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RESEARCH ARTICLE

Combining the Least-Squares Method with
Touchard Polynomials for Solving Mixed
Integro-Differential Equation

Hameeda O. Al-Humedi , Zahraa Adnan Jameel *

Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq

ABSTRACT

Using the well-known least-squares weighted residual method (LSM) in coupling with various degrees of Touchard
polynomials (TPs), found the numerical solutions of Volterra–Fredholm integro-differential equations (VFIDEs) and
mixed Volterra–Fredholm integro-differential equations (MIDEs) of the second kind. There exist many approaches
that have evaluated the approximate solution of the integro-differential equations (VFIDEs (MIDEs)) like the Adomian
decomposition method and modified Adomian decomposition method, Homotopy analysis method, Taylor polynomials,
power series expansion and cubic Legendre spline collocation method. In this work, we presented a method based on
combining LSM with TPs is an essential component of the suggested approach. By implementing such a method, a system
of algebraic equations can be generated that can be solved by employing well-known linear algebraic methods.

Several VFIDEs (MIDEs) examples were solved with a comparatively minimal number of reiterations to show the
accuracy and effectiveness of the presented approach when comparing the current method with other methods already
accessible in the scientific literature, as well as from the approximate solutions of each of these situations, researchers
found that there was an apparent agreement with the exact solutions for some examples. The applicability of the proposed
method was proven and the convergence analysis was discussed.

Keywords: Approximate solutions, Exact solutions, Least-squares method, Mixed integro-differential equation, Touchard
polynomial

Introduction

In recent years, interest in integro-differential equa-
tions (IDEs), a significant area of contemporary
mathematics, has grown. It frequently occurs in many
practical areas, including mechanics, the theory of
elasticity, mathematical physics, potential, electro-
statics, and engineering.

By Maturi and Simbawa1 the Volterra-Fredholm
integro-differential equations (VFIDEs) were resolved
using the modified Adomian decomposition method
(MADM). By utilizing different degrees of TPs,
Abdullah2 and Abdullah3–6 presented TPs for the
numerical resolution of the first order and second

kind with conditions of linear Fredholm integro-
differential equation (FIDE) and linear Volterra
integro-differential equation (VIDE), respectively.

Also, MIDEs solved by Hamoud7 using MADM
and the Adomian decomposition method (ADM).
Laplace discrete ADM (LDADM) is used with non-
homogeneous nonlinear VFIDEs, according to Da-
wood.8 In the Caputo sense, Ahmed and Faeq9 used
the Bessel collocation method to solve the Fredholm-
Volterra integral-fractional differential equations.
Nazir10 used TPs evaluated on systems of linear and
nonlinear integral equations. Dan11 used a monic
Chebyshev polynomial to solve linear MIDEs and IDEs
of the second kind. Based on the duality of LSM with
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the Laguerre polynomial, Al-Humedi and Shoushan12

provides a new method for solving IDEs subject to
mixed conditions.

To solve VFIDEs of linear 1st and 2nd order, Zanib
and Ahmad13 approximated Lagrange multipliers.
Yassein14 uses a trustworthy iterative method to re-
solve a variety of VFIDEs of the second class with
beginning conditions, Chebyshev polynomial basis
functions used by Deepmala15 to solve the VFIDEs.
Shoushan and Al-Humedi16 employed Legendre poly-
nomials under mixed conditions to solve high-order
linear FIDEs. Higher-order linear VFIDEs utilizing the
Chebyshev polynomial were used by Yüksel.17

Using the TP and Bernstein polynomial,
Mustapha18 determines the approximations to
the second-order integral equations of Fredholm
and Volterra. Dhari19 used a linear programming
problem to solve three different kinds of linear
integral equations of the second kind, including
(VFIEs). To solve linear MIEs and systems of linear
MIEs, used the Taylor expansion method by Didgar
and Vahidi.20 Hamoud21 solved MIDEs using HAM.

Al-Humedi and Jameel22,23 combined between cu-
bic B-spline least-square method and a quadratic
B-spline as a weight function to find a solution of
(IDEs) with the weakly singular kernel.

