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Abstract: 

Every living creature on Earth has specific behaviors during its search for food. 

These methods vary from one organism to another. Researchers have sought to 

mathematically model these methods and use them to solve some of the 

complex problems that traditional methods have failed to solve. Since each 

algorithm has its strengths and weaknesses, and no algorithm is capable of 

solving all problems, researchers have turned to finding more efficient hybrid 

algorithms. In this paper, we derived a new conjugate parameter for the 

conjugate gradient method and combined it with both algorithms to improve the 

results. We also hybridized the AHA algorithm with TSA using a novel 

approach based on arranging the populations in each iteration in ascending 

order according to the objective function values, with the first half of the 

population optimization allocated to one algorithm and the other half to the 

other based on the strength of exploration and exploitation. The results showed 

that the hybrid algorithm outperformed both the original algorithms, as well as 

the one improved by the conjugate gradient method, on most test functions.  

Keywords: Conjugate gradient method, Tunicate Swarm Algorithm, 

                     Hummingbird algorithm. 
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 المستخلص

عٍ انطعاو. ٔذخرهف ْذِ انطزق يٍ كائٍ حٙ  نكم كائٍ حٙ عهٗ الأرض سهٕكٛاخ يحذدج أثُاء تحثّ

ٜخز. ٔلذ سعٗ انثاحثٌٕ إنٗ ًَذخح ْذِ انطزق رٚاظٛاً ٔاسرخذايٓا نحم تعط انًشكلاخ انًعمذج انرٙ 

فشهد انطزق انرمهٛذٚح فٙ حهٓا. َٔظزًا لأٌ نكم خٕارسيٛح َماغ لٕج َٔماغ ظعف, ٔلا ذٕخذ خٕارسيٛح 
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ندأ انثاحثٌٕ إنٗ إٚداد خٕارسيٛاخ ْدُٛح أكثز كفاءج. فٙ ْذِ لادرج عهٗ حم خًٛع انًشكلاخ, فمذ 

انٕرلح انثحثٛح, اشرممُا يعايلًا يرزافماً خذٚذاً نطزٚمح انرذرج انًرزافك ٔديدُاِ يع كهرا انخٕارسيٛرٍٛ 

تاسرخذاو َٓح خذٚذ ٚعرًذ عهٗ  TSA يع خٕارسيٛح AHA نرحسٍٛ انُرائح. كًا لًُا ترٓدٍٛ خٕارسيٛح

دًٕعاخ انسكاَٛح فٙ كم ذكزار ترزذٛة ذصاعذ٘ ٔفماً نمٛى دانح انٓذف, يع ذخصٛص انُصف ذزذٛة انً

الأٔل يٍ ذحسٍٛ انًدًٕعح انسكاَٛح نخٕارسيٛح ٔاحذج ٔانُصف اٜخز نلأخزٖ تُاءً عهٗ لٕج 

الاسركشاف ٔالاسرغلال. أظٓزخ انُرائح أٌ انخٕارسيٛح انٓدُٛح ذفٕلد عهٗ كم يٍ انخٕارسيٛرٍٛ 

حسُّح تطزٚمح انرذرج انًرزافك, فٙ يعظى دٔال الاخرثارالأصهٛ ًُ  .ح, ٔكذنك عهٗ انخٕارسيٛح ان

 AHA, خٕارسيٛح انطائز انطُاTSAٌانكهًاخ انًفراحٛح: غزٚمح انرذرج انًرزافك, خٕارسيٛح انسزب 

