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ABSTRACT

This paper studies the oscillation properties and asymptotic behavior of all solutions of the 2×2 system of second-order
half-linear neutral differential equations. Four results are obtained in this research. The first and second results are
auxiliary results while the third and fourth results are main results. All possible cases of non-oscillating bounded solutions
for this system are estimated and analyzed. It is noted that the parameters that affect the volatility of the solutions are
Qi,Ri on the one hand and r1 and r2 on the other hand. For this purpose, and through investigation, it is shown that there
are only fourteen possible cases of non-oscillating bounded solutions for this system, so all these cases must be treated,
in the first result as well as the second, some new necessary and sufficient conditions were obtained to ensure that there
are no non-oscillating bounded solutions in these cases, and thus all possible solutions for this system, if they exist, will
be only oscillating solutions and there are no non-oscillating solutions for this type of equations. Some examples are
included to illustrate all the results obtained.

Keywords: Asymptotic behavior, Half linear system, Neutral differential equations, Oscillation, Second order

Introduction

Consider the half-linear system

(r1(t )(ξ1(t )+ P1(t )ξ1(τ1(t )))′)α1 )′ =
n∑

i=1

Qi(t )Gi (ξ2(ρi(t )))

(r2(t )(ξ2(t )+ P2(t )ξ2(τ2(t )))′)α2 )′ =
n∑

i=1

ℛi(t )ℋi(ξ1(σi(t )))
, t ≥ t0 > 0. (1)

Under the following assumptions

r j,P j, ℱ j, τ j, Qi,ℛi ρi, σi ∈ { [[t0,∞) ;R] , r j (t ) > 0, Lim
t→∞

τ j (t ) = ∞,
Lim
t→∞

ρi (t ) = ∞, Lim
t→∞

σi (t ) = ∞, ρi (t ) ≤ t, σi (t ) ≤ t, Gi,ℋi ∈ { [R;R] ,
zGi (z) > 0, zℋi (z) > 0, j = 1,2, i = 1, 2, . . . , n,

(2)
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α1 and α2 are the quotient of positive odd integers. Let

U1 (t ) = ξ1 (t )+ P1 (t ) ξ1 (τ1 (t ))

U2 (t ) = ξ2 (t )+ P2 (t ) ξ2 (τ2 (t ))
, (3)

System 1 can be rewritten as

(r1 (t )
(
U′1 (t ) )α1

)′
=

n∑
i=1

Qi (t ) Gi (ξ2 (ρi (t )))

(r2 (t )
(
U′2 (t ) )α2

)′
=

n∑
i=1

ℛi (t )ℋi (ξ1 (σi (t ))) ,

(4)

By a solution to system 1, means a vector functions (ξ1(t ), ξ2(t )) such that r1(t )(U′1(t ))α1 , r2(t )(U′2(t ))α2

are continuously differentiable and (ξ1(t ), ξ2(t )) satisfies system 1. The solutions that satisfy the condition
sup{|ξ1(t )| : t ≥ T } > 0, sup{|ξ2(t )| : t ≥ T } > 0, T ≥ t0 are the solutions concerned in this research. As usual,
a function is said to be oscillatory if it has arbitrarily large zeros, otherwise, it is nonoscillatory. A solution of
system 1 is said to be oscillatory if all of its components are oscillatory. In the articles1–3 conditions for the
oscillation and for the existence of nonoscillatory solutions with polynomial growth at infinity are given for the
second order neutral differential equations. It has been proven that every bounded solution of a neutral-type
system converges to Equilibrium.4–6 Some sufficient conditions have been obtained to ensure that all solutions
of neutral systems oscillate or converge7,8

Some research has been devoted to studying the oscillation of solutions of second-order halflinear neutral
differential equations, the classical Riccati transformation technique was used by taking into account that part
of the total effect of delay that was neglected in previous results.9–11 Asymptotic behavior and oscillation of all
solutions of impulsive neutral differential equations with positive and negative coefficients and with impulsive
integral terms were investigated, the convergence of all nonoscillatory solutions to zero is ensured by some
sufficient conditions.12,13 The existence of nonoscillatory solution of neutral second order differential equations
is studied in article.14 In this article asymptotic behavior and oscillation of second order half linear neutral
system with several arguments and several delays are investigated. Before presenting the results, the following
lemmas need to be proved:

Lemma 1: Assume that (ξ1(t ), ξ2(t )) be nonoscillatory bounded solution of sys. 1, Qi(t ) ≤ 0,ℛi(t ) ≤ 0, i =
1,2, . . . n, t ≥ t0, and∫
∞

T

(
1

r j (t )

) 1
α j

dt = ∞, j = 1,2, T ≥ t0. (5)

Then there are only the following possible cases:

1. Ui(t ) > 0,U′i(t ) > 0, (ri(t )(U
′

i(t ))
αi )′ ≤ 0, and either Limt→∞ξi(t ) = ∞ or ξi(t ) is bounded away from zero

if 0 ≤ Pi(t ) < 1, i = 1,2 .
2. U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, and either Limt→∞ξ1(t ) = ∞ or ξ1(t ) is bounded away from

zero if 0 ≤ P1(t ) < 1, and ξ2(t ) oscillates.
3. ξ1(t ) oscillates and U2(t ) > 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, and either Limt→∞ξ2(t ) = ∞, or ξ2(t ) is

bounded away from zero if 0 ≤ P1(t ) < 1.
4. Ui(t ) < 0,U′i(t ) < 0, (ri(t )(U

′

i(t ))
αi )′ ≥ 0, and eitherLimt→∞ξi(t ) = −∞, or ξi(t ) is bounded away from

zero if 0 ≤ Pi(t ) < 1, i = 1,2 .
5. ξ1(t ) oscillates and U2(t ) < 0,U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, and either Limt→∞ξ2(t ) = −∞, or ξ2(t ) is

bounded away from zero if 0 ≤ P1(t ) < 1.
6. U1(t ) < 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, and either Limt→∞ξ1(t ) = −∞ or ξ1(t ) is bounded away from

zero if 0 ≤ P1(t ) < 1, and ξ2(t ) oscillates.
7. U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞U1(t ) = ∞, Limt→∞ξ1(t ) = ∞,
U2(t ) < 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.
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8. U1(t ) > 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞r1(t )(U′1(t ))α1 = 0,
U2(t ) < 0, U′2(t ) < 0, (r2(t )U′2(t ))′ ≤ 0, Limt→∞U2(t ) = −∞, Limt→∞ξ2(t ) = −∞.

9. U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞U1(t ) = ∞, Limt→∞ξ1(t ) = ∞,
U2(t ) < 0,U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, Limt→∞U2(t ) = −∞, Limt→∞ξ2(t ) = −∞.

10. U1(t ) > 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞r1(t )(U′1(t ))α1 = 0,
U2(t ) < 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.

11. U1(t) < 0,U′1(t) > 0, (r1(t)(U′1(t))α1 )′ ≤ 0, Limt→∞r1(t)(U′1(t))α1 = 0,
U2(t) > 0, U′2(t) > 0, (r2(t)(U′2(t))α2 )′ ≥ 0, Limt→∞U2(t) = ∞, Limt→∞ξ2(t) = ∞.

12. U1(t ) < 0, U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, Limt→∞U1(t ) = −∞, Limt→∞ξ1(t ) = −∞,
U2(t ) > 0, U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.