Many issues in mathematical applications, such as
modeling and bioinformatics, can be solved using
MIDEs, which have been researched in numerous
science domains, including biomedicine and bio-
physics.24 So, inspired by the above-mentioned pub-
lications, we will solve the following mixed integrod-
ifferential equations (MIDEs) and Volterra–Fredholm
integro-differential equations (VFIDEs), with the fol-
lowing forms:

u(`) (x) = f (x)+ λ1

∫ x

0
K1 (x, t ) u (t ) dt

+ λ2

∫ b

a
K2 (x, t ) u (t ) dt, a ≤ x, t ≤ b, (1)

the mixed condition is

N−1∑
j=0

(
a jτ + b jτ

)
u(τ ) (x) = β j, τ = 0 (1) (N − 1) , (2)

where u(`)(x) = du(`)(x)
dx(`) , ` = 1,2, . . . ,K1(x, t ) and

K2(x, t ) are kernel functions, λ1 and λ2 are constants.
Also, MIDE defined as

u(`) (x) = f (x)+ λ
∫ x

0

∫ b

a
K (r, t ) u (t ) dtdr,

by combining LSM with TPs.

The paper is organized as follows. In second
Sections, we recall the definitions of TPs which are
used for our main results. In Section Three, deriving
the proposed method based on combining LSM with
TPs by applying it to VFIDEs is presented. Section four
discusses the convergence analysis. In Section five,
four examples of different kinds of MIDEs and VFIDEs
are given to verify the proposed formulation. Finally,
a brief conclusion is given in the sixth Section.

Touchard polynomials

The Tps studied in 1939 by Jacques Touchard, con-
sist of polynomial sequences of binomial. Tps given
as10,25–27

Tn (x) =
n∑

L=0

T (n,L) xL =
n∑

L=0

(
n
L

)
xL, (3)

where
(
n
L

)
=

n!
L! (n−L)! , n is the degree of polynomial,

L is the index of polynomials, x is the variable.
First four TPs are

T0 (x) = 1,

T1 (x) = 1+ x,

T2 (x) = 1+ 2x+ x2,

T3 (x) = 1+ 3x+ 6x2
+ 3x3,

...

The derivative of the TPs is

dTn (x)
dx

=
d
dx

n∑
L=0

(
n
L

)
xL =

n∑
L=1

(
n

L− 1

)
xL−1. (4)

Solving VFIDE by combining LSM with TPs

This part will solve VFIDEs by collecting LSM28

with TPs for different degree. Presume that the
approximation solution as

un (x) =
n∑
i=0

ci Ti (x) , x ∈
[
a, b

]
, (5)

where, Ti(x) are the TPs of degrees i and ci are
unknown constants. By inserting Eq. (5) into Eq. (1).
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yield

n∑
i=0

ciT (`)
i (x) = f (x)+ λ1

∫ x

0
K1 (x, t )

n∑
i=0

ci Ti (t ) dt

+ λ2

∫ b

a
K2 (x, t )

n∑
i=0

ci Ti (t ) dt . (6)

The residual equation is given by the formula

Dn (x, ci) =
n∑
i=0

ciT (`)
i (x)− f (x)

−

[
λ1

∫ x

0
K1 (x, t )

n∑
i=0

ci Ti (t ) dt

+ λ2

∫ b

a
K2 (x, t )

n∑
i=0

ci Ti (t ) dt
]
. (7)

LSM in Eq. (7) yields

r (c0, c1, . . . , cn) =
∫ b

a
[Dn (x, ci)]2 w (x) dx, (8)

set w(x) = 129 (for simplicity) to obtain

r (c0, c1, . . . , cn) =
∫ b

a

[ n∑
i=0

ciT (`)
i (x)

−

{
f (x)+

[
λ1

∫ x

0
K1 (x, t )+ λ2

∫ b

a
K2 (x, t )

]

×

n∑
i=0

ciTi (t ) dt
}]2

dx, (9)

where w(x) is the positive weight function defined in
the interval [a, b].

It is necessary to find the values of unknown con-
stant ci, i = 0(1)n in order to reduce r. For ci ∀i to
reduce r, it is a requirement that

∂r
∂ci
= 0, i = 0 (1) n, (10)

then by applying Eq. (10) on Eq. (9) to yield:

∫ b

a

[ n∑
i=0

ciT (`)
i (x)−

{
f (x)+

[
λ1

∫ x

0
K1 (x, t )

+ λ2

∫ b

a
K2 (x, t )

] n∑
i=0

ciTi (t ) dt
}]

dx

×

[
T (`)
j (x)−

{
λ1

∫ x

0
K1 (x, t )+ λ2

∫ b

a
K2 (x, t )

}

× T j (t ) dt
]
dx = 0. (11)

The matrix form of the Eq. (11), which is an algebraic
system of (n+ 1) equations in (n+ 1) unknowns
ci,∀i, is as follows:

ψ C = F , (12)

where,

ψ =


∫ b
a En (x, c0) v0dx

∫ b
a En (x, c1) v0dx . . .