1.     Introduction 

Recently, researchers have become increasingly interested in intelligent search 

and optimization methods, due to the tremendous development of applied 

sciences and the emergence of more complex problems in various fields, such as 

economics, energy, artificial intelligence, and others. These algorithms provide 

solutions in a wide search range., in addition to their speed and accuracy, 

especially in complex problems that traditional methods are unable to solve 

(Abdullah & Mitras, 2025; Yahia et al., 2021). Meta-heuristic algorithms have 

been on the minds of researchers and developers, as they are an important type 

capable of handling difficult and complex problems. Studies have addressed the 

use of these algorithms to solve life-related problems in many areas, including 

determining important parameters for solar cells (El-Sehiemy et al., 2023). and 

improving electrical power systems (Sarhana et al., 2023). And finding the 

parameters of the state of charge in batteries used in electric cars using the 

artificial hummingbird algorithm (AHA) (Hamida et al., 2022) . And many 

other fields in design, machine learning, artificial intelligence, economics and 

energy. Researchers have also hybridized many of these algorithms with each 

other and with other traditional algorithms to achieve a balance in the search 

methods for the new hybrid algorithm, such as exploration and exploitation 

skills. An example of hybridization is the hybridization of the Harris hawk 

optimization algorithm reinforced with opposition learning (HHOA-OBL) 

(Ismael et al., 2020) . And the sand cat swarm algorithm (SCSO) with the 

artificial rabbit algorithm (ARO) (Shalal & Mitras, 2024) , And linking the 

(AHA) algorithm with the (K-means) algorithm[8], Some researchers have also 

turned to combining traditional methods such as conjugate gradient with 

intelligent algorithms by deriving new conjugate coefficients  (Hestenes & 

Stiefel, 1952). 

2.Derivation of a new parameter for the conjugate gradient    technique. 

In 2024, Ibrahim & Salihu published a paper in which they proposed a standard 

formula for the conjugate gradient vector as follows:                                

𝑑𝑘+1
𝐴𝑀𝐼𝐿 = −𝜃𝑘+1𝑔𝑘+1 + 𝛽𝑘

𝐴𝑀𝐼𝐿+𝑑𝑘                                                                    (1) 



 

549 
 

 Whereas                        𝛽𝑘
𝐴𝑀𝐼𝐿+ =

‖𝑔𝑘+1‖
2

‖𝑑𝑘+1‖
2
          

𝜃𝑘 was defined by them for several cases, including: 

𝜃𝑘
1 =  1 + 

‖y𝑘‖
2

‖d𝑘‖
      ,    𝜃𝑘

2 =  2 + 
‖𝑔𝑘+1‖

‖d𝑘‖
       ,     𝜃𝑘

3 =  3 + 
‖y𝑘‖

‖d𝑘‖
+ 1 

  𝑕     𝑕    𝑜𝑛 𝑖𝑑   𝑑          1  ,    2   ,     3 > 0  

We have the conjugate gradient vector DY as follows (Yabe & Sakaiwa, 2005) : 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝐾
Dy
𝑑𝑘        .        𝐷𝑌 =

‖    ‖
2

𝑦 
𝑇𝑑 

                           (2) 

We equate equations (1) and (2) as follows: 