13. U1(t ) < 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, Limt→∞r1(t )(U′1(t ))α1 = 0,
U2(t ) > 0,U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.

14. U1(t ) < 0, U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, Limt→∞U1(t ) = −∞, Limt→∞ξ1(t ) = −∞,
U2(t ) > 0, U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, Limt→∞U2(t ) = ∞, Limt→∞ξ2(t ) = ∞.

Proof: Assume that sys.1 has nonoscillatory bounded solution (ξ1(t ), ξ2(t )) then there are the following possible
cases for t ≥ t0:

1. ξ1(t ) > 0, ξ2(t ) > 0,
2. ξ1(t ) < 0, ξ2(t ) < 0,
3. ξ1(t ) > 0, ξ2(t ) < 0
4. ξ1(t ) < 0, ξ2(t ) > 0.

Case 1. If ξ1(t ) > 0, ξ2(t ) > 0, t ≥ t0 and ξ1(σi(t )) > 0, ξ2(ρi(t )) > 0, i = 1, . . . , n then from sys.1 getting

(r1 (t )
(
U′1 (t ) )α1

)′
≤ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≤ 0, t ≥ t0. (6)

That means r1(t )(U′1(t ))α1 , r2(t )(U′2(t ))α2 non-increasing hence there exists t1 ≥ t0 such that r1(t )(U′1(t ))α1

and r2(t )(U′2(t ))α2 are eventually positive or eventually negative. So there are the following subcases that can
be considered:

i. r1(t )(U′1(t ))α1 > 0,r2(t )(U′2(t ))α2 > 0,
ii. r1(t )(U′1(t ))α1 < 0,r2(t )(U′2(t ))α2 < 0,
iii. r1(t )(U′1(t ))α1 > 0,r2(t )(U′2(t ))α2 < 0,
iv. r1(t )(U′1(t ))α1 < 0,r2(t )(U′2(t ))α2 > 0,

t ≥ t1. (7)

i. It follows from this case U′1(t ) > 0, U′2(t ) > 0
Let Limt→∞r1(t )(U′1(t ))α1 = l1 ≥ 0, Limt→∞r2(t )(U′2(t ))α2 = l2 ≥ 0,

r1 (t ) (U′1 (t ))α1 ≥ l1, r2 (t ) (U′2 (t ))α2 ≥ l2, t ≥ t2 ≥ t1

U′1 (t ) ≥ l
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≥ l

1
α2
2

(
1

r2 (t )

) 1
α2
.

Integrating from t2 to t , yields:

U1 (t )−U1 (t2) ≥ l
1
α1
1

∫ t

t2

(
1

r1 (θ )

) 1
α1

dθ, U2 (t )−U2 (t2) ≥ l
1
α1
2

∫ t

t2

(
1

r2 (θ )

) 1
α2

dθ.

If l1 > 0, l2 > 0, then by letting t →∞, the last inequality leads to Limt→∞U1(t ) = ∞, Limt→∞U2(t ) =
∞, claiming that Limt→∞ξ1(t ) = ∞, Limt→∞ξ2(t ) = ∞, otherwise Lim supt→∞ξ1(t ) = k1 <

∞, Lim supt→∞ξ2(t ) = k2 <∞, since P1(t ), P2(t ) are bounded it follows from 3 that U1(t ) ≤ k1 +

P1(t )k1 = (1+ P1(t ))k1 ≤ K1 and U2(t ) ≤ (1+ P2(t ))k2 ≤ K2. As t →∞, leads to Limt→∞U1(t ) ≤ K1 <

∞, Limt→∞U2(t ) ≤ K2 <∞, a contradiction. Or if l1 = 0, l2 = 0, then Limt→∞r1(t )(U′1(t ))α1 = 0, and U1(t )
is bounded away from zero, claiming that ξ1(t ) is bounded away from zero if 0 ≤ P1(t ) < 1, otherwise there
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exists t1 large enough such that ξ1(t1) = 0, then Eq. (3) implies

0 = ξ1 (t1) = U1 (t1)− P1 (t1) ξ1 (τ1 (t1)) > U1 (t1)− ξ1 (τ1 (t1))

a contradiction in a similar way, it can be shown that ξ2(t ) is bounded away from zero if 0 ≤ P2(t ) < 1.
ii. r1(t )(U′1(t ))α1 < 0,r2(t )(U′2(t ))α2 < 0, t ≥ t1, then U′1(t ) < 0, U′2(t ) < 0. There exist b1, b2 < 0 such that

r1(t )(U′1(t ))α1 ≤ b1, r2(t )(U′2(t ))α2 ≤ b2

U′1 (t ) ≤ b
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≤ b

1
α2
2

(
1

r2 (t )

) 1
α2
, t ≥ t2 ≥ t1.

Integrating from t2 to t to get:

U1 (t )−U1 (t2) ≤ b
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≤ b
1
α2
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds.

Letting t →∞, gets Limt→∞U1(t ) = −∞, Limt→∞U2(t ) = −∞, this is a contradiction. Similar procedures as
in Case i or ii can be used to prove Case iii or iv.

Case 2. If ξ1(t ) < 0, ξ2(t ) < 0, t ≥ t0 and ξ1(σi(t )) < 0, ξ2(ρi(t )) < 0 then from Eq. (3) and sys 1 gettingU1(t ) <
0,U2(t ) < 0 and

(r1 (t )
(
U′1 (t ) )α1

)′
≥ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≥ 0, t ≥ t0. (8)

That is r1(t )(U′1(t ))α1 , r2(t )(U′2(t ))α2 nondecreasing hence there exists t1 ≥ t0 such that r1(t )(U′1(t ))α1 and
r2(t )(U′2(t ))α2 are eventually positive or eventually negative. So the subcases in 7 can be considered as follows:
i. It follows U′1(t ) > 0, U′2(t ) > 0 and there exist b1, b2 > 0 such that r1(t )(U′1(t ))α1 ≥ b1, r2(t )(U′2(t ))α2 ≥

b2,

U′1 (t ) ≥ b
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≥ b

1
α2
2

(
1

r2 (t )

) 1
α2
, t ≥ t2 ≥ t1 .

Integrating from t2 to t , gets the following:

U1 (t )−U1 (t2) ≥ b
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≥ b
1
α2
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds.

Letting t →∞, gets Limt→∞U1(t ) = ∞, Limt→∞U2(t ) = ∞, this is a contradiction.
ii. It follows U′1(t ) < 0, U′2(t ) < 0. There exist l1, l2 ≤ 0 such that Limt→∞r1(t )(U′1(t ))α1 = l1 ≤

0, Limt→∞r2(t )(U′2(t ))α2 = l2 ≤ 0,

r1 (t ) (U′1 (t ))α1 ≤ l1, r2 (t ) (U′2 (t ))α2 ≤ l2, t ≥ t2 ≥ t1

U′1 (t ) ≤ l
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≤ l

1
α2
2

(
1

r2 (t )

) 1
α2
.

Integrating from t2 to t , yields:

U1 (t )−U1 (t2) ≤ l
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≤ l
1
α1
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds .

