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ABSTRACT

Suzuki used a brilliant strategy in his seminal publications to expand the Banach contraction theorem (BCT). This
has undergone numerous intriguing generalizations and extensions during the past few decades and led to a new trend
of coincidence and fixed points for countless Suzuki-type contractive and non-expansive maps in the various spaces. In
this article, in the setup of b-metric spaces, the aim is to produce a common fixed point of three mappings subjected
to a generalized contraction of the Suzuki type. The present work generalizes well- known results of Suzuki, Chandra
et al., Roshan et al. and several other results available in the literature. An applied illustration in which graphical and
computational analysis has been performed accords the exploratory verification of the produced work making the results
more adaptable by a wider class of researchers. The iterative analysis based on iterative methods in the illustration is
also supported by an algorithm. Furthermore, an application of the present work to the system of functional equations in
dynamic programming shows how the present results are usable. Finally, an example is given to justify the application
of the present work.

Keywords: Algorithm, b-Metric space, Common fixed point, Dynamic programming, Generalized Suzuki type contraction,
Iterative methods

Introduction

Fixed point theory itself is a very dynamic field of study having multiple dimensions of research in non-
linear analysis. It has various applications in mathematical sciences.»? A robust line of research in fixed point
theory was initiated as a consequence of the famous BCT.? By using different kinds of contractive conditions
in various domains, the BCT has been widely generalized and unified in different metric spaces by various
authors. “° Researchers have been enjoying fixed point theorems for the last quarter of the Twentieth century
under non-identical contractive and contraction conditions. Recently, Induwa et al.” presented a fixed point
(FP) result in geodisec space and Salisu et al.® in Hadamard space. Numerous applications can be made of these
generalizations in different diverse fields, viz., artificial intelligence, neural networking, dynamic programming
in computer science, robotics, fuzzy networking, physical and chemical sciences etc. °'! Suzuki'? used a clever
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strategy to generalize BCT in his illustrious publications which has led to a new trend of coincidence and FP
for countless contractive and non-expansive maps in the different spaces. 31>
Suzuki’s subsequent result generalizes BCT:

Theorem 1:"°Let (X, d) be a complete metric space (CMS) and G : X — X. Consider a non-increasing function
n: [0,1) — (3,1] defined by

1 ingsg@,

_J1=s o451 1
n(s) = slzs %flTSSSE’
s 1fﬁ§s<1.

Assume 3 s € [0, 1) so that
n(s)d (e, G(@)) < d(a,p)
implies

d (G (o), G(B) < s dap),

for all, B € X. Then G possesses a unique FPY. In addition, lim,_, ., G"(¢) = Y foralla € X.
Theorem 1 has now undergone numerous intriguing generalizations and extensions '°~'® during the past few
decades. One of them, which is due to Chandra et al.,'° is as follows:

Theorem 2:'°Define a function 1(s) as in Theorem 1. Let (X, o) be a CMS and G, 'H: X — X with the condition
that foralla, B € X,

n(s) min{g (o, G (@), ¢ (. H())} < o(a. B)
implies

0(G (@, H B)+0(G (B),H ()
2

max {0 (G (@).G (8)).0(H (), H (B)). <so(a.p).

Then, G and 'H have a unique common fixed point (CFP).

In 1989, a famous mathematician Bakhtin innovated the following Definitions 1 and 2 on b-metric space
(bMS), demonstrated BCT in these spaces, and subsequently various researchers gave their valuable results in
these spaces. 2%-2?

Definition 1: Let X represent a nonempty set and b > 1 is a real number. Consequently, o : X x X — RT
isab-metricon X, ifall o, B, ¥ € X,

() o(a, B) = 0iff o = B.
(i) o(a, B) = 0(B, @).
(iii) o(e,¥) <blo(e, B) + 0(B, V1.

The pair (X, o) is referred to as a bMS”.

Since a bMS is only a metric space (MS) if b = 1. It should be emphasized that in contrast to MS, the family
of bMS is bigger.