𝑑𝑘+1
DY =  𝑑𝑘+1

𝐴𝑀𝐼𝐿  

−𝑔𝑘+1 + 𝛽𝐾
DY𝑑𝑘 = −𝜃𝑘+1𝑔𝑘+1 + 𝛽𝑘

𝐴𝑀𝐼𝐿+𝑑𝑘     We multiply both sides by  𝑘
𝑇 

− 𝑘
𝑇𝑔𝑘+1 + 𝛽𝐾

DY 𝑘
𝑇𝑑𝑘 = −𝜃𝑘+1 𝑘

𝑇𝑔𝑘+1 + 𝛽𝑘
𝐴𝑀𝐼𝐿+ 𝑘

𝑇𝑑𝑘 

− 𝑘
𝑇𝑔𝑘+1 +

‖𝑔𝑘+1‖
2

 𝑘
𝑇𝑑𝑘

 𝑘
𝑇𝑑𝑘 = −𝜃𝑘+1 𝑘

𝑇𝑔𝑘+1 + 𝛽𝑘
𝐴𝑀𝐼𝐿+ 𝑘

𝑇𝑑𝑘 

‖𝑔𝑘+1‖
2 = 𝛽𝜏 (Dai & Liao, 2001), Substitute for the formula for  θ 

 𝜃𝑘
2 =  2 + 

‖    ‖

‖d ‖
  

   𝑔           𝛽𝜏 = 01 −  2 −
‖    ‖

‖d ‖
1  𝑘
𝑇𝑔𝑘+1 +

‖    ‖
2

‖d ‖
2
 𝑘
𝑇𝑑𝑘              

𝐴  𝑢𝑚𝑖𝑛𝑔  𝑕𝑎         𝜂 =  
‖    ‖

‖d ‖
                              

𝛽𝜏 = ,1 −  2 − 𝜂- 𝑘
𝑇𝑔𝑘+1 + 𝜂

2 𝑘
𝑇𝑑𝑘   

𝛽𝑘
new =

,1 −  2 − 𝜂- 𝑘
𝑇𝑔𝑘+1 + 𝜂

2 𝑘
𝑇𝑑𝑘

τ
                   ,              τ > 0   

It is possible to take other forms of θ to find (β) in other forms. 

2.1   We will prove the sufficient gradient of our algorithm, If  k=1  

𝑑1 = −𝑔1      ⇒  𝑑1
𝑇𝑔1 = −‖𝑔1‖

2      

 𝑙           𝑑𝑘
⊺𝑔𝑘 ≤ − ‖𝑔𝑘‖

2                 .             =
𝜎

1−𝜎
     ,       ∀  0 < 𝜎 < 1  

Now, we prove when    k+1 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝐾
𝑛𝑒𝑤𝑑𝑘        ,            Multiply both sides by   𝑔𝑘+1

𝑇  
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𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝐾
𝑛𝑒𝑤𝑔𝑘+1

𝑇 𝑑𝑘                                                        (3) 

We take into consideration the following two scenarios based on the sign of 

𝑔𝑘+1
𝑇 𝑑𝑘: 