Letting t →∞, if l1, l2 < 0, the last inequality leads to Limt→∞U1(t ) = −∞, Limt→∞U2(t ) = −∞. Claiming
that Limt→∞ξ1(t ) = −∞, Limt→∞ξ2(t ) = −∞, otherwise Lim inft→∞ξ1(t ) = k1 > −∞, Lim inft→∞ξ2(t ) =
k2 > −∞, since P1(t ), P2(t ) are bounded it follows from Eq. (3) that

U1 (t ) ≥ k1 + P1 (t ) k1 = (1+ P1 (t )) k1 ≥ K1 and U2 (t ) ≥ (1+ P2 (t )) k2 ≥ K2.
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as t →∞, leads to Limt→∞U1(t ) ≥ K1 > −∞, Limt→∞U2(t ) ≥ K2 > −∞, a contradiction. If l1 = 0, l2 = 0, then
Limt→∞r1(t )(U′1(t ))α1 = 0, and U1(t ) is bounded away from zero, claiming that ξ1(t ) is bounded away from
zero if 0 ≤ P1(t ) < 1, otherwise, there exists t1 large enough such that ξ1(t1) = 0, then 3 implies

0 = ξ1 (t1) = U1 (t1)− P1 (t1) ξ1 (τ1 (t1)) < U1 (t1)− ξ1 (τ1 (t1))

a contradiction. in a similar way, it can be shown that ξ2(t ) is bounded away from zero if 0 ≤ P2(t ) < 1. Similar
procedures as in Case i or ii can be used to prove Case iii or iv.

Case 3. If ξ1(t ) > 0, ξ2(t ) < 0, t ≥ t0, from sys.1 getting U1(t ) > 0, U2(t ) < 0

(r1 (t )
(
U′1 (t ) )α1

)′
≥ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≤ 0, t ≥ t0. (9)

That is r1(t )(U′1(t ))α1 nondecreasing and r2(t )(U′2(t ))α2 non-increasing. So by 7, there are only the following
subcases that can be considered for t ≥ t1 ≥ t0:
i. This case leads to U1(t ) > 0, U′1(t ) > 0, then similarly as in the proof of case i getting Limt→∞U1(t ) =
∞, which implies that Limt→∞ξ1(t ) = ∞, also U2(t )〈0, U′2(t )〉0, implies Limt→∞r2(t )(U′2(t ))α2 = 0.
ii. This case leads to U1(t ) > 0, U′1(t ) < 0, implies Limt→∞r1(t )(U′1(t ))α1 = 0 and U2(t ) < 0, U′2(t ) <

0, Limt→∞U2(t ) = −∞, which implies that Limt→∞ξ2(t ) = −∞.
iii. This case leads toU1(t ) > 0, U′1(t ) > 0, implies Limt→∞U1(t ) = ∞,which leads to Limt→∞ξ1(t ) = ∞, and

U2(t ) < 0, U′2(t ) < 0, Limt→∞U2(t ) = −∞, leads to Limt→∞ξ2(t ) = −∞.
iv. This case leads toU1(t ) > 0, U′1(t ) < 0, implies Limt→∞r1(t )(U′1(t ))α2 = 0 alsoU2(t )〈0, U′2(t )〉0, implies

Limt→∞r2(t )(U′2(t ))α2 = 0.

Case 4. If ξ1(t )〈0, ξ2(t )〉0, t ≥ t0, from sys.1 obtained that U1(t )〈0, U2(t )〉0

(r1 (t )
(
U′1 (t ) )α1

)′
≤ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≥ 0, t ≥ t0. (10)

That is r1(t )(U′1(t ))α1 non-increasing and r2(t )(U′2(t ))α2 non-decreasing. So by (7), there are only the
following subcases that can be considered for t ≥ t1 ≥ t0:
i. This case leads to U1(t )〈0, U′1(t )〉0, then similarly as in case 3 getting Limt→∞r1(t )(U′1(t ))α1 = 0, also

U2(t ) > 0, U′2(t ) > 0, Limt→∞U2(t ) = ∞, which implies that Limt→∞ξ2(t ) = ∞.
ii. This case leads to U1(t ) < 0, U′1(t ) < 0, implies Limt→∞U1(t ) = −∞, which implies that Limt→∞ξ1(t ) =
−∞, and U2(t ) > 0, U′2(t ) < 0, Limt→∞r2(t )(U′2(t ))α2 = 0.
iii. This case leads toU1(t )〈0, U′1(t )〉0, implies Limt→∞r1(t )(U′1(t ))α2 = 0 andU2(t ) > 0, U′2(t ) < 0, implies

Limt→∞r2(t )(U′2(t ))α2 = 0.
iv. This case leads to U1(t ) < 0, U′1(t ) < 0, implies Limt→∞U1(t ) = −∞, which implies that Limt→∞ξ1(t ) =
−∞, and U2(t ) > 0, U′2(t ) > 0, implies Limt→∞U2(t ) = ∞, which implies that Limt→∞ξ2(t ) = ∞.

Lemma 2: Assume that (ξ1(t ), ξ2(t )) be a nonoscillatory bounded solution of sys.1 and let P1(t ), P2(t ) are
bounded, let Qi(t ),ℛi(t ) ≥ 0, t ≥ t0, and 5 holds. Then there are only the following possible cases:

1. Ui(t ) > 0,U′i(t ) > 0, (ri(t )(U
′

i(t ))
αi )′ ≥ 0, Limt→∞Ui(t ) = ∞, Limt→∞ξi(t ) = ∞

2. Ui(t ) > 0,U′i(t ) < 0, (ri(t )(U
′

i(t ))
αi )′ ≥ 0, Limt→∞ri(t )(U

′

i(t ))
αi = 0

3. U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞U1(t ) = ∞, Limt→∞ξ1(t ) = ∞,
U2(t ) > 0,U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.

4. U1(t ) > 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞r1(t )(U′1(t ))α1 = 0,
U2(t ) > 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, Limt→∞U2(t ) = ∞, Limt→∞ξ2(t ) = ∞.

5. Ui(t )〈0,U
′

i(t )〉0, (ri(t )(U
′

i(t ))
αi )′ ≤ 0, Limt→∞ri(t )(U

′

i(t ))
αi = 0.

6. Ui(t ) < 0, U′i(t ) < 0, (ri(t )(U
′

i(t ))
αi )′ ≤ 0, Limt→∞Ui(t ) = −∞, Limt→∞ξi(t ) = −∞.

7. U1(t )〈0,U′1(t )〉0, (r1(t )(U′1(t ))α1 )′ ≤ 0, Limt→∞r1(t )(U′1(t ))α1 = 0.
U2(t ) < 0, U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, Limt→∞U2(t ) = −∞, Limt→∞ξ2(t ) = −∞.

8. U1(t ) < 0, U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, Limt→∞U1(t ) = −∞, Limt→∞ξ1(t ) = −∞.
U2(t )〈0,U′2(t )〉0, (r2(t )(U′2(t ))α2 )′ ≤ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.

9. U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, and either Limt→∞ξ1(t ) = ∞ , or ξ1(t ) is bounded away from
zero if 0 ≤ P1(t ) < 1, and ξ2(t ) oscillates.
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10. ξ1(t ) oscillates and U2(t ) < 0,U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, and either Limt→∞ξ2(t ) = −∞, or ξ2(t ) is
bounded away from zero if 0 ≤ P2(t ) < 1

11. U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, and either Limt→∞ξ1(t ) = ∞ , or ξ1(t ) is bounded away from
zero if 0 ≤ P1(t ) < 1, U2(t ) < 0,U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, and either Limt→∞ξ2(t ) = −∞, or ξ2(t )
is bounded away from zero if 0 ≤ P2(t ) < 1

12. ξ1(t ) oscillates and U2(t ) > 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, and either Limt→∞ξ2(t ) = ∞ , or ξ2(t ) is
bounded away from zero if 0 ≤ P2(t ) < 1.