∫ b
a En (x, cn) v0dx∫ b

a En (x, c0) v1dx
∫ b
a En (x, c1) v1dx . . .

∫ b
a En (x, cn) v1dx

...
...

. . .
...∫ b

a En (x, c0) vndx
∫ b
a En (x, c1) vndx . . .

∫ b
a En (x, cn) vndx

 , (13)

F =


∫ b
a v0 f (x) dx∫ b
a v1 f (x) dx

...∫ b
a vn f (x) dx

 , (14)

En (x, ci) =
n∑
i=0

ci T (`)
i (x)

−

{
λ1

∫ x

0
K1 (x, t )+ λ2

∫ b

a
K2 (x, t )

} n∑
i=0

ci Ti (t ) dt,

(15)
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and

vi = T (`)
i (x)

−

{
λ1

∫ x

0
K1 (x, t )+ λ2

∫ b

a
K2 (x, t )

}
Ti (t ) dt . (16)

To ensure that the LSM is accurately defined, for
getting a unique solution, the minimization strategy
is required ∀x ∈ �̄, which is equivalent to the matrix’s
non-singularity ψ .

Property30: ∀x ∈ �̄ The matrix ψ defined in Eq. (12)
is non-singular.

Eq. (1) is a linear algebraic system of (n+ 1) equa-
tions with unknown orthogonal coefficients ci,∀i.
Applying the requirements, a different version of
Eq. (12) can be described as[
U j : β j

]
, j = 0 (1) (N − 1) (17)

where

U j =
[
u j0 u j1 u j2 . . . u jN

]
, j = 0 (1) (N − 1) .

(18)

By replacing the row matrices Eq. (18) with the last
(n) rows of the matrix form Eq. (12), may obtain the
solution to Eq. (1) under conditions Eq. (2) and obtain
the new augmented matrix31–33

[
ψ̃ : F̃

]
=



∫ b
a En (x, c0) v0dx

∫ b
a En (x, c1) v0dx . . .

∫ b
a En (x, cn) v0dx : F0∫ b

a En (x, c0) v1dx
∫ b
a En (x, c1) v1dx . . .

∫ b
a En (x, cn) v1dx : F0

...
...

. . .
...

...
...∫ b

a En (x, c0) vnN0
dx

∫ b
a En (x, c1) vnN1

dx . . .
∫ b
a En (x, cn) vnNndx : Fn−N

u00 u01 . . . u0N : β0

...
...

...
...

...
...

u(n−1)0 u(n−1)1 . . . u(n−1)N : βN−1


, (19)

if rank ψ̃ = rank[ψ̃ : F̃] = n+ 1. The solution to
Eq. (19) can be expressed as follows

C =
(
ψ̃
)−1 F̃, (20)

As a result, both Eq. (1) and Eq. (2) have
unique solutions, as does the matrix C (the coeffi-
cients (c0, c1, c2, . . . , cn). This solution is provided by
Eq. (5). If ψ̃ = rank[ψ̃ : F̃] < n+ 1, when |ψ̃ | = 0,
then can get an approximation of the solution34.

There is not a solution if ψ̃ 6= rank[ψ̃ : F̃] < n+ 1.
In the same manner, used in the previously stated

orthogonal polynomial this yields a (n+ 1)-equations
algebraic linear system with (n+ 1) unknown poly-
nomial coefficients ci,∀i.

Convergence analysis

Eq. (20) is one of the methods for calcu-
lating the unknowing Touchard coefficients
(c0, c1, c2, . . . , cn). As a result, the solution to
Eq. (1) is unique, and the truncated TPs in Eq. (5)
provide it. Now, the approximate solution un(x) and
its derivatives should satisfy the following equation
when they are substituted in Eq. (1):6

x = xλ ∈ [0,1] , λ = 0(1)n

ERn(xλ) =

∣∣∣∣∣∣
( n∑
i=0

ciTi(xλ)
)(`)

− f (xλ)

−

[
λ1

∫ x

0
K1(xλ, t )+ λ2

∫ b

a
K2(xλ, t )

]

×

n∑
i=0

ciTi(t )dt

∣∣∣∣∣ ∼= 0

and ERn(xλ) ≤ 10−xλ .