Prior giving our findings, list some fundamental information that will utilize later on. The concepts of
convergence and completion in a bMS are briefly summarized subsequently:

Definition 2: Assume that {a,} is a sequence in X and that (X, o) is a bMS, then

(1) {an} is b-convergent to o € X if lim,,_, o, o(an, @) = 0 holds.
(ii) {an} is b-Cauchy in X iff o(on, am) — 0 when n, m — oo;
(iii) X is considered to be b-complete if, in X, every b-Cauchy sequence is b-convergent.
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The sufficient condition for the Cauchyness of a sequence is given by Suzuki?? in the subsequent lemma:

Lemma 1:%’Let (X, o) represent a bMS with b > 1. Then {«,} is a b-Cauchy if
o (an, angp1) < A o (an_1,ay), forallne N, A € [0,1).

Remarkably, Lemma 1 can be highly beneficial in demonstrating the existence theorems in complete b-metric
space (C bMS).
Roshan et al.?® provided another significant Suzuki-type CFP result in the subsequent manner:

Theorem 3:%’Define a function n(s) as in Theorem 1. Let (X, ¢) beaCbMS and G, 'H: X — X with the condition
that forall o, B € X,

1

- n(s)min{o (o, G (@), ¢ (e, H@)} < o(a, B)

implies

max {o (G (@).G (B)).e (G («).'H (8)),e (H (@), H (B)).e (G (B).H (@)} < %@ (@,B).

Then, G and ‘H have a unique CFP.

Nowadays, researchers are enjoying Suzuki-type multivalued contractions in various metric spaces to obtain
different applications in various diverse spaces. ?4~2°

This research work aims to produce CFP results for three mappings satisfying a generalized Suzuki-type
contraction in BMS generalizing Theorems 1 to 3, and several others. A suitable example is given to verify
the veracity of the work accompanied by the proper graphical and computational analysis along with the
algorithmic scheme of the iterative process. An implementation of this work to determine whether a common
solution exists for a particular class of functional equations arising in dynamic programming shows the usability
of our work. An example is given to justify the application.

Results and discussion

The formulation of the main findings is covered in this section. The subsequent is the primary outcome:

Theorem 4: Define a function 1(s) as in Theorem 1. Let f,G , 'H : X — X be so that G(X) < f(X) and
'HX) € f(X), with the contractive condition

1

=) min {o (f (@), G (@), o (f (@), H(@)} < o(f(@), f(B) €))
implies

max {o (G (@), G (B)), ¢ (G (@), 'H(B)). ¢ (H(), H(B)), ¢ (G (B). H()} < t%Q(f(oz), fB), 2

forall ¢, B € X. If any of f(X), G(X), or HX) is a b-complete subspace of X and f commute with both G and
'H. Then f, G and 'H have a unique CFP.

Proof: Construct two sequences {«,} C X and {8, = f(an)} € f(X) as follows:

f (@2n+2) = G (a2n11) and f (@2n41) = H(a2q) -

Now, demonstrate that for eachn ¢ N

o (f (ans1), f (@n)) < 2o (f (@), f (@n-1)), 2 € [0, 1).
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Since, £ n(s) min{o(f(azn-1), G(@an-1)), 0(f(a2n), Hlez2n))} < o(f(azn-1), f(@2n)), s0 Eq. (2) implies that

, 0 (G (a2n-1), G (e2n)), o(G (2n-1), H(er2n), }
0 (G (a1, Hiem) = max{a(’H(am_l), H(azn)). 0 (G (2n). ‘H(ot2n-1))

Y%Q (f (@2n-1). f (@20)) -

IA

Therefore,
o (f (@an), f(aami1)) < ,E%Q(f (e2n-1). f (@2n)). 3)

Similarly, this demonstrate that

o (f (@2nt1). f(02n12)) < ,E% o (f (@2n). f(a2n41))- 4

Egs. (3) and (4), lead us to the deduction that

0 (f (ams1). f (@) < ég (f (@n). f (@n-1)) .

Since bs—z € [0, 1), therefore {8, = f(ayn)} is a b-Cauchy sequence, by Lemma 1. So it has a limit, let it be §,
so that 8, = f(an) — §,so3IsomeY¥ e X sothat f(¥) =
Since f(an) — f(Y¥), 3 np € N such that

1
e (f(¥). f ) = gpe (F(¥). f(B)) for (B) # £ (¥).n = no.
Then, as in Singh et al.?”

o (f (@2n-1), G (a2n-1)) < o (f (@2n-1), f(2n))
blo (f(e2n-1). f (¥)) + o(f (¥). f(a20)]
bE e (fB). fF(¥) = Fe(fB) £(¥))

[e(F® £ - Ro(F @ £Y)]