13. U1(t ) < 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, and either Limt→∞ξ1(t ) = −∞, or ξ1(t ) is bounded away from
zero if 0 ≤ P1(t ) < 1, and ξ2(t ) oscillates.

14. U1(t ) < 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, and either Limt→∞ξ1(t ) = −∞, or ξ1(t ) is bounded away from
zero if 0 ≤ P1(t ) < 1, and U2(t ) > 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, and either Limt→∞ξ2(t ) = ∞ , or
ξ2(t ) is bounded away from zero if 0 ≤ P2(t ) < 1.

Proof: Assume that sys.1 has a nonoscillatory solution (ξ1(t ), ξ2(t )) then there are the following possible cases
for t ≥ t0:

1. ξ1(t ) > 0, ξ2(t ) > 0, 2. ξ1(t ) < 0, ξ2(t ) < 0, 3. ξ1(t ) > 0, ξ2(t ) < 0, 4. ξ1(t )〈0, ξ2(t )〉0.

Case 1. If ξ1(t ) > 0, ξ2(t ) > 0, t ≥ t0 and ξ1(σi(t )) > 0, ξ2(ρi(t )) > 0, i = 1, . . . , n then from sys.1 obtaining

(r1 (t )
(
U′1 (t ) )α1

)′
≥ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≥ 0, t ≥ t0. (11)

That isr1(t )(U′1(t ))α1 nondecreasing andr2(t )(U′2(t ))α2 non-decreasing. So by 7, there are only the following
subcases that can be considered for t ≥ t1 ≥ t0:

i. r1(t )(U′1(t ))α1 > 0,r2(t )(U′2(t ))α2 > 0,
ii. r1(t )(U′1(t ))α1 < 0,r2(t )(U′2(t ))α2 < 0,
iii. r1(t )(U′1(t ))α1 > 0,r2(t )(U′2(t ))α2 < 0,
iv. r1(t )(U′1(t ))α1 < 0,r2(t )(U′2(t ))α2 > 0,

t ≥ t1.

i. It follows U1(t ) > 0, U′1(t ) > 0, and U2(t ) > 0, U′2(t ) > 0, Then, there exist b1, b2 > 0 such that
r1(t )(U′1(t ))α1 ≥ b1, r2(t )(U′2(t ))α2 ≥ b2

U′1 (t ) ≥ b
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≥ b

1
α2
2

(
1

r2 (t )

) 1
α2
, t ≥ t2 ≥ t1 .

Integrating from t2 to t to get:

U1 (t )−U1 (t2) ≥ b
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≥ b
1
α2
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds.

Letting t →∞, getting Limt→∞U1(t ) = ∞, Limt→∞U2(t ) = ∞. which implies that Limt→∞ξ1(t ) =
∞, Limt→∞ξ2(t ) = ∞.
ii. It follows U′1(t ) < 0, U′2(t ) < 0. There exist l1, l2 ≤ 0 such that Limt→∞r1(t )(U′1(t ))α1 = l1 ≤

0, Limt→∞r2(t )(U′2(t ))α2 = l2 ≤ 0,

r1 (t ) (U′1 (t ))α1 ≤ l1, r2 (t ) (U′2 (t ))α2 ≤ l2, t ≥ t2 ≥ t1

U′1 (t ) ≤ l
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≤ l

1
α2
2

(
1

r2 (t )

) 1
α2
.

Integrating from t2 to t , yields:

U1 (t )−U1 (t2) ≤ l
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≤ l
1
α1
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds.
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Letting t →∞, if l1, l2 < 0, the last inequality leads to Limt→∞U1(t ) = −∞, Limt→∞U2(t ) = −∞. a contra-
diction.

If l1 = 0, l2 = 0, then Limt→∞r1(t )(U′1(t ))α1 = 0, and U1(t ) is bounded away from zero, claiming that ξ1(t )
is bounded away from zero if 0 ≤ P1(t ) < 1, otherwise there exists t1 large enough such that ξ1(t1) = 0, then
Eq. (3) implies

0 = ξ1 (t1) = U1 (t1)− P1 (t1) ξ1 (τ1 (t1)) > U1 (t1)− ξ1 (τ1 (t1))

a contradiction. in a similar way, it can be shown that ξ2(t ) is bounded away from zero if 0 ≤ P2(t ) < 1.
Procedures similar to cases i-ii, can be used to show cases iii-iv.

Case 2. If ξ1(t ) < 0, ξ2(t ) < 0, t ≥ t0 and ξ1(σi(t )) < 0, ξ2(ρi(t )) < 0 then from Eq. (3) and sys 1, gettingU1(t ) <
0,U2(t ) < 0 and

(r1 (t )
(
U′1 (t ) )α1

)′
≤ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≤ 0, t ≥ t0. (12)

That is r1(t )(U′1(t ))α1 and r2(t )(U′2(t ))α2 non-increasing hence there exists t1 ≥ t0 such that r1(t )(U′1(t ))α1

and r2(t )(U′2(t ))α2 are eventually positive or eventually negative. So the subcases in 7 can be considered as
follows:
i. It follows U′1(t ) > 0, U′2(t ) > 0. There exist l1, l2 ≥ 0 such that Limt→∞r1(t )(U′1(t ))α1 = l1 ≥

0, Limt→∞r2(t )(U′2(t ))α2 = l2 ≥ 0,

r1 (t ) (U′1 (t ))α1 ≥ l1, r2 (t ) (U′2 (t ))α2 ≥ l2, t ≥ t2 ≥ t1

U′1 (t ) ≥ l
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≥ l

1
α2
2

(
1

r2 (t )

) 1
α2
.

Integrating from t2 to t , yields:

U1 (t )−U1 (t2) ≥ l
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≥ l
1
α1
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds .

Letting t →∞, if l1, l2 > 0, the last inequality leads to Limt→∞U1(t ) = ∞, Limt→∞U2(t ) = ∞. a contradic-
tion.

If l1 = 0, l2 = 0, then Limt→∞r1(t )(U′1(t ))α1 = 0, and U1(t ) is bounded away from zero, claiming that ξ1(t )
is bounded away from zero if 0 ≤ P1(t ) < 1, otherwise there exists t1 large enough such that ξ1(t1) = 0, then
Eq. (3) implies

0 = ξ1 (t1) = U1 (t1)− P1 (t1) ξ1 (τ1 (t1)) < U1 (t1)− ξ1 (τ1 (t1))

a contradiction. in a similar way, it can be shown that ξ2(t ) is bounded away from zero if 0 ≤ P2(t ) < 1.
ii. It follows U1(t ) < 0, U′1(t ) < 0, and U2(t ) < 0, U′2(t ) < 0, then, there exist b1, b2 < 0 such that

r1(t )(U′1(t ))α1 ≤ b1, r2(t )(U′2(t ))α2 ≤ b2

U′1 (t ) ≤ b
1
α1
1

(
1

r1 (t )

) 1
α1
, U′2 (t ) ≤ b

1
α2
2

(
1

r2 (t )

) 1
α2
, t ≥ t2 ≥ t1 .