If max(10−xλ ) = 10−x is specified, the truncation
constraint n is extended until the difference ERn(xλ)
between all the points xλ ≤ 10−x. Alternatively put,
the association can be used to estimate the error func-
tion ERn(xλ):

ERn(x) =

( n∑
i=0

ciTi(x)

)(`)

− f (x)

−

[
λ1

∫ x

0
K1(x, t )+ λ2

∫ b

a
K2(x, t )

] n∑
i=0

ciTi(t )dt,
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therefore, ERn(x)→ 0 when n is extremely large, the
error function reduces (3 and 10).

Results and discussion

The study utilized MATLAB 2023 to solve four nu-
merical examples. The tables of absolute error for
these examples demonstrate that the method em-
ploying the constructed Touchard polynomial is both
accurate and converges with fewer iterations com-
pared to alternative approximation methods. Overall,
the results suggest that combining the least-squares
method with Touchard polynomials is a reliable and
effective approach for solving the given numerical
examples. More information on the specific exam-
ples and methodology, as well as a discussion of
the advantages and limitations of combining the
least-squares method with Touchard polynomials in
relation to other approaches, would further enhance
the analysis of the results.

Illustration examples

Four MIDEs will be resolved to demonstrate the pre-
cision and effectiveness of the suggested approach.

The following notations will be defined
to show the absolute and relative errors
(Abs. Error and Rel. Error) of a modern numerical
model:

Absolute Error = |un (x)− u (x)| ,

a ≤ x ≤ b, n = 1(1)∞

Relat ive Error =
∣∣∣∣un (x)− u (x)

u (x)

∣∣∣∣ ,
a ≤ x ≤ b, n = 1(1)∞

where the exact solution is u(x) and the approximate
solution is un(x).

Example 1: Consider the following MIDE in the
form7,21

u′′′(x)+ sin(x2)u(x) = x2 sin(x2)

−
x3

3
+

∫ x

0

∫ 1

0
xtu′(t ) dx dt

where u′′(0) = u′(0) = u(0) = 0 are the initial condi-
tions and u(x) = x2 provides the exact solution.

The comparison of results is shown in Table 1.
Additionally, Fig. 1 displays both the exact and ap-
proximative solutions for n = 3.

Through comparison of the results that were ob-
tained from the application of7 and21 where the ADM
and MADM methods in7 were applied at n = 10,
while the HAM approach described in21 was used to
solve the equation at n = 3 and n = 4. Concluding
from that the results of the present method, at n = 3
has better and more accurate results when compared
to the exact solution and the results of the previous
methods, which are shown in Table 1 and Fig. 1.
Example 2: Consider the following MIDE in the
form35

xu′′(x)− xu′(x)+ 2u(x) =
x4
+ 17
12

−
x3
+ 13x
6

−
x2

2

+

[∫ x

0
(x− t )+

∫ 1

0
(x+ t )

]
u(t ) dt

where u(0) = u′(0)− 2u(1)+ 2u(0) = 1 are the ini-
tial conditions and u(x) = 1+ x− x2 provides the
exact solution.

The comparison of results is shown in Table 2.
Additionally, Fig. 2 displays both the exact and ap-
proximative solutions for n = 3.

Through comparison of the results that were ob-
tained from the application of35 where the Taylor
polynomial method was at n = 5 in.35 Concluding
from that: the results of the present method at n = 3
has better and more accurate results when compared
to the exact solution and the results of the previous
methods, which are shown in Table 2 and Fig. 2.

Table 1. Comparison of absolute and relative errors of example 1 for n = 3 and h = 0.1.

h Exact solution Approximate Solution Abs. Errorn=3 Rel. Errorn=3

0.1 0.01 0.01 1.1478× 10−16 1.1478× 10−14

0.2 0.04 0.04 1.4902× 10−16 3.7255× 10−15

0.3 0.09 0.09 1.8947× 10−16 2.1052× 10−15

0.4 0.16 0.16 2.3664× 10−16 1.4790× 10−15

0.5 0.25 0.25 2.9105× 10−16 1.1642× 10−15

0.6 0.36 0.36 3.5323× 10−16 9.8120× 10−16

0.7 0.49 0.49 4.2369× 10−16 8.6467× 10−16

0.8 0.64 0.64 5.0294× 10−16 7.8585× 10−16

0.9 0.81 0.81 5.9151× 10−16 7.3026× 10−16
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Fig. 1. Exact and approximate solutions of example 1 at n = 3.

