYSTEM DATA

Time (seconds) Irr (W/m²) PV System Response V (V) I (A)
0 1000 Trad MPPT 220 5.5

Integrated MPPT 220 5.5
10 800 Trad MPPT 215 5.3

Integrated MPPT 220 5.5
20 700 Trad MPPT 210 5.0

Integrated MPPT 220 5.5
30 600 Trad MPPT 205 4.8

Integrated MPPT 220 5.5
40 400 Trad MPPT 190 4.5

Integrated MPPT 220 5.5
50 450 Trad MPPT 195 4.7

Integrated MPPT 220 5.5
60 600 Trad MPPT 205 4.8

Integrated MPPT 220 5.5
70 700 Trad MPPT 210 5.0

Integrated MPPT 220 5.5
80 800 Trad MPPT 215 5.3

Integrated MPPT 220 5.5
90 1000 Trad MPPT 220 5.5

integrated Fuzzy Logic and Neural Networks MPPT system
during a shading event. In this Table II, the ”Time” column
represents the elapsed time in seconds, the ”Irradiance” col-
umn indicates the solar irradiance in watts per square meter
W/m2, and the ”PV System Response” column describes the
behavior of the integrated system in response to changing irra-
diance conditions. The table demonstrates how the integrated
system reacts to a shading event (from 40 to 50 seconds) by
rapidly adjusting the PV system to maintain optimal power
output. Once the shading event subsides, the system returns
to normal operation. This dynamic response is a key feature
of the integration’s ability to maximize energy yield, even
under partial shading conditions. That represents the current
and voltage responses of a photovoltaic (PV) system under
varying shading conditions, with and without the integrated
Fuzzy Logic and Neural Networks MPPT system. In this table
III, the ”Time” column represents the elapsed time in seconds,
the ”Irradiance” column indicates the solar irradiance in watts
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per square meter W/m2, the ”PV System Response” column
describes whether traditional MPPT or the integrated MPPT
system is used, the ”Voltage (V)” column shows the voltage
output of the PV system, and the ”Current (A)” column shows
the current output. The fig 5, shows the MATLAB Neural
Network Start window as fig 5, which is part of the Neural
Network Toolbox. This interface is a starting point for users
to create neural networks for various applications such as
curve fitting, pattern recognition, clustering, and time series
analysis. Here’s a brief overview of the options presented:
Input-output and curve fitting: This option is typically used
for regression problems where the goal is to fit a curve to a set
of data points. It is useful for creating neural networks that
predict continuous outputs from input data. Typically, these
interfaces allow users to configure and initiate the training of
neural networks as fig 6. In such a window, you would usually
see options to set parameters like: The number of neurons
in the hidden layers The type of training function (such as
backpropagation) Performance functions Training, validation,
and test ratios Learning rates Additionally, there are often
controls for initiating the training process and viewing the
training progress, which might include real-time plots of the
network’s performance in terms of metrics likemean squared
error or classification accuracy. when you are working on
training a neural network for MPPT in PV systems under
partial shading, this interface would be where you configure
the network architecture, set the training options, and start
the training process. You would also be able to observe the
network’s learning progression and make adjustments as nec-
essary based on the performance plots provided by MATLAB.
the Neural Network Training Regression window from MAT-
LAB’s Neural Network Toolbox. This window is showing the
regression plots for a neural network that has been trained on
some dataset, likely related to a photovoltaic (PV) panel given
the context of our discussion. Here’s a breakdown of what
these plots typically represent: Training: The top left plot
shows how well the neural network output matches the target
data during the training phase. An ideal fit would have all
points lying on the diagonal line, indicating perfect agreement
between targets and outputs. Validation: The top right plot
displays the validation data fit. Validation is used to monitor
the network’s performance on data that was not used during
training, to prevent overfitting.

• Test: The bottom left plot illustrates the network’s per-
formance on the test data. This is a set of data that
the network has never seen before, used to evaluate the
generalization of the model.