Integrating from t2 to t to get:

U1 (t )−U1 (t2) ≤ b
1
α1
1

∫ t

t2

(
1

r1 (s)

) 1
α1

ds, U2 (t )−U2 (t2) ≤ b
1
α2
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds.

Letting t →∞, getting Limt→∞U1(t ) = −∞, Limt→∞U2(t ) = −∞. which implies that Limt→∞ξ1(t ) =
−∞, Limt→∞ξ2(t ) = −∞.

Similar procedures as in Case i or ii can be used to prove Case iii or iv.
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Case 3. If ξ1(t ) > 0, ξ2(t ) < 0, t ≥ t0, from sys.1, obtaining U1(t ) > 0, U2(t ) < 0

(r1 (t )
(
U′1 (t ) )α1

)′
≤ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≥ 0, t ≥ t0. (13)

That is r1(t )(U′1(t ))α1 non-increasing and r2(t )(U′2(t ))α2 non-decreasing. So by (7), there are only the
following subcases that can be considered for t ≥ t1 ≥ t0:
i. It follows U′1(t ) > 0, U′2(t ) > 0. Let Limt→∞r1(t )(U′1(t ))α1 = l1 ≥ 0,

r1 (t ) (U′1 (t ))α1 ≥ l1, , t ≥ t2 ≥ t1

U′1 (t ) ≥ l
1
α1
1

(
1

r1 (t )

) 1
α1
.

Integrating from t2 to t , yields:

U1(t )−U1(t2) ≥ l
1
α1
1
∫ t

t2 ( 1
r1(θ ) )

1
α1 dθ . If l1 > 0, then by letting t →∞, the last inequality leads

to Limt→∞U1(t ) = ∞, claiming that Limt→∞ξ1(t ) = ∞, otherwise Lim supt→∞ξ1(t ) = k1 <∞, since
P1(t ), P2(t ) are bounded it follows from Eq. (3) that

U1(t ) ≤ k1 + P1(t )k1 = (1+ P1(t ))k1 ≤ K1.

As t →∞, leads to Limt→∞U1(t ) ≤ K1 <∞, a contradiction. Or if l1 = 0, then Limt→∞r1(t )(U′1(t ))α1 = 0,
andU1(t ) is bounded away from zero, claiming that ξ1(t ) is bounded away from zero if 0 ≤ P1(t ) < 1, otherwise
there exists t1 large enough such that ξ1(t1) = 0, then Eq. (3) implies

0 = ξ1 (t1) = U1 (t1)− P1 (t1) ξ1 (τ1 (t1)) > U1 (t1)− ξ1 (τ1 (t1))

a contradiction.
It follows U′2(t ) > 0 and there exist b2 > 0 such that r2(t )(U′2(t ))α2 ≥ b2,

U′2 (t ) ≥ b
1
α2
2

(
1

r2 (t )

) 1
α2
, t ≥ t2 ≥ t1.

Integrating from t2 to t , gets the following:

U2 (t )−U2 (t2) ≥ b
1
α2
2

∫ t

t2

(
1

r2 (s)

) 1
α2

ds.

Letting t →∞, getting Limt→∞U2(t ) = ∞, this is a contradiction.
ii. This case leads to U1(t ) > 0, U′1(t ) < 0, implies ξ1(t ) oscillates and U2(t ) < 0, U′2(t ) < 0,

either Limt→∞U2(t ) = −∞, which implies that Limt→∞ξ2(t ) = −∞.
Or Limt→∞r2(t )(U′2(t ))α2 = 0, and U2(t ) is bounded away from zero, leads to ξ2(t ) is bounded away from

zero if 0 ≤ P2(t ) < 1.
iii. This case leads to U1(t ) > 0, U′1(t ) > 0, implies either Limt→∞U1(t ) = ∞, which leads to Limt→∞ξ1(t ) =
∞, or Limt→∞r1(t )(U′1(t ))α2 = 0 and U2(t ) < 0, U′2(t ) < 0, either Limt→∞U2(t ) = −∞, leads to
Limt→∞ξ2(t ) = −∞ , or Limt→∞r1(t )(U′1(t ))α2 = 0
iv. This case leads to U1(t ) > 0, U′1(t ) < 0, leads to ξ1(t ) oscillates also U2(t )〈0, U′2(t )〉0, leads to ξ2(t )

oscillates

Case 4. If ξ1(t )〈0, ξ2(t )〉0, t ≥ t0, from sys 1 obtaining U1(t )〈0, U2(t )〉0

(r1 (t )
(
U′1 (t ) )α1

)′
≥ 0, (r2 (t )

(
U′2 (t ) )α2

)′
≤ 0, t ≥ t0. (14)

That is r1(t )(U′1(t ))α1 nondecreasing and r2(t )(U′2(t ))α2 non-increasing. This case can be proven in a similar
way case 3.
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In the next results, this condition is needed

Gi (z)
z
≥ λi, λ = min{λi : λi ≥ 0, i = 1,2, ..n}

ℋi (z)
z
≤ µi, µ = min{µi : µi ≥ 0, i = 1,2, ..n}

, z 6= 0. (15)

Main results

In this section, two results are given are given, the following results is the first.

Theorem 1: Assume that 0 ≤ P j(t ) < 1, j = 1,2, τ1(t ) ≤ t, τ2(t ) ≤ t, Qi(t ) ≤ 0, ℛi(t ) ≤ 0, t ≥ t0, i =
1,2, . . . , n, and (5), (15) hold, in addition to the following conditions

Lim sup
t→∞

∫ t

T

(
1

r1(s)

∫ δ(s)

s

n∑
i=1

|Qi(v)| (1− P2(ρi(v))) dv

) 1
α1

ds = ∞, (16-a)

Lim sup
t→∞

∫ t

t1

(
1

r2(s)

∫ δ(s)

s

n∑
i=1

|ℛi(v)| (1− P1(σi(v))) dξ

) 1
α2

ds = ∞. (16-b)

δ(t ) ≥ t . Then every bounded solution of sys. 1 oscillates.

Proof: Assume that sys. 1 has nonoscillatory bounded solution (ξ1(t ), ξ2(t )) then by Lemma 1, there are only
the following cases:

1. If ξ1(t ) > 0, ξ2(t ) > 0, then Ui(t ) > 0,U′i(t ) > 0, (ri(t )(U
′

i(t ))
αi )′ ≤ 0, and ξi(t ) is bounded away from

zero, i = 1,2 .
2. If ξ1(t ) < 0, ξ2(t ) < 0, then Ui(t ) < 0,U′i(t ) < 0, (ri(t )(U

′

i(t ))
αi )′ ≥ 0, and ξi(t ) is bounded away from

zero, i = 1,2 .
3. If ξ1(t ) > 0, ξ2(t ) < 0, then U1(t ) > 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0, Limt→∞r1(t )(U′1(t ))α1 = 0,.
U2(t )〈0, U′2(t )〉0, (r2(t )(U′2(t ))α2 )′ ≤ 0, Limt→∞r2(t )(U′2(t ))α2 = 0.

4. If ξ1(t )〈0, ξ2(t )〉0, then U1(t )〈0,U′1(t )〉0, (r1(t )(U′1(t ))α1 )′ ≤ 0 Limt→∞r1(t )(U′1(t ))α1 = 0, U2(t ) >
0, U′2(t ) < 0, (r2(t )(U′2(t ))α2 )′ ≥ 0, Limt→∞r2(t )(U′2(t ))α2 = 0

Case 1. From Eq. (3) it follows

Ui (t ) ≤ ξi (t )+ Pi (t )Ui (τi (t )) , i = 1,2.