Table 2. Comparison of absolute and relative errors of example 2 for n = 3 and h = 0.1.

h Exact solution Approximate solution Abs. Errorn=3 Rel. Errorn=3

0.1 1.0900 1.0900 3.6920× 10−15 2.7739× 10−15

0.2 1.1600 1.1600 4.7933× 10−15 4.1321× 10−15

0.3 1.2100 1.2100 6.0942× 10−15 5.0365× 10−15

0.4 1.2400 1.2400 7.6115× 10−15 6.1383× 10−15

0.5 1.2500 1.2500 9.3619× 10−15 7.4895× 10−15

0.6 1.2400 1.2400 1.1362× 10−14 9.1628× 10−15

0.7 1.2100 1.2100 1.3628× 10−14 1.1263× 10−14

0.8 1.1600 1.1600 1.6177× 10−14 1.3946× 10−14

0.9 1.0900 1.0900 1.9026× 10−14 1.7455× 10−14

Fig. 2. Exact and approximate solutions of example 2 at n = 3.
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Table 3. Comparison of absolute and relative errors of example 3 for n = 7 and h = 0.1.

h Exact solution Approximate solution Abs.Errorn=7 Rel. Errorn=7

0.1 0.11052 0.11052 3.2116× 10−9 2.9060× 10−8

0.2 0.24428 0.24428 1.9516× 10−8 7.9892× 10−8

0.3 0.40496 0.40496 3.3874× 10−9 8.3647× 10−9

0.4 0.59673 0.59673 2.6585× 10−8 4.4551× 10−8

0.5 0.82436 0.82436 1.6670× 10−8 2.0221× 10−8

0.6 1.0933 1.0933 2.3673× 10−8 2.1653× 10−8

0.7 1.4096 1.4096 2.7897× 10−8 1.9790× 10−8

0.8 1.7804 1.7804 2.0498× 10−8 1.1513× 10−8

0.9 2.2136 2.2136 1.7523× 10−8 7.9159× 10−9

Fig. 3. Exact and approximate solutions of example 3 at n = 7.

Example 3: Consider the following MIDE in the
form36

u′(x)+
[∫ 1

0
sin x−

1
2

∫ x

0
t
]
u(t ) dt = 1+ sin x

−
x(x− 4)ex

2

where u(0) = 0 is the initial condition and u(x) = xex
provides the exact solution.

The comparison of results is shown in Table 3.
Additionally, Fig. 3 displays both the exact and ap-
proximative solutions for n = 7.

Through comparison of the results obtained from
the application of36 where the power series expansion
principle is at n = 10 in.36 Concluding from that the
results of the present method: at n = 3 has better and
more accurate results when compared to the exact so-
lution and the results of the previous methods, which
are shown in Table 3 and Fig. 3.

Example 4: Consider the following MIDE in the
form37

u′(x) = (x+ 1)e−2
−

2e−x

3
−

2x
3

+

[∫ x

0
(x− t )+

∫ 2

0
(tx+ t )

]
u(t ) dt

where u(0) = 1
3 is the initial condition and u(x) = e−x

3
provides the exact solution.

The comparison of results is shown in Table 4.
Additionally, Fig. 4 displays both the exact and ap-
proximative solutions for n = 9.