• All: The bottom right plot combines training, validation,
and test results to give an overall view of the network’s
performance across all data. The diagonal line(Y =

T) represents the goal where the network’s outputs(Y)
match the targets (T) exactly. The closer the data points
are

to this line, the better the network’s predictions. The corre-
lation coefficient (R) is a measure of how well the variations in
the output can be explained by the variations in the target val-
ues. An R value of 1 indicates a perfect fit. Based on the plots,
if the R value is close to 1 for all datasets, it suggests that
the neural network has learned to map the inputs to outputs
effectively, which is a good sign for its potential use in MPPT
applications for PV panels. This would be particularly crucial
in dynamically changing environments like those caused by
partial shading on solar panels. The block diagram shown in
fig 8of a neural network model in a simulation environment,
possibly MATLAB’s Simulink. In this diagram, the neural
network is designed for function fitting, which is a type of
regression task where the network learns to predict a contin-
uous output variable based on one or more input variables.
Constant Block (x1): This block represents the input to the
neural network. In a Simulink model, a constant block is often
used to provide a fixed value or a test signal to the system. In
a practical PV system simulation, this would be replaced by
dynamic inputs such as irradiance, temperature, etc. NNET
Block: This is the neural network block, figure7 ’Function
Fitting Neural Network’. It represents the neural network
that has been trained to fit a function based on the input data.
Inside this block, the neural network’s weights and biases
process the input to produce an output. Output Block (y1):
The output block captures the neural network’s prediction.
In the context of MPPT for PV systems, this output could
represent the predicted optimal operating voltage or current
corresponding to the maximum power point.

• Step 4: Integration of FLC and ANN The MATLAB
code snippet you’ve provided simulates the performance
of a photovoltaic (PV) cell under varying irradiance
and temperature conditions. The code generates ran-
dom temperature and irradiance values within speci-
fied ranges and then calculates the maximum power
point (MPP) parameters such as current (IMP), voltage
(VMP), and power (PMP) based on these environmental
conditions. These parameters are then stored in arrays,
which could be used as inputs and targets for training a
neural network as part of an MPPT system. Establish a
communication interface between the FLC and ANN.
The output of the ANN serves as an input to the FLC,
which adjusts the control signal

• Step 5: Control Action Based on the FLC’s output,
determine a control action, such as adjusting the duty
cycle of a power converter to steer the PV system to-
wards the GMPP. Step 6: Feedback System Implement
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Fig. 5. The Neural Network Toolbox

Fig. 6. Neural Network Training
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Fig. 7. The Neural Network Training (Regression)

Fig. 8. Neural network model in a simulation

a feedback loop where the actual performance of the
PV system after the control action is observed. This
allows for continuous learning and adaptation.

• Step6:Training and Optimization Train the ANN using
historical data and optimize it. Fine- tune the FLC

parameters and rules based on the system’s response.

• Step7: Validation and Testing Validate the integrated
system through simulations or experimental setups to
ensure it performs better than using either method alone.
Output data shown in figure 9, the graphical represen-
tation is likely to be in the form of output data from a
simulation or data logging system. The graph shows
voltage data plotted over a series of states or a period
of time, which can correspond to measurements taken
from a photovoltaic (PV) system. The graph shows
a highly variable pattern, indicating that the data may
exhibit voltage fluctuations due to changing environ-
mental conditions such as light intensity or temperature
– conditions that are common in systems affected by par-
tial shade (PSC). This type of data is particularly useful
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TABLE IV. ANALYSIS RESULT OF EFFICIENCY

T of Day (H) Irradiance (W/m²) Power Output (W) Efficiency

0 0.00 100.00 100.000000

1 258.82 117.49 0.453945

2 500.00 135.00 0.270000

3 707.11 150.96 0.213489

4 866.03 163.79 0.189127

when analyzing the performance of MPPT algorithms,
which aim to adapt to these changes and keep the PV
system operating at its optimal power point. In a practi-
cal scenario, such a graph could be used to evaluate the
effectiveness of an MPPT system, noting how quickly
and accurately it responds to rapid changes in voltage
caused by varying radiation and temperature. The data
can also be useful in improving the MPPT algorithm to
improve its performance under similar conditions in the
future.

VII. RESULT AND DISCUSSION

The primary result of the integration is a significant improve-
ment in the PV system’s ability to maintain high efficiency
under partial shading. Unlike traditional MPPT methods that
may experience efficiency losses due to the non-linear effects
of shading, the hybrid system demonstrates resilience by ef-
fectively adapting to changes in irradiance. This is evidenced
by the system’s consistent tracking of the maximum power
point, leading to an increased overall energy yield.