ξi (t ) ≥ Ui (t )− Pi (t )Ui (τi (t )) ≥ (1− Pi (t ))Ui (t ) . (17)

Integrating the first equation from t to δ(t ) to get

r1 (δ (t )) (U′1 (δ (t )))α1 − r1 (t ) (U′1 (t ))α1 =

∫ δ(t )

t

n∑
i=1

Qi (s)Gi (ξ2 (ρi (s))) ds

− r1 (t ) (U′1 (t ))α1 ≤

∫ δ(t )

t

n∑
i=1

Qi (s) λiξ2 (ρi (s)) ds

r1 (t ) (U′1 (t ))α1 ≥ λ

∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s)))U2 (ρi (s)) ds. (18)

≥ λU2 (ρ (t ))
∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s))) ds, ρ (t ) = min {ρi (t ) : i = 1,2, . . . n}

U′1 (t ) ≥ λ
1
α1

(
U2 (ρ (t ))
r1 (t )

∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s))) ds

) 1
α1
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Integrating the last inequality from t1 to t to get

U1 (t )−U1 (t1) ≥ λ
1
α1

∫ t

t1

(
U2 (ρ (s))
r1 (s)

∫ δ(s)

s

n∑
i=1

|Qi (v)| (1− P2 (ρi (v))) dv

) 1
α1

ds

≥ λ
1
α1 U2 (ρ (t1))

∫ t

t1

(
1

r1 (s)

) 1
α1

(∫ δ(s)

s

n∑
i=1

|Qi (v)| (1− P2 (ρi (v))) dv

) 1
α1

ds

Letting t →∞ and by using the condition (16) leads to Limt→∞U1(t ) = ∞, implies that Limt→∞ξ1(t ) = ∞,
a contradiction, similarly obtaining Limt→∞ξ2(t ) = ∞.

Case 2. Integrating the first equation from t to δ(t ) to get

r1 (δ (t )) (U′1 (δ (t )))α1 − r1 (t ) (U′1 (t ))α1 =

∫ δ(t )

t

n∑
i=1

Qi (s)Gi (ξ2 (ρi (s))) ds

− r1 (t ) (U′1 (t ))α1 ≥

∫ δ(t )

t

n∑
i=1

Qi (s) λiξ2 (ρi (s)) ds

− r1 (t ) (U′1 (t ))α1 ≥ λ

∫ δ(t )

t

n∑
i=1

Qi (s) (1− P2 (ρi (s)))U2 (ρi (s)) ds

r1 (t ) (U′1 (t ))α1 ≤ λ

∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s)))U2 (ρi (s)) ds

≤ λU2 (ρ (t ))
∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s))) ds,

U′1 (t ) ≤ λ
1
α1

(
U2 (ρ (t ))
r1 (t )

∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s))) ds

) 1
α1

Integrating the last inequality from t1 to t to get

U1 (t )−U1 (t1) ≤ λ
1
α1

∫ t

t1

(
U2 (ρ (s))
r1 (s)

∫ δ(s)

s

n∑
i=1

|Qi (v)| (1− P2 (ρi (v))) dv

) 1
α1

ds

≤ λ
1
α1 U2 (ρ (t1))

∫ t

t1

(
1

r1 (s)

∫ δ(s)

s

n∑
i=1

|Qi (v)| (1− P2 (ρi (v))) dv

) 1
α1

ds

Letting t →∞ and taking into count the condition 16 the last inequality leads to Limt→∞U1(t ) = −∞, implies
that Limt→∞ξ1(t ) = −∞, a contradiction, similarly obtaining Limt→∞ξ2(t ) = −∞.

Case 3. ξ1(t ) > 0, ξ2(t ) < 0. Integrating the second equation from t to δ(t ) to get

r2 (δ (t )) (U′2 (δ (t )))α2 − r2 (t ) (U′2 (t ))α2 =

∫ δ(t )

t

n∑
i=1

ℛi (s)ℋi (ξ1 (σi (s))) ds

− r2 (t ) (U′2 (t ))α2 ≤

∫ δ(t )

t

n∑
i=1

ℛi (s)µiξ1 (σi (s)) ds
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r2 (t ) (U′2 (t ))α2 ≥

∫ δ(t )

t

n∑
i=1

|ℛi (s)|µi (1− P1 (σi (s)))U1 (σi (s)) ds

U′2 (t ) ≥ µ
1
α2

(
U1 (σ (δ (t )))

r2 (t )

∫ δ(t )

t

n∑
i=1

|ℛi (s)| (1− P1 (σi (s))) ds

) 1
α2

Integrating from t1 to t to get

U2 (t )−U2 (t1) ≥ µ
1
α2 U

1
α2
1 (σ (δ (t )))

∫ t

t1

(
1

r2 (s)

∫ δ(s)

s

n∑
i=1

|ℛi (v)| (1− P1 (ρi (s))) dv

) 1
α1

ds

Letting t →∞ and taking into count the condition 16 the last inequality leads to Limt→∞U2(t ) = ∞, a
contradiction unless Limt→∞U1(t ) = 0,which implies that Limt→∞ξ1(t ) = 0, Integrating the first equation from
t to δ(t ) to get

r1 (δ (t )) (U′1 (δ (t )))α1 − r1 (t ) (U′1 (t ))α1 =

∫ δ(t )

t

n∑
i=1

Qi (s)Gi (ξ2 (ρi (s))) ds

− r1 (t ) (U′1 (t ))α1 ≥

∫ δ(t )

t

n∑
i=1

Qi (s) λiξ2 (ρi (s)) ds

r1 (t ) (U′1 (t ))α1 ≤

∫ δ(t )

t

n∑
i=1

|Qi (s)| λi (1− P2 (ρi (s)))U2 (ρi (s)) ds

U′1 (t ) ≤ λ
1
α1

(
U2 (ρ (δ (t )))

r1 (t )

∫ δ(t )

t

n∑
i=1

|Qi (s)| (1− P2 (ρi (s))) ds

) 1
α1

Integrating from t1 to t to get

U1 (t )−U1 (t1) ≤ λ
1
α1 U

1
α1
2 (ρ (δ (t )))

∫ t

t1

(
1

r1 (s)

∫ δ(s)

s

n∑
i=1

|Qi (v)| (1− P2 (ρi (s))) dv

) 1
α1

ds

Letting t →∞ and taking into count the condition (16) the last inequality leads to Limt→∞U1(t ) = −∞, a
contradiction unless Limt→∞U2(t ) = 0, which implies that Limt→∞ξ2(t ) = 0,

Case 4. The proof can be treated in a similar way as in case 3. �

Theorem 2: Assume that 0 ≤ P j(t ) < 1, j = 1,2, τ1(t ) ≤ t, τ2(t ) ≤ t, Qi(t ) ≥ 0, ℛi(t ) ≥ 0, t ≥ t0, i =
1,2, . . . , n, and 5, 15 hold, in addition to conditions 16− a and 16− b hold. Then every bounded solution of sys.1
oscillates.