3b Q
o(fB), f(¥)—Dbo(f(¥), f(azn-))
bo(f (¥). flaan-1))+ bo(f(xan-1). f(B)) — bo(f(xan1). f(Y¥))
b o(f(a2n-1). f(B)).

n(s) o (f (@2n-1), G (@2n-1))

I IAIA I/\

IA IA

Therefore,
1
37 () 0 (f (@2n-1). G (e2n-1)) <o (f (@2n-1). f(B)). (5)

Now, either o(f(ean-1), Glazn-1)) < o(f(B), 'H(B)) or o(f(B), H(B)) < o(f(ean-1), G(azn-1)).
In either case, by Eq. (5) and the given hypotheses, yield

0 (f (a2n), 'H(B)) < max {o (G (@2n-1), G (B)), 0 (G (@2n-1), H(B)), 0 (H(a2n-1), 'H(B)), 0 (G (B), H (1)) }

= o (F ). F(B) = e (F (Y). FB)).
Thus,

o (F(¥), H(ﬁ))s% (f (¥), £(B))forall f(B)+# f(Y). 6)
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S

Similarly o (f (¥), G (8)) = o (£(¥), f(B))forall £(B) # f (V). 7)

Let us demonstrate that f(¥) = § is a FP of f.

In the case when #{n : o(f(a2n), 'H(e2n)) > o(f f(a2n), f(a2n))} = 00, 3 a subsequence {az,,} of { azn} such
that

@ (f (Olznj), 'H (Olzn}-)) > (ff (“2”1)’ f(Olan))-

Thus o(f(8). 8) = limo(f f(@2n), 8) = b lim {o(f f(ezn,), f(@t2n,)) + 0(f (@t2n,), 8))
blim {¢ (f (ezn,). H (@an;)) + 0 (f (22ny). 8)}
blim {o (f (azn). f (@any,a)) + 0 (f (e2n). 8)}]1
= 0.

A

This gives § = f(6).
On the other side, if #{n : o(f(a2,), H(az2n)) > o(ff(a2n), fla2n))} < o0, 3Ivy € N so that

0 (f (a2n). H(wzn)) < (ff (@20). f (a20)) ¥ = vs.

That is, Z2min{o(f(e2n). H(e2n)). 0(f(@2n). G (@2))} < o(f(erzn). Herzn))
< o(f f(azn), fler2n)).

So,

, , 0 (H(azq), Hf (a2n)). 0 (G (a2n). G f (a2n)). $
Q (H (ct2n), Hf (052n)) =< max {Q ('H (atn), Gf (OlZn))v 0 (Gr (azn), ‘Hf (aZn)) = E?Q (ff (a2n), f ((in)) .

Thus,

o(f(agnt1), fflaznt1)) < o(H(a2n), fH(a2,)) = 0(H(e2n), Hf (a2r))
= S o(fflm) f@m) = () o (ff (@) f o),

and hence lim;,_, o, 0(f(en), ff(a,)) =0 implies § = f(§), that is § is the fixed point of f in both cases.
Since

% min{o(fH1(8), H'(8)), o (fH*"1(8), TH1(8))} < o(FH"1(8), H'(8))
= o (fH™ (8), H'f (8)) = o (fH" (8), FH"(8)).

From the given assumption,

o (H"(8), 'H™' (8)) = o (HH"'(8), 'HH"(5))
o (G'H™ 1 (8), G'H" (8)), o (HH™ ! (8), 'HH" (8)),
o (G'H™1 (8), 'HH"(8)), o (HH™1 (8), G'H" (8))

< %g (FH1(8), fHA (8)) = %Q (H=1f (8), 'Hf (8)) = b%g (H=1 (), 'H" (5)) .

< max{

That is s
o (H'(8), H"' () < 50 (H* (8), 'H" (5)) - (€))
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So, by using Eq. (8),
nn myn+1 S\" ’
o (H'(®). H™ (®) = () e (' HE)). ©

Next, to demonstrate 8 is FP of 'H and G, consider the following cases:

Case-I. When 0 < s < @ , Note that s> + s — 1 <0 and 2s% < 1.
Our aim is to prove

n(s)o (’H’H (), 'HHH (6)) <o (’H’H ), 8) . (10)
If not, then since o('(HH(8), §)< o(HH(s8), 'HHH(S)), by Eq. (9)

o (H(5). 8§) =Db[e(H(), HH(8))+ o (HH(), 3)]
< bo (H(8), HH(S)) +Db o (HH(S), 'HHH(S))

2
b 0 (5 H(®) +5(:5) e (6 H®)
(s2+5) o (5, 'H(®) < 0(5,'H(3)),

IA

IA

a contradiction. Thus Eq. (10) holds.
Hence

n()e(fFHH(S), 'HHH(S)) = n(s)e(HHS(8), 'HHH(S))
n(s)o (HH(8), 'HHH(9))

o (HH (), )

o (HHf (8), f (8)) = o (FHH(8), f (8)) .