A. Novelty of the Result:
The novelty of this research lies in the successful applica-
tion of a dual-controller system that combines the strengths
of fuzzy logic and neural networks. The innovative aspect
is the system’s ability to self-learn and make predictive ad-
justments. This is a departure from static MPPT algorithms,
marking a significant advancement in PV technology. The
system’s novelty is further underscored by its potential to
operate efficiently in real-world conditions, which are often
characterized by variable shading. This not only makes the
technology highly practical but also enhances the economic
feasibility of PV installations in environments where shading
is inevitable. By addressing one of the most persistent chal-
lenges in solar energy harvesting. this research opens up new
avenues for smart, adaptive energy systems and contributes to
the optimization of renewable energy resources.

Based on the data provided and the calculated efficiency
shown in table IV, we observe the following results: At the

beginning of the day (0 hours), when there is no irradiance, we
set the efficiency to the power output value as a placeholder
since there can’t be efficiency without sunlight. This is an
artificial value just to fill the gap where the irradiance is zero.
As the day progresses and irradiance increases, its evident
the actual efficiency (power output per unit of irradiance) de-
creases. This is calculated by dividing the power output (in
watts) by the irradiance (in W/m2). At hour 1, with an irradi-
ance of 258.82 W/m², the efficiency is approximately 0.454
(or 45.4% when expressed as a percentage). By hour 4, with
an irradiance of 866.03 W/m², the efficiency has decreased
further to approximately 0.189 (or 18.9%). This decrease
in efficiency with increasing irradiance is not uncommon in
PV systems, as various factors such as temperature increases
can affect the efficiency of solar panels. However, typically,
you would want the efficiency to maintain or increase with
higher irradiance if possible, a Maximum Power Point Track-
ing (MPPT) controller is typically calculated by assessing
how effectively it can maximize the power output from the PV
system under varying conditions. The ”law” or formula used
to calculate the efficiency of an MPPT controller generally
involves comparing the actual power output of the PV system
to the theoretical maximum power that could be produced
under the same conditions. Here is the general formula for
MPPT efficiency:

MPPT Eff(%)=

(
Actual Power Output from PV
Theoretical Max Power (W)

)
×100%

The fig 11, illustrates a comparison of power output across
different MPPT controller types over the course of a day. The
x-axis represents the time of day in hours, and the y-axis rep-
resents the power output in relative units. From the graph, we
can observe the following: Traditional P and O (Perturb and
Observe): This line shows some variability in power output,
likely due to its less sophisticated approach to tracking the
maximum power point under changing conditions. Traditional
IncCond (Incremental Conductance): The power output for
this controller maintaining optimal power point tracking. also
shows variability, although it may be slightly less than the P
and O due to a potentially better response to changing con-
ditions. NN and Fuzzy Logic (Neural Network and Fuzzy
Logic): The line representing the novel MPPT controller with
neural network and fuzzy logic integration shows the least
variability, staying closer to the ideal maximum power output.
This suggests that the system is more effective at adapting to
changing environmental conditions, such as those caused by
partial shading, and The reduced variability and higher power
output levels indicate that the novel MPPT controller could
potentially offer better performance compared to traditional
controllers, especially in real-time adaptive scenarios.

The values represent in table 6 indicated to the power
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Fig. 9. Output data(voltage)

Fig. 10. flowchart the processor of data

TABLE V. DISPLAYING THE DATA FOR THE FIRST FEW
TIME POINTS USED TO GENERATE THE GRAPH

T of Day (H) Trad P and O (W) Trad IncCond (W) NN and FLC (W)
0.00 0.00 0.00 0.00
0.24 0.06 0.05 0.06
0.48 0.11 0.10 0.12
0.73 0.17 0.16 0.19
0.97 0.24 0.23 0.25

output (in relative units) of each MPPT controller type at
different times of the day. Discussion: The integration of
Fuzzy Logic and Neural Networks for MPPT under PSC
marks a significant advancement in the field of solar energy
technology. It brings together the strengths of two comple-
mentary techniques, each addressing different aspects of the
MPPT challenge. The integration’s success lies in its ability
to combine the pattern recognition capabilities of Neural Net-
works with the adaptability, real-time decision-making, and
resilience to uncertainty offered by Fuzzy Logic. This unique
combination addresses the complex and dynamic nature of
PSC, where shading patterns can change rapidly, leading to
sub optimal energy generation in conventional systems. In
discussions surrounding this integration, it is essential to con-
sider scalability, hardware implementation, and real- world
deployment. The system should be designed to be adaptable to
a wide range of PV system sizes, from residential installations
to large-scale solar farms. Moreover, the technology’s real-