Proof: Assume that sys 1 has nonoscillatory bounded solution (ξ1(t ), ξ2(t )) then by Lemma 2, having only the
following cases:

1. If ξ1(t ) > 0, ξ2(t ) > 0, then Ui(t ) > 0,U′i(t ) < 0, (ri(t )(U
′

i(t ))
αi )′ ≥ 0, Limt→∞ri(t )(U

′

i(t ))
αi = 0

2. If ξ1(t ) < 0, ξ2(t ) < 0, then Ui(t )〈0,U
′

i(t )〉0, (ri(t )(U
′

i(t ))
αi )′ ≤ 0, Limt→∞ri(t )(U

′

i(t ))
αi = 0.

3. If ξ1(t ) > 0, ξ2(t ) < 0, then U1(t ) > 0,U′1(t ) > 0, (r1(t )(U′1(t ))α1 )′ ≤ 0, and ξ1(t ) is bounded away from
zero if 0 ≤ P1(t ) < 1, U2(t ) < 0,U′2(t ) < 0, and ξ2(t ) is bounded away from zero if 0 ≤ P2(t ) < 1

4. If ξ1(t )〈0, ξ2(t )〉0, then U1(t ) < 0,U′1(t ) < 0, (r1(t )(U′1(t ))α1 )′ ≥ 0. and ξ1(t ) is bounded away from zero
if 0 ≤ P1(t ) < 1, and U2(t ) > 0,U′2(t ) > 0, (r2(t )(U′2(t ))α2 )′ ≤ 0, and ξ2(t ) is bounded away from zero if
0 ≤ P2(t ) < 1.
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Case 1. From Eq. (3) it follows

Ui (t ) ≤ ξi (t )+ Pi (t )Ui (τi (t )) , i = 1,2.

ξi (t ) ≥ Ui (t )− Pi (t )Ui (τi (t )) ≥ (1− Pi (t ))Ui (t ) . (19)

Integrating the first equation from t to δ(t ) to get

r1 (δ (t )) (U′1 (δ (t )))α1 − r1 (t ) (U′1 (t ))α1 =

∫ δ(t )

t

n∑
i=1

Qi (s)Gi (ξ2 (ρi (s))) ds

− r1 (t ) (U′1 (t ))α1 ≥

∫ δ(t )

t

n∑
i=1

Qi (s)Gi (ξ2 (ρi (s))) ds

− r1 (t ) (U′1 (t ))α1 ≥

∫ δ(t )

t

n∑
i=1

Qi (s) λiξ2 (ρi (s)) ds

r1 (t ) (U′1 (t ))α1 ≤ −λ

∫ δ(t )

t

n∑
i=1

Qi (s) (1− P2 (ρi (s)))U2 (ρi (s)) ds, (20)

≤ −λU2 (ρ (δ (t )))
∫ δ(t )

t

n∑
i=1

Qi (s) (1− P2 (ρi (s))) ds, ρ (t ) = min {ρi (t ) : i = 1,2, . . . n}

U′1 (t ) ≤ −λ
1
α1

(
U2 (ρ (δ (t )))

r1 (t )

∫ δ(t )

t

n∑
i=1

Qi (s) (1− P2 (ρi (s))) ds

) 1
α1

Integrating the last inequality from t1 to t to get

U1 (t )−U1 (t1) ≤ −λ
1
α1

∫ t

t1

(
U2 (ρ (δ (s)))

r1 (s)

∫ δ(s)

s

n∑
i=1

Qi (v) (1− P2 (ρi (v))) dv

) 1
α1

ds

≤ −λ
1
α1 U2 (ρ (δ (t )))

∫ t

t1

(
1

r1 (s)

) 1
α1

(∫ δ(s)

s

n∑
i=1

Qi (v) (1− P2 (ρi (v))) dv

) 1
α1

ds

Letting t →∞ and by using the condition 16 leads to Limt→∞U1(t ) = −∞, implies that Limt→∞ξ1(t ) = −∞,
a contradiction, similarly obtaining Limt→∞ξ2(t ) = −∞.

Case 2. ξ1(t ) < 0, ξ2(t ) < 0. Integrating the second equation from t to δ(t ) to get

r2 (δ (t )) (U′2 (δ (t )))α2 − r2 (t ) (U′2 (t ))α2 =

∫ δ(t )

t

n∑
i=1

ℛi (s)ℋi (ξ1 (σi (s))) ds

− r2 (t ) (U′2 (t ))α2 ≤

∫ δ(t )

t

n∑
i=1

ℛi (s)µiξ1 (σi (s)) ds

r2 (t ) (U′2 (t ))α2 ≥ −

∫ δ(t )

t

n∑
i=1

ℛi (s)µi (1− P1 (σi (s)))U1 (σi (s)) ds

U′2 (t ) ≥ −µ
1
α2

(
U1 (σ (δ (t )))

r2 (t )

∫ δ(t )

t

n∑
i=1

ℛi (s) (1− P1 (σi (s))) ds

) 1
α2
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Integrating from t1 to t to get

U2 (t )−U2 (t1) ≥ −µ
1
α2 (U1 (σ (δ (t ))))

1
α2

∫ t

t1

(
1

r2 (s)

∫ δ(s)

s

n∑
i=1

ℛi (v) (1− P1 (ρi (s))) dv

) 1
α1

ds

Letting t →∞ and taking into count the condition 16 the last inequality leads to Limt→∞U2(t ) = ∞, a contra-
diction unless Limt→∞U1(t ) = 0, which implies that Limt→∞ξ1(t ) = 0, similarly obtaining Limt→∞ξ2(t ) = ∞.

Case 3. ξ1(t ) > 0, ξ2(t ) < 0. Integrating the second equation from t to δ(t ) to get

r2 (δ (t )) (U′2 (δ (t )))α2 − r2 (t ) (U′2 (t ))α2 =

∫ δ(t )

t

n∑
i=1

ℛi (s)ℋi (ξ1 (σi (s))) ds

− r2 (t ) (U′2 (t ))α2 ≥

∫ δ(t )

t

n∑
i=1

ℛi (s)µiξ1 (σi (s)) ds

r2 (t ) (U′2 (t ))α2 ≤ −

∫ δ(t )

t

n∑
i=1

ℛi (s)µi (1− P1 (σi (s)))U1 (σi (s)) ds

U′2 (t ) ≤ −µ
1
α2

(
U1 (σ (t ))
r2 (t )

∫ δ(t )

t

n∑
i=1

ℛi (s) (1− P1 (σi (s))) ds

) 1
α2

Integrating from t1 to t to get

U2 (t )−U2 (t1) ≤ −µ
1
α2 U

1
α2
1 (σ (t1))

∫ t

t1

(
1

r2 (s)

∫ δ(s)

s

n∑
i=1

ℛi (v) (1− P1 (ρi (s))) dv

) 1
α2

ds

Letting t →∞ and taking into count the condition 16 the last inequality leads to Limt→∞U2(t ) = −∞, a
contradiction unless Limt→∞U1(t ) = 0,which implies that Limt→∞ξ1(t ) = 0, Integrating the first equation from
t to δ(t ) to get

r1 (δ (t )) (U′1 (δ (t )))α1 − r1 (t ) (U′1 (t ))α1 =

∫ δ(t )

t

n∑
i=1

Qi (s)Gi (ξ2 (ρi (s))) ds

− r1 (t ) (U′1 (t ))α1 ≤

∫ δ(t )

t

n∑
i=1

Qi (s) λiξ2 (ρi (s)) ds

r1 (t ) (U′1 (t ))α1 ≥ −

∫ δ(t )

t

n∑
i=1

Qi (s) λi (1− P2 (ρi (s)))U2 (ρi (s)) ds

U′1 (t ) ≥ −λ
1
α1

(
U2 (ρ (t ))
r1 (t )

∫ δ(t )

t

n∑
i=1

Qi (s) (1− P2 (ρi (s))) ds

) 1
α1

Integrating from t1 to t to get

U1 (t )−U1 (t1) ≥ −λ
1
α1 (U2 (ρ (t1)))

1
α1

∫ t

t1

(
1

r1 (s)

∫ δ(s)

s

n∑
i=1

Qi (v) (1− P2 (ρi (s))) dv

) 1
α1

ds

Letting t →∞ and taking into count the condition (16) the last inequality leads to Limt→∞U1(t ) = ∞, a
contradiction unless Limt→∞U2(t ) = 0, which implies that Limt→∞ξ2(t ) = 0,
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Similarly, obtaining Limt→∞ξ1(t ) = 0.