Al

So by the given assumption

o ("HHH (5), 'H(®))

IA

max {o (GHH(5), G (8)), o ("HHH(8), 'H(8)). o (FHH (), 'H(8)). o (HHH (). G (8))}

= Se(FHHE). f() = So(HHE), ). an

Using contradiction as our argument, Suppose 'HH(S) # §.
Then note that fHH(S) # § and f'H(8) = 'H(§) # 3.
Using Egs. (6) and (7),

o (8 HHH(®) = o (5. FHHE) = o (0. HH®) < 5.0 (3. FH())

(biz)zg (8./H(5)) . (12)
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Here,
0(8, 'H($)) < ble(s, HHH(S)) + o(HHH(S), 'H(8))]

2
=b.(3) e( HE)+ b5 o (HHE), 9)

= 2% 0 (8, 'H (8)) < 2520 (8, 'H (8)) <0 (8, 'H (8)).

This is a contradiction. Thus 'HH(§) = §. s
By Eq. (9), o(H(8), 8) = o(H(8), 'HH(S)) < b—29(8, "H(8)), which implies 'H(§) = §.

Analogously G(8) = 6.

Case-II. When ¥5-1 -1 <s< J_i’ Note that 252 < 1.
If Eq. (10) does not hold, then from Eq. (9)

0 (8, 'H(®)) <bo (s, 'HH(S)) + o (HHs, 'H(8))]
< b.n(s) o (HH (5) 'HHH (8)) +b. o (HH(8), 'H(8))
= 50 (6. H®) + {0 (8. H@®) <o (8. H()).

Thus o(8, 'H(S8)) < o(8, 'H(8)).
This is in conflict with itself. Thus Eq. (10) holds, as in the case-I, 'H(§) = §. Analogously G(8) =8.

Case-III. When \/Li
Now, our aim is to show o(G(Y), 'H(8)) < r%Q(f(Y), f(8)).

Assume that f(8) # f(¥). Then foreachn € N, 3¥, € 'H(B) in such a way that

<s<l1

o (f (¥).¥) = 0 (F (%) HB) + -0 (£ (8. £ (V).
Therefore,

o (F(B), H(B) <o(fB) ¥a) <blo(F(B) £(¥) + o(f(¥), ¥n)]

ble (f(B). £(¥) + o (f(¥). H(B) Er %)Q(f(ﬂ) F)I
b(1+3)e (£, f(¥) +b 2Q(f(/3) F¥))
b(L+s+3)e(fB).f(Y)).

Hence, o(f(8), H(B)) < B(1 +s)o(f(B),8) =b(1 +s)e(f(B), f(6)).

Now, either o(f(8). G(8)) < o(f(B), H(B)) or o(f(B), 'H(B)) < o(f(8). G(5)).

This gives, min{o(f(8), G(8)), o(f(B), H(BN} < o(f(B),'H(B)) < b1 + $)o(f(B), f(8)).
In other words, %77(8) min {o(f(8), G(8)), o(f(B), H(B} < o(f(B), f(8)).

So Eq. (2) implies

IAINIA

max {¢ (G (8). G (8)). ¢ (G (B),'H(8)). o (H(B). 'H(8)). 0 (G (8). H(B))} < % (B, £(8)).
Now taking 8 = aap,

0 (G (8). H(azn)) =max{o (G (az2n). G(8)). o (G (e2n). 'H(®)). o (H(azn). H(3)). o (G (). H(az))}
< o (f (e ),

lettingn — oo,
0 (G, f(®) < —g (5. f(®) =

This gives, o(G( 8), f(8)) = 0.
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Thus, f(8) = G(5).

Analogously, f(§) = 'H(S).

Thus § = f(§) = G (8) = 'H($), in each of the three cases.