 (𝟏)  𝑻𝒉𝒆 𝒄𝒂𝒔𝒆   𝒈𝒌+𝟏
𝑻 𝒅𝒌 ≤ 𝟎            𝐚𝐧𝐝        𝛃𝐊

𝐧𝐞𝐰 > 𝟎          

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + 𝛽𝐾
𝑛𝑒𝑤𝑔𝑘+1

𝑇 𝑑𝑘  

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −

𝜎

1 − 𝜎
‖𝑔𝑘+1‖

2 

∴    𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ − ‖𝑔𝑘+1‖

2                ,  =
𝜎

1 − 𝜎
 

(𝟐)   𝐓𝐡𝐞 𝐜𝐚𝐬𝐞  𝐠𝐤+𝟏
𝐓 𝐝𝐤 > 𝟎        

𝛽𝑘
new =

,1 −  2 − 𝜂- 𝑘
𝑇𝑔𝑘+1 + 𝜂

2 𝑘
𝑇𝑑𝑘

τ
 

 𝑘
𝑇𝑔𝑘+1 = ‖𝑔𝑘+1‖

2 − 𝑔𝑘+1
𝑇 𝑔𝑘  , ∵ 𝑔𝑘+1

𝑇 𝑔𝑘 > 0 ⇒   𝑘
𝑇𝑔𝑘+1 ≤ ‖𝑔𝑘+1‖

2 

𝜇‖ 𝑘‖
2 ≤  𝑘

𝑇 𝑘 ≤ 𝐿‖ 𝑘‖
2     

𝑠 =𝜆𝑑 
⇒         𝜇𝜆2‖𝑑𝑘‖

2 ≤ 𝜆 𝑘
𝑇𝑑𝑘 ≤ 𝐿𝜆

2‖𝑑𝑘‖
2   

𝜇𝜆‖𝑑𝑘‖
2 ≤  𝑘

𝑇𝑑𝑘 ≤ 𝐿𝜆‖𝑑𝑘‖
2 

𝛽𝑘
new ≤

[1 −  2 −
‖𝑔𝑘+1‖
‖d𝑘‖

] ‖𝑔𝑘+1‖
2 +
‖𝑔𝑘+1‖

2

‖d𝑘‖
2 𝐿𝜆‖𝑑𝑘‖

2

τ
 

𝛽𝑘
new ≤

,1 −  2-‖𝑔𝑘+1‖
2 + ‖𝑔𝑘+1‖

2𝐿𝜆

τ
 

𝛽𝑘
new ≤

(1 −  2 + 𝐿𝜆)‖𝑔𝑘+1‖
2

τ
, 𝑙     2 = 𝐿𝜆 ⇒  𝛽𝑘

new ≤
‖𝑔𝑘+1‖

2

τ
 (4)   

We substitute equation (4) in equation (3). 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 +
‖𝑔𝑘+1‖

2

τ
𝑔𝑘+1
𝑇 𝑑𝑘 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ (−1 +

𝑔𝑘+1
𝑇 𝑑𝑘
τ
)‖𝑔𝑘+1‖

2 ⇒ 𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 −

𝑔𝑘+1
𝑇 𝑑𝑘
τ
)‖𝑔𝑘+1‖

2 

 ∵   
    
𝑇 𝑑 

τ
< 1    ⇒      𝑔𝑘+1

𝑇 𝑑𝑘+1 ≤ − ‖𝑔𝑘+1‖
2   

2.2 Comprehensive convergence study of the proposed algorithm: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝐾
𝑛𝑒𝑤𝑑𝑘     ⇒      ‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝐾

𝑛𝑒𝑤|‖𝑑𝑘‖         (5) 
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|𝛽𝐾
𝑛𝑒𝑤| ≤ ||

[1 −  2 −
‖𝑔𝑘+1‖
‖d𝑘‖

] ‖𝑔𝑘+1‖
2 +
‖𝑔𝑘+1‖

2

‖d𝑘‖
2 𝐿𝜆‖𝑑𝑘‖

2

τ
|| 

|𝛽𝐾
𝑛𝑒𝑤| ≤

1

τ
(*1 +  2 +

‖𝑔𝑘+1‖

‖d𝑘‖
+ ‖𝑔𝑘+1‖

2 +
‖𝑔𝑘+1‖

2

‖d𝑘‖
2
𝐿𝜆‖𝑑𝑘‖

2)  

|𝛽𝐾
𝑛𝑒𝑤| ≤

‖𝑔𝑘+1‖
2

τ
(1 +  2 +

‖𝑔𝑘+1‖

‖d𝑘‖
+ 𝐿𝜆)                                                         (6)  

We substitute equation (6) in equation (5) 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ +
‖𝑔𝑘+1‖

2

𝜏
(1 +  2 +

‖𝑔𝑘+1‖

‖d𝑘‖
+ 𝐿𝜆)‖𝑑𝑘‖ 

∵  𝜏 >  𝑘
𝑇𝑑𝑘    𝑎𝑛𝑑     𝜇𝜆‖𝑑𝑘‖

2 ≤  𝑘
𝑇𝑑𝑘 ≤ 𝐿𝜆‖𝑑𝑘‖

2  , ∴   𝜏 > 𝜇𝜆‖𝑑𝑘‖
2 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ +
‖𝑔𝑘+1‖

2‖𝑑𝑘‖

𝜇𝜆‖𝑑𝑘‖
2
(1 +  2 +

‖𝑔𝑘+1‖

‖d𝑘‖
+ 𝐿𝜆) 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ +
‖𝑔𝑘+1‖

2

𝜇𝜆‖𝑑𝑘‖
(1 +  2 +

‖𝑔𝑘+1‖

‖d𝑘‖
+ 𝐿𝜆) 