Case 4. The proof can be treated in a similar way as in case 3. �

Applications: 4. Illustrative problems

Two examples are presented to illustrate the main results

Example 1: Consider the neutral differential system(
a
[(
ξ1 (t )+

1
2
ξ1 (t − 3π )

)′]1)′
= −

1
4

aξ1
2

(
t −

π

2

)
−

1
4

aξ1
2

(
t −

π

2

)
,(

b
[(
ξ2 (t )+

1
6
ξ2 (t − π )

)′]1)′
= −bξ1

1

(
t −

3π
2

)
−

1
6

bξ1
1

(
t −

5π
2

) , (21)

In this example α1 = α2 = 1,r1(t ) = a > 0,r2(t ) = b > 0 , P1(t ) = 1
2 ,P2(t ) = 1

6 , τ1(t ) = t − 3π, τ2(t ) =
t − π,Q1(t ) = Q2(t ) = − 1

4a, ρ1(t ) = ρ2(t ) = t − π
2 , σ1(t ) = t − 3π

2 , σ2(t ) = t − 5π
2 , G1(ξ2) = G2(ξ2) =

ξ1
2 , ℋ1(ξ1) =ℋ2(ξ1) = ξ1

1 , ℛ1(t ) = −b, ℛ2(t ) = − 1
6b. Let δ(t ) = 2t . To check the condition (16), note that

Lim sup
t→∞

∫ t

T

(
1

r1 (s)

∫ δ(s)

s

n∑
i=1

|Qi (v)| (1− P2 (ρi (v))) dv

) 1
α1

ds = lim
t→∞

∫ t

T

(
1
a

∫ 2s

s

a
2

(
1−

1
6

)
dv
)

ds = ∞,

Lim sup
t→∞

∫ t

t1

(
1

r2 (s)

∫ δ(s)

s

n∑
i=1

|ℛi (v)| (1− P1 (σi (v))) dξ

) 1
α2

ds = lim
t→∞

∫ t

T

(
1
b

∫ 2s

s

a
2

(
1−

1
2

)
dv
)

ds = ∞

So all the conditions of Theorem 1 are satisfied, and hence, according to Theorem 1, every solution of the system
21 either oscillates or tends to zero as t →∞. For instance the solution (ξ1(t ), ξ2(t )) = (sin t, cos t ), is such an
oscillatory solution. �

Example 2: Consider the neutral differential system(
t
[(
ξ1 (t )+ e−2ξ1 (t − 1)

)′]3
)′
= 64e−6 (4t − 1) ξ6

2 (t − 1)+ 128e−12tξ6
2 (t − 2) ,(

√
t
[(
ξ2 (t )+ e−3ξ2 (t − 3)

)′]3
)′
= 8

e− 3
2
√

t

(
2t −

1
2

)
ξ

3
2

1

(
t −

1
2

)
+ 8e−

9
2
√

tξ
3
2

1

(
t −

3
2

) , t ≥
1
4
, (22)

In this example α1 = α2 = 3,r1(t ) = t,r2(t ) =
√

t , P1(t ) = e−2,P2(t ) = e−3 , τ1(t ) = t − 1, τ2(t ) = t −
3, q1(t ) = 64e−6(4t − 1), q2(t ) = 128e−12t , ρ1(t ) = t − 1, ρ2(t ) = t − 2, σ1(t ) = t − 1

2 , σ2(t ) = t − 3
2 , G1(ξ2) =

G2(ξ2) = ξ6
2 , ℋ1(ξ1) =ℋ2(ξ1) = ξ

3
2

1 , ℛ1(t ) = 8 e−
3
2
√

t (2t − 1
2 ), ℛ2(t ) = 8e− 9

2
√

t . Let To check condition 5, note that

∫
∞

T

(
1

r1 (t )

) 1
α1

dt =
∫
∞

T

(
1
t

) 1
3

dt = ∞,
∫
∞

T

(
1

r2 (t )

) 1
α2

dt =
∫
∞

T

(
1
√

t

) 1
3

dt = ∞,

One can see that all the conditions of Theorem 2 are satisfied, so according to Theorem 2, each solution of the
system (22) either oscillates or tends to zero as t →∞. For instance the solution (ξ1(t ), ξ2(t )) = (e−2t , e−t ), is such
a nonoscillatory convergent solution. �

Results and discussion

The space of the functions Qi(t ) and ℛi(t ) were classified into two classes either Qi(t ) and ℛi(t ) ≥ 0 or Qi(t )
and ℛi(t ) ≤ 0 and obtain some conditions for oscillation of each solution of system 1. Through condition 5,
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14 possible cases were identified for the solutions of system 1 to oscillate or for these solutions to converge to
zero. As for condition 16, the 14 cases were reduced to only four cases in which the solutions were oscillatory
or convergent.

Conclusion

Several new sufficient conditions are introduced to ensure that every bounded solution of the system 1 either
oscillates or converges to zero as t tends to infinity. To this end, fourteen cases of a non-oscillating bounded
solution are discussed, and thus, under necessary and sufficient conditions, every possible bounded solution of
this system is guaranteed to oscillate. Some illustrative examples of the results obtained are given.
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نظام المعادلات التفاضلية  المحايدة نصف الخطية متذبذبة على الاغلب من 

 الرتبة الثانية متعدد المعاملات

 

 2حسين علي محمد  ،3فرح عبد الامير عبد الكريم   ،2تغريد حسين عبد  ،1نور عبد الامير عبد الكريم

 1 قسم هندسة الطيران، كلية الهندسة، جامعة بغداد، بغداد، العراق.

 2 قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.

 3 قسم الحاسوب، كلية التربية للبنات، جامعة بغداد، بغداد ، العراق.

 

 لسلوك المحاذي، نظام نصف خطي، معادلات تفاضلية محايدة، تذبذب، الرتبة الثانية.ا  الكلمات المفتاحية:

 ةالخلاص

إلى ما لا نهاية. ولتحقيق هذه   t ( إلى الصفر مع ميل 1تم تقديم عدة شروط جديدة كافية لضمان تذبذب أو تقارب كل حل محدود للنظام )

الغاية، تمت مناقشة أربع عشرة حالة لحل محدود غير متذبذب، وبالتالي، في ظل الظروف الضرورية والكافية، يتم ضمان تذبذب كل حل 

 محدود ممكن لهذا النظام. تم تقديم بعض الأمثلة التوضيحية للنتائج التي تم الحصول عليها.
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