To demonstrate the uniqueness of the CFP § to finish the proof, assume 6 to be another CFP of f, G and 'H.

Since 1(s)o(f(8), 'H(8)) =0 < o(f(8), f(6)).

So, by the assumption,

o (H(®), H(®)

max {o (H(8), G (8)), o (H(8), H(6)), ¢ (G (5), G (6)), o (G (5), H(®))}
t%Q(f(cs), f(©)

= %Q (8,0) < 0(8,0)and hence § = 6.

(s, 0)

IA

IA

Corollary 1: Theorem 3.

Proof: Theorem 4 directly yields the outcome when f = I.

Corollary 2: Theorem 2.

Proof: Theorem 4 directly yields the outcome when f = Iand b= 1.
Corollary 3: Theorem 1.

Proof: Theorem 4 directly yields the outcome when'H = G, f = Iandb = 1.

Corollary 4: Let (X, o) bea CbMS and g, G, H : X — X satisfying
Lymin{o (o gH@). o & @)} = ol H)

implies

max {0 (G («), &G (B)). o (¢G (@), gH(B)), o (gH (). gH(B)), o (¢G (B), gH())} < bi o(a, B),

for all o, B € X. Also, if g is one to one, §G = Gg and gH = 'Hg, then the mappings g, G, ‘'H have a unique
CFP in X.

Proof: By Corollary 1, gH, gG have a single CFP § € X, then, gG(8) = gH (8) = 4, since g is one to one it
follows that G(8) = 'H(8) and

1
0 = =n(s)min{e(s, gH($)), o5, gG(8))} < 0(5, 'H(5)).

Consequently,

o (5. 'H(8)) <max{o(gG(8). gG'H(3)). o (G (8). gH? (8)). o (§H(S). gH? (8)). o (sG'H(S). gH ()}
= max {0 (§G (8). GEH(5) ), o (§H(), HgH(3) ). 0 (gG (8), HgH(8)). o (GgH ()., gH(3))}
= max {0 (5, G (8)). ¢ (8, 'H)), o (8 H(®). 0 (G ©), 8)}
< £o (8, 'H()).

it follows that 'H (§) = G (8) = 8, hence, g(§) = g'H(8) = 3.
Corollary 5: Let (X, o) beaCMS and g, G, 'H: X — X satisfying the following contractive condition

n(s)min {o (o, &G (@), ¢ (o, gH(@))} < o (@, B)
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implies
max {o (G (), &G (B)). o (&G (@), gH(B)). o (§H (@), gH(B)). o (&G (B), gH(x))} < so(a. B).

for all @, B € X. Also, if g is one to one, gG = Ggand gH = 'Hg, then g, G, 'H have a unique CFP in X
Proof: Corollary 4 directly yields the outcome when b =

Theorem 4 is demonstrated by the illustration given below:
Example 1: Take X = [0, o). Defineo : X x X — R by

a=p,

Q(aﬂ) {(C{-'-‘B)Z Ol?é,B

for all o, B € X. Then (X, ¢) is a CbMS for b = 2.
Consider f, G, 'H : X — Xby

fla)= % G(a)=In <1 + 4%0[) and H(a) = In <1 + SL\/EO[)
forall « € X. Then forall o, B € X,

2
24ln(l1+ ——= ,
1n(s) min {o (f (@), G (@), o (f (@), H(@)} =1i.lmin {<2 ( Wa))z]

_l’_
2 2
= 3(s+ame) =4(3+am) @
< je? < i@+ B =d(f @, f(B)),

and

max {o (G (), G (B)), o (H(«), H(B)), ¢ (G (), 'H(B)), 0 (G (), H ()}

(81%0[ + ﬁiﬂ)z
(50 + 158) 1 1\
=< max w2i Az 2( = (—Ot + —ﬁ)
(s + ﬁiﬂ)z 4V2 4V2
(732 + 528
1 2
[z +n)
1 1 211
_3—2(054',3)2_—4(05"',3)2 3% Z(“‘i‘ﬂ)z Q(f(a)af(ﬂ))~

Since all the hypotheses of Theorem 4 are met; therefore the mappings f, G and 'H have a CFP in X .

The index clearly shows that the blue line represents the line y = x, whereas, black, green, and red lines
represent the functions f, G and 'H, respectively. Clearly, Fig. 1 suggests that the mappings f, G, and 'H have
a unique CFP 0, which is intersected at the origin by the curves of these three mappings and the liney = x.