Through comparison of the results obtained from
the application of37 where the cubic Legendre spline
pooling method in37 were applied at n = 9. Con-
cluding from that note that the results of the present
method at n= 9 have better and more accurate results
when compared to the exact solution and the results
of the previous methods, which are shown in Table 4
and Fig. 4.
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Table 4. Comparison of absolute and relative errors of example 4 for n = 9 and h = 0.1.

h Exact solution Approximate solution Abs. Errorn=9 Rel. Errorn=9

0.1 0.30161 0.30161 1.0916× 10−10 3.6192× 10−10

0.2 0.27291 0.27291 1.5909× 10−9 5.8292× 10−9

0.3 0.24694 0.24694 2.4261× 10−10 9.8249× 10−10

0.4 0.22344 0.22344 1.5788× 10−9 7.0659× 10−9

0.5 0.20218 0.20218 1.8117× 10−9 8.9608× 10−9

0.6 0.18294 0.18294 3.9668× 10−10 2.1684× 10−9

0.7 0.16553 0.16553 1.3814× 10−9 8.3455× 10−9

0.8 0.14978 0.14978 2.1607× 10−9 1.4426× 10−8

0.9 0.13552 0.13552 1.4214× 10−9 1.0488× 10−8

Fig. 4. Exact and approximate solutions of example 4 at n = 9.

Conclusion

Our approach to solving Volterra-Fredholm (mixed)
integro-differential equations of the second kind is
described in this study. To formulate this method,
different degrees of Touchard polynomials were
combined with the least-squares weighted residual
method. The numerical results are presented and
contrasted with various approaches and exact solu-
tions found in the literature. The tables and figures
for each example taken into consideration in this
paper display these results. As an illustration of the
method’s computational efficiency, the excellent ac-
curacy and powerful numerical solution it provides
for this type of integro-differential equations is no-
ticed. Since it requires a few iterations to achieve
high accuracy of results, the proposed method is more
flexible than other numerical methods like the Ado-
mian decomposition method and modified Adomian
decomposition method, Homotopy analysis method,
Taylor polynomials, power series expansion, cubic
Legendre spline collocation method, as well as the

suggested approach converges quickly, is extremely
accurate, efficient, and gives sufficient evidence to
provide a good agreement with the exact result.

At last, conclude from that the proposed
method described above is a powerful method
that is acceptable for solving Volterra-Fredholm
(mixed) integro-differential equations of the second
kind.
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دمج طريقة المربعات الصغرى مع متعددة حدود توجارد لحل المعادلات 

 التكاملية المختلطة  -التفاضلية

 

 زهراء عدنان جميل  حميدة عودة الحميدي ،

.القسم الرياضيات، كلية التربية للعلوم الصرفة ، جامعة البصرة، البصرة، العراق  

 

 

التكاملية المختلطة، كثيرات -الحلول التقريبية، الحلول الدقيقة، طريقة المربعات الصغرى، المعادلة التفاضلية  الكلمات المفتاحية:

 الحدود توجارد.

 ةالخلاص

( وبدرجات TPs) Touchardمتعددات الحدود من نوع مع ( مدمجة LSMالمعروفة )باستخدام طريقة المربعات الصغرى 

-فريدهولم التكاملية-( ومعادلات فولتيراVFIDEsالتكاملية )-فريدهولم التفاضلية-مختلفة لأيجاد الحلول العددية لمعادلات فولتيرا

 -التي وجدت الحل التقريبي للمعادلات التفاضلية ( من النوع الثاني حيث هناك العديد من الطرقMIDEsالتفاضلية المختلطة )

( مثل طريقة تحليل أدوميان وطريقة تحليل أدوميان المعدلّة وطريقة التحليل الهوموتوبي VFIDEs (MIDEs)التكاملية )

تعتمد على  ومتعددات حدود تايلور وتوسيع متسلسلة القوى وطريقة تجميع ليجندر لشريحة تكعيبية. في هذا العمل، قدمنا طريقة

وهذا ما يمُثل عنصر أساسي في هذا البحث ومن خلال تنفيذ مثل هذه الطريقة، يتولد نظام من  TPsمع  LSMدمج كلاً من 

ً في حل الأنظمة الخطية. -تم حل عدد من الأمثلة لمعادلات فولتيرا المعادلات الجبرية التي يمكن حلها بالطرق المعروفة سابقا

لإظهار دقة وفعالية الطريقة المقدمة مع عدد قليل نسبياً من التكرارات، عند  VFIDEs (MIDEs)كاملية الت-فريدهولم التفاضلية

مقارنة نتائج الطريقة الحالية بنتائج الطرق الأخرى المذكورة في أعلاه والمعروفة في الدراسات، فإن النتائج التقريبية التي تمّ 

دقتها وكفاءتها وكذلك تم إثبات قابلية تطبيق الطريقة المقترحة وتمت مناقشة  الحصول عليها بواسطة الطريقة المقترحة تؤكد

 تحليل التقارب.
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