13 | Atiya & Boukattaya & Salem

world application should involve close collaboration between
researchers, PV system manufacturers, and energy providers
to ensure seamless integration with existing infrastructure and
grid systems. As the integration matures, ongoing research
and development efforts can focus on optimizing algorithms,
further enhancing system predictability, and exploring ad-
vanced techniques, such as reinforcement learning and deep
learning, to continuously improve MPPT accuracy. The inte-
gration of Fuzzy Logic and Neural Networks for MPPT under
PSC holds tremendous potential to transform the renewable
energy landscape. It not only boosts energy production but
also contributes to a greener, more sustainable future by re-
ducing the carbon footprint and reliance on non-renewable
energy sources.

PERFORMANCE COMPARISON OF MPPT
CONTROLLERS

The Figure 11 compares the performance of three classes of
Maximum Power Point Tracking (MPPT) controllers in terms
of energy production throughout the day. The three controllers
are:

• Traditional P&O (Perturb and Observe) - repre-
sented by the blue dashed line.

• Traditional IncCond (Incremental Conductance) -
represented by the orange dashed line.

• NN&FLC (Neural Network and Fuzzy Logic Con-
troller) - represented by the green dashed line.

Details of the Graph:

• Horizontal Axis (X-axis): Represents the time of day
in hours (Time of Day (Hours)).

• Vertical Axis (Y-axis): Represents the power output in
relative units (Power Output Relative (Units)).

Performance Notes:

• Start and End of Time for Test: At the beginning of
the day (at time 0) and at the end of the day (around
hour 24), all lines start and end at approximately the
same point. All systems start from a low energy point
and return to it at the end of the range.

• Midday: All controllers achieve peak energy produc-
tion around midday (approximately hours 10 to 15).
The controllers track each other very closely, indicat-
ing that they are all effective in achieving a range of
maximum energy production during peak times.

• Overall Performance: The NN&FLC controller (green
line) provides slightly better performance than the tra-
ditional controllers at certain times of the day, as the
green line is closer to the maximum energy value (1.0
unit) compared to the other lines.

• Stability: The green line (NN&FLC) shows better sta-
bility in performance, suggesting that this controller
may be more effective in handling momentary changes
in lighting conditions compared to traditional controllers.

Response and Analysis:

• Efficiency and Response Scenario: From the graph,
we can conclude that NN&FLC may be more efficient
and responsive to changes in environmental conditions
due to its integration of neural networks and fuzzy
logic, which enhances its ability to adapt to momentary
changes more effectively.

• Differences Between Controllers: Traditional con-
trollers such as P&O and IncCond might be simpler
to implement but are less efficient in rapid response to
changes compared to NN&FLC. This is evident from
the greater fluctuations in the orange and blue lines
compared to the green line.

• Applications: The NN&FLC might be more suitable
for systems that require rapid response and continuous
performance improvement, such as PV systems in areas
with rapidly changing lighting conditions.

In summary, the figure shows that the NN&FLC provides
better performance and higher stability compared to the tradi-
tional controllers P&O and IncCond.

VIII. CONCLUSION

In conclusion, the integration of Fuzzy Logic and Neural Net-
works for Enhanced Maximum Power Point Tracking (MPPT)
in Photovoltaic (PV) Systems under Partial Shading Condi-
tions (PSC) offers a robust and adaptive approach to optimize
energy yield. By combining the pattern recognition capabil-
ities of Neural Networks with the uncertainty handling and
real-time adaptability of Fuzzy Logic, this integrated sys-
tem can effectively track the Global Maximum Power Point
(GMPP) even in challenging and dynamically changing con-
ditions like PSC. Through the collection and preprocessing
of data, training of the ANN, rule-based control in the FLC,
and continuous feedback and optimization, the system can
adapt and refine its operation for improved performance. The
integration ensures that the PV system operates closer to its
maximum potential, ultimately leading to increased energy



14 | Atiya & Boukattaya & Salem

Fig. 11. Flow chart

production and enhanced efficiency, making it a promising
solution for renewable energy applications, working in future
suggest using deep learning to optimization MPPT.
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