Table 1 gives us the complete computational analysis of the iterations generated in Example 1. As a matter
of fact, the proof of Theorem 4 demonstrates that f(aoni2) = G(aans1) and f(azni1) = ‘H(az,), which simply
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Table 1. Computation analysis of iterations using software MATLAB.

Steps a; f(ai) 'H(ai) G(a)
I | @=10.000000 | 5.000000 0.442130
2 | = 0884259 0.442130 0.118143
3| a=0236286 0.118143 0.017772
4 | ay=0035544 0.017772 0.005424
5 | as=0010847 0.005424 0.000832
6 | as=0.001664 0.000832 0.000255
7 | as=0.000511 0.000255 0.000039
8 | a=0.000078 0.000039 0.000012
9 | as=0.000024 0.000012 0.000002
10 | a=0.000004 0.000002 0.000001
11 | aw=0.000001 0.000001 0.000000
12 | an=0000000 | 0000000 0.000000
13 | an=0000000 | 0000000 0.000000
14 | @3=0.000000 |  0.000000 0.000000

means that

f(a2) =G (a1)andf (1) = H(xo).
f(as) =G (as)and f(as) =H(az2)
f(as) =G (as)andf (as) = H(as),
f(ag) =G (a7)andf (a7) = H (), and so on.

For the purpose of experimental verification of the above suggested iterative scheme, MATLAB software is
used. On taking the initiator x (that is, an initial value of x or, can say «) to be 10, the numerical values of the
above suggested iterative scheme are obtained in Table 1.

Now elaborate on Table 1 as per the below-mentioned steps:

Step 1 suggests that for the initial value of x that is ¢ (as chosen in the proof of Theorem 4), that is, the
initiator is 10.000000 at which function f takes the value 5.000000 and 'H takes 0.442130.

Step 2 suggests that the value of the next iteration, that is, o7 is 0.884259, for which f assumes the value
0.442130 so that f(;) = 'H(ao), is verified. Again, at o1, G assumes the value 0.118143.

Step 3 suggests the value of «; which is 0.236286, for which f assumes the value 0.118143 so that f(az) =
G (o) is verified. Moreover, at a5, the function ‘H takes the value 0.017772.

This process continues in the successive steps and using Table 1, In general, it may be confirmed that
flazni2) = Glazni1) and f(azni1a) = Hlazn) forn > 0.
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Fig. 1. lllustrates the graphical representation of Example 1.

Steps 12, 13, and 14 suggest that
f(a12) =G (@11) = 0.000000 and f (a13) = H(a12) = 0.000000.

Interestingly, a11 = a2 = o3 = 0.000000, for which f(alz) = G(an) = 0.000000 and f(Ol]g) =
‘H(a12) = 0.000000. Hence, it can be concluded that O is the CFP of the mappings f, G and 'H, which indeed
is unique.

Algorithm 1 is used for the generation of iterations in Table 1 as under:

Algorithm 1: for generating the iterations.

Input: f(e) = 3; 'H(e) = In(1 + ﬁ@ «); Gle) = In(1 + ﬁi «); ol—initial guess; itr—maximum
number of iterations; Assign tol = 1e — 7 (allowed error for convergence of sequence); Assign a(1) = 1.
Output: CFP of mappings f, G and 'H.

1.fori=2:itr

2 if mod(i, 2) == 0 then

3 a() =2 G (a@i-1))

4 if abs(a(i) — x(i— 1)) < tol then
5. break

6. end if

7 print values of i, «a(i), f(«(i)), 'H(x(i))
8 end if

9. else

10. a(i) = 2 * 'H(a(i - 1))

11. if abs(ee(i) — (i — 1)) < tol then
12. break

13. end if

14. print values of i, a(i), f(a(i)), G(a(i))
15. end else

16. end for

Remark 1: Roshan et al.?* provided an example where they used i (s) = 1/2. But 1/, does not fall under the
co-domain of the definition of .
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Application to dynamic programming problem

Here, the focus is to yield the application of the work done by us in the previous section to the dynamic
programming problem. Take X as Banach spaces such that A, B C X. Let R represent the field of real numbers
and consider the mappings ¢ :AxB—>Aandp, q: Ax B—>Rand S, T1,T>: A x BxR — R. Consider A as
the state space and B as the decision space, the dynamic programming problem reduces to the solution of
functional equations;

u = %ug P, B+ Ti (o, B,ui (¢ (a, B)))}, ¢ €A, i=1,2. 13)
V= ;qu {q(o, B)+S(a, B,v (¢ (o, BN}, a € A. a4

There are some functional equations that naturally arise in multistage processes.'° In this section, our aim
is to investigate the common solution of Egs. (13) and (14).