‖𝑑𝑘+1‖ ≤ 𝜁 +
𝜁 2

𝜇𝜆 2m
(1 +  2 +

𝜁 

 2m
+ 𝐿𝜆) 

let         𝜁 +
𝜁 2

𝜇𝜆 2m
(1 +  2 +

𝜁 

 2m
+ 𝐿𝜆)  =  Γ 

‖𝑑𝑘+1‖ ≤ Γ      ⇒      
1

‖𝑑𝑘+1‖
≥
1

Γ
 

∑
1

‖𝑑𝑘+1‖
2

∞

𝑘=1

≥ 
1

Γ2
∑1

∞

𝑘=1

= ∞          ⇒                 lim
𝑘→∞
𝑖𝑛𝑓 ‖𝑔𝑘‖ = 0 

 

3.1     The Artificial Hummingbird Algorithm (AHA): 

Hummingbirds are among the smallest and most intelligent birds in the world, 

with over 360 species, the smallest of which is the bee hummingbird, which is 

only 5.5 cm long. These birds feed on insects and flower nectar. This bird has 

unique and distinctive flight patterns, outperforming all other birds. It can fly in 

all directions, including forward, backward, up, and down. It can also remain 

stationary for periods of time, similar to helicopter flight. In addition, 

hummingbirds can remember flowers and the number of times they have visited 
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each flower within a region. Hummingbirds are also migratory birds, traveling 

long distances in search of the best food sources. The Artificial Hummingbird 

Algorithm (AHA) is a biologically inspired optimization method that mimics 

hummingbird foraging behavior through three search methods: directed search, 

regional search, and migratory search. Hummingbirds also use three flight 

patterns: diagonal, Axial, and omnidirectional flight (Zhao et al., 2022; 

Ramadan et al., 2022). 

3.2     Mathematical model and algorithm: 

A population of n hummingbirds is placed on n food sources, initialized 

randomly using the formula: 

  = Low+   (Up− Low), 𝑖 = 1, . . . , 𝑛 

where Low and Up are the lower and upper boundaries of a d-dimensional 

problem, r is a random vector in [0,1], and    represents the position of the 𝑖  𝑕   

food source, which is the solution to the given problem. 

3.2.1     visit table 

The visitation table is a key component of the algorithm, recording the number 

of cycles in which a particular source was not visited. The hummingbird selects 

the most frequently visited source, and if sources have the same visitation level, 

it selects the one with the best nectar fill rate. During updates, the increment 

levels of other sources are increased by 1, while the visited source is reset to 0. 

The visit table for food sources is initialized as follows: 

   , = ,
0 if 𝑖  𝑗

null if 𝑖 = 𝑗
     𝑖 = 1, . . . , 𝑛       𝑗 = 1, . . . , 𝑛 

where    , = 𝐧     for  𝑖 = 𝑗 indicates that a hummingbird is feeding at its 

specific food source, and    , = 0 for  𝑖 ≠ j means that the 𝑗  𝑕 food source has 

just been visited by the  𝑖  𝑕  hummingbird in the current iteration. 

3.2.2     Flight in d-D space: 

Axial Flight: 

𝐷(𝑖) = {
1 if 𝑖 = randi(,1, 𝑑-)

0 otherwise
 

Diagonal Flight: 

𝐷(𝑖)

= 2
1   𝑖𝑓  𝑖 = 𝑝(𝑗), 𝑗 = ,1, 𝑘- , 𝑝 =  𝑎𝑛𝑑𝑝  𝑚(𝑘) , 𝑘  ,2, ⌈ 1. (𝑑 − 2)⌉ + 1-
0                                                        𝑜 𝑕   𝑖                                                         

 



 

599 
 

Omnidirectional Flight: 

𝐷(𝑖) = 1, 𝑖 = 1, . . . , 𝑑 

3.2.3     Guided foraging 

At this stage, the hummingbird targets flowers that it has not visited for a long 

time. If the intervals are equal, it targets the source that contains the highest 

percentage of nectar. It heads towards the targeted food source according to the 

equation: 

  ( + 1) =   ,   ( ) + 𝑎  𝐷  .  ( ) −   ,   ( )/ 

  ( ) represents the current location of the food source for hummingbird 𝑖 at 

time  ,   ,   ( ) represents the location of the targeted food source, 𝑎  
𝑁(0,1),D represents the Flight pattern vector,   ( + 1)represents the new site 

for hummingbird 𝑖 at time  + 1. 