Consider B(A) = {m: m is bounded real-valued function on A}. For any m € B(A), define |m| =
Sup,4 Im(a)|?. Then (B(A), |.||) is a Banach space.?® Considering the aforementioned conditions to be true:

®P-1)S, T1, T;, pand q are bounded functions.
(bP - 2) Take 7n(s) as defined in Theorem 1. Suppose 3s € [0, 1) so that for all (o, B) € A x B, m, n €
B(A)andt € A,

%n () min {|[Jm (t) —Jm @©I?, Un(t) —Ln©?} < Jm @) —Jn (@)
implies

< 2 um®) —Jn®

max { ~ p2

1Ty (&, B, m(@)) — T (e, B, n(E)I?, |Th (e, B, m(8)) — T (o, B, n(t))ﬂ}
Tz (o, B, m () — T (&, B, n(EDI?, T2 (@, B, m(£)) — Ti (o, B, ()

where J;, J2 and J : B(A) — B(A) have the following definitions:

Jm(a) =sup{p(a, )+ Ti(a, . m( (a, B))}, 0 €A meB(A),i=1,2.
BeB

Jm (a) =Zqu{q(a,ﬂ)+S(a,ﬂ,m(§ (@, )}, a € A, meB(A).

(PP - 3) For all m, n € B(A), 3x, y € B(A) so that
Jm(a) =Jx(e¢) and Jon(a)=Jy(a),a €A.

PP -4)3Im, necB(A) so that
Jm(a) =Jym(«) implies JJim(a) =JiJm(a)
and Jn(a) = Jon(e) implies JJyn(a) = JoJn(a).

Theorem 5: Let us assume that (PP - 1) to (PP - 4) are true and J(B(A)) be closed and subspace of B(A). Then
Eq. (13),i=1, 2, and Eq. (14) possess a unique common solution in B(A).

Proof: For any m, n € B(A), let o(m, n) = sup{|m(«) — n(a)? : « € A}. Then (B(A), o) is a CbMS. Let ¢ > 0
be a given and m;, my; € B(A). Take « € A, and choose 81, B2 € B such that

Jimj < p(O[, ,Bj)+Ti(o:,,3j,mj (Olj))-‘ré‘, i=1, 2, (15)

where oj = ¢ (a, B)).
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Further,
Jimy = p(a, f1) + T (@, f1.my (1)), (16)
Joma = p(a, f1) + To (. f1. ma (1)), 17)
Jimy = p(a, f1) + T (. B1, ma (a2)), (18)
Jomy = p(a, B2) + T2 (a, B2, My (a1)). (19)

Therefore, the first inequality in (P - 2) becomes
1
37 () min {[Jmy — Jymy |?, [Jmy — Joma|?} < [Jmy — Jmy/?, (20)

and this together with Egs. (15) to (20) implies
Wamy —Jomz|? < |Th (&, B1,my (@) — Tz (&, B1, ma (e)) + el
Since ¢ > 0 is an arbitrary positive real number, so

lhimy — Joma|* < |Th (@, 1, 1 (1)) — Tz (@, B1, M2 (@1))]?

S 21
< S lmy - JmyP. 1)
And,
s
limy — Jimp|* < E?Uml — Jmy)?. (22)
s
lJamy — Joma|? < = |Jmy — Jmy)?. (23)
b2
s
limy — Jomy|? < S |Jmy — Jmy|?. 24
b2

As Egs. (21) to (24), holds for all @ € A, taking supremum, and from Egs. (20) to (24), that

s

o (Jimy, Jomy) < 2@ Umy, Jmy),
s

o (Jimg, Jom;) < 2@ my, Jmy),
s

o (Jimy,Jimy) < 2@ my, Jmy),

s
o (Jomy, Joamy) < 2@ Umy,Jmy).
Therefore,
1 .
U (s)min {o (Jmy, Jim1), o (Jmz, Joma)} < o (Jmy, Jmy)
gives

s
max {o (J1imy, Jomy), ¢ (Jimy, Jomy), ¢ (Jimy, Jimy), ¢ (Jomy, Jomy)} < 2@ Imy, Jmy)
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As a result, Theorem 4 is applicable, where J, J; and J, correspond to the mappings f, G, and 'H respectively.
Consequently, J, J; and J; have a unique CFP w*, in other words, w*(«) is the unique bounded common solution
of Egs. (13) and (14),i=1, 2.