The food source location is updated as follows: 

  ( + 1) = ,
  ( ), if 𝑓(  ( )) ≤ 𝑓(  ( + 1))

  ( + 1), if 𝑓(  ( )) > 𝑓(  ( + 1))
 

3.2.4     Territorial Foraging 
 Territorial foraging is the search for new solutions within the neighboring area 

instead of searching in distant regions, according to the following equation: 

  ( + 1) =   ( ) +   𝐷    ( ) 
where   𝑁(0,1). 

3.2.5     Migrating Foraging 
Migrating foraging is the search for a food source far from the territorial area, 

which occurs after every 2n repetitions, according to the following equation: 

 𝑤  ( + 1) = 𝐿𝑜 +   ( 𝑝 − 𝐿𝑜 ) 
where  𝑤   is the food source with the worst nectar filling rate in the group. 

Note the drawing in Figure (1) showing the steps of the algorithm. 

 

4.1      TSA Swarm Algorithm: 

It is a new Metaheuristic Optimization algorithm inspired by the style of a 

marine organism called tunicates, which are organisms from the chordate's 

phylum. These organisms live in salt water and are characterized by a special 

style of movement while escaping from danger and searching for food called jet 

propulsion, a distinctive mechanism for absorbing and pumping water. They 

also move in groups called swarms (Kaur et al., 2020). 
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4.2     The three stages of an organism's movement are: 

Jet propulsion: It is a random movement that helps an organism explore a new 

place. 

Swarm Behavior: It is an interactive movement between members of the 

swarm to obtain the best resource. 

Best Position Attraction: When a good food source is discovered, everyone 

heads towards it. 

4.3     Basic equations of the algorithm: 

Avoid collisions between swarm elements through equations: 

𝐴 =
�⃗�

�⃗⃗⃗�
                                            (1) 

�⃗� =  2 +  3 −  ⃗                                (2) 

 ⃗ = 2   1                                            (3) 

�⃗⃗⃗� = ⌊ min +  1  ( max −  min)⌋ (4) 

where c1, c2, c3 are random values between [0, 1], A is a vector representing 

the acceleration of the particle. G aviator representing the force of gravity, 

which is the drive to attract the better a vector representing the flow of water in 

the deep ocean simulating a natural turbulence .M Represents the interaction of 

the object with the rest of the swarm .  min The initial velocity represents and 

 max   represents the maximum velocity, The following figure shows the 

interconnection of these vectors. 

 

4.4     Equation for moving towards the best 

food source: 

 𝐷⃗⃗ ⃗⃗ ⃗⃗ =   −  𝑎𝑛𝑑   ⃗⃗ ( )

                                             (5) 

where PD represents the distance vector between the particle and the best food 

source. FS represents the best source.  ⃗⃗ ( ) Represents the particle's position 

vector. Where navigation to the best source is done in a non-linear manner. 

4.5      The equation of centering around the best particle: 

 ⃗⃗ ( ) = ,
  + 𝐴   𝐷⃗⃗ ⃗⃗ ⃗⃗ , if  𝑎𝑛𝑑 ≥ 0.5

  − 𝐴   𝐷⃗⃗ ⃗⃗ ⃗⃗ , if  𝑎𝑛𝑑 < 0.5
                      (6) 
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4.6     Position update equation according to swarm behavior: 

 ⃗⃗ ( + 1) =
�⃗⃗�𝑝(𝑥)+�⃗⃗�𝑝(𝑥+1)

2+𝑐 
                                              (7)        

5.1   Hybrid algorithms 

 AHA-TSA hybrid algorithm method, Hybridization was performed by 

rearranging the set after each iteration according to the objective function 

values. The set was partitioned according to its proximity to the target. 

The optimization of the set near the target was assigned to the 

Hummingbird algorithm, while the optimization of the set in the other 

half was assigned to the TSA algorithm. Note the flowchart (1) which 

illustrates the hybridization method 

 By hybridizing the swarm algorithms TSA and AHA with the conjugate 

gradient method using the new derivative operator beta, we obtain two 

hybrid algorithms AHA-CG-S and TSA-CG-S, where the population 

members are optimized by the gradient method at each iteration. 

6.     Results 

From the results obtained using MATLAB 2022, where six different basic test 

functions were selected, as shown in Table (1), it was found that the hybrid 

algorithm (TSA-AHA) showed improved results, outperforming both the TSA 

and AHA algorithms after averaging the results for 30 different initial 

population groups, with  200  iterations for  F1,F2,F3,F4 and 500 iterations for  

F5  We also found the standard deviation to demonstrate the stability of the 

results around the mean, As shown in Table (2) and Figures{ Fig 1, Fig 2, Fig 3, 

Fig 4, Fig 5}. 
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                                                         flowchart (1) 

TABLE (1) 

Fi Nam Objective function D Range Fmin 

F1 Sphere 
𝒇( ) =∑  𝒊

𝟐
 

𝒊=𝟏
 

30 [-

100,100] 

0 

F2 Schwefel 

2.22 
𝒇( ) =∑ | 𝒊| + ∏ | 𝒊| 

 

𝒊=𝟏

 

𝒊=𝟏
 

30 [-10,10] 0 

F3 Schwefel 1.2 
𝒇( ) =∑ (∑  𝒋

𝒊

𝒋−𝟏
)

𝟐 

𝒊=𝟏
 

30 [-

100,100] 

0 

F4 Schwefel 

2.21 

𝑚𝑎 𝑖*| 𝑖|. 1 ≤ 𝑖 ≤ 𝑛+ 30 [-

100,100] 

 

F5 Rosenbrock 

𝒇( ) = ∑(𝟏𝟎𝟎( 𝒊+𝟏 −  𝒊)
𝟐

 −𝟏

𝒊=𝟏

+ ( 𝒊 − 𝟏)
𝟐) 

 

30 [-30,30] 0 

 

TABLE (2). The calculated average and standard deviation were for 30 restart 

attempts. 

Fi  It  AHA TSA 
AHA-

CG-S 
TSA-CG-S TSA-AHA 

F1 200 

Mean  

 

2.5385e-

64 

1.4415e-

75 

2.2434e-

79 

1.0112e-

302 
0 

std 0 
2.4965e-

91 

1.219e-

94 
0 0 

F2 200 

Mean  

 

3.3569e-

36 

2.3049e-

39 

9.4634e-

34 

2.2389e-

147 
5.0834e-195 

std 
06.7961e-

52 

9.9553e-

55 

1.7398e-

49 
0 0 

F3 200 

Mean  

 
5.93e-57 

1.352e-

71 

3.5576e-

64 
4.84e-275 2.3599e-317 

Std 
2.3026e-

72 

2.0451e-

87 

2.0587e-

79 
0 0 

F4 200 

Mean  

 

1.2673e-

35 

7.9536e-

37 

3.1925e-

35 

6.5503e-

143 
3.1264e-172 

Std 
1.0874e-

50 

5.0971e-

52 
0 1.852e-158 0 

F5 500 Mean  1.228e-06 28.8963 26.3045 28.9605 25.3482 
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Std 
6.4613e-

22 

1.4454e-

14 

1.084e-

14 
2.1681e-14 0 

 

 

 

 

                            Fig1                                                            Fig2 

                 

 

 

 

                          Fig3                                                          Fig4 

 

 

 

 

                           Fig5 
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