To illustrate Theorem 5, an example is provided below:

Example 2: Take X = R be a Banach space with the norm ||.|| specified as |«| = ||, ¥ « € X.

Take A =1[0,1] c X as state space, and B=[0,00) C X as decision space. Consider ¢:A x B —
Abyi(a, B) = 57, « €A, BEB.
For any m, nin B(A) and i = 1, 2, define y;, 2: A — R by

yil@) =z(@) = o®+ g

Define T;, S : AxB xR — Rby

Ti ( = « in (P 3),i=1,2
e B _§[(oz+2)(ﬁ+1)sm(ﬂ+1>+ }’l_ o

3
S(x, B,t) = gsin t.

Take p(«, B) = %and qla, B) = %.

Notice that Ty, Ts, S, p, and g are bounded.
Also, for any @ € A and m, n € B(A)

3
Jm(a) = ;ug{q(a,ﬂ)JrS(a,ﬂ,m(c (o, BN} =’ + g = Yil@)=z(a)

3
Jn (a) zzug{q(a,ﬂHS(a,ﬁ,n(C (o, )} = o® + g = 2@

3
Jlm(a) = %ug{p(oh /3)+T1 (0[7 ﬁvm(é‘ (Ol, ﬂ)))} = a3 + g»

3
Jon (o) = ZULB) P, B+ (e, B,n(¢ (@, B} = a® + 3

3
Jin(@) = Jom(a) = a® + 3

Now,
%n (s)min {|Jm (£) = Jim )%, 1n () = Ln(@©F} = 0 = [Jm (&) — Jn(©)>.
Thus,
%n ($)min {|Jm (t) —im (O, Jn(t) — Jn (O} = m () - Jn(@©)]*
implies

Ty (@, B,m (1) = To (o, B, n ()N |Ti (o, B,m () = Ty (a,ﬂ,n(t))|2,} _ 0 < Sum@ — @)

max{ Ty (o, B.m(£)) — Ty (o, B. ()2, | Ta (. B, m (D)) — T (e, B, n (D)) =

Eventually, for any m, n € B(A) with Jym = Jm,
Jidm = y1 (o) = 2(a) = JJm = JJym,
that is, JJym = J,Jm, and with Jon = Jn,
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JoJn = yo(a) = 2(w)= JJn = JJon.
Thus, all of the conditions of Theorem 5 hold. Therefore, the solution of Egs. (13) and (14) is unique in B(A).
The following results are the direct consequences of Theorems 4 and 5:

Corollary 6: Considering the conditions from (PP - 1) to (PP - 4) to be true with:

(i) T1, T> and p are bounded functions.
(ii)) For0 <s < 1andV (¢,8) € AxB,mneB(A), t €A,
£ n(s) min{|m(t) — Jim()[?, |n(t) — Jon(®)|*}< [m(t) — n(c)[?

implies

|T1 ((X, ﬂ’ m(t)) - T2 ((X, ﬁ? n(t))|27 |T1 (Ol, :37 m(t)) - Tl ((X, ﬂv Tl(t))|2,} < bs2 |m(t) _ n(t)|2.

max{ Ty (e, B. M (D) — T (o, . (O T (o p.m () — Ty (o, f (O | = B2

where J; and J> have the following definitions:

fora e A,me B(A),i=1,2;Jm(a) =sup{p(x, B)+ T; (o, B,m( («, B)))}.
peB

Then the solution of Eq. (13) for i = 1, 2 is unique in B(A).
Proof: Theorem 5 directly yields the outcome when ¢ =0, ¢ (¢, 8) = « and S(¢, 8,t) =t.

Corollary 7: Considering the conditions from (PP - 1) to (PP - 4) to be true with:

(i) 'H and p are bounded functions.
(ii)) ForO0 <s < 1andV (a,B) € Ax B,m,n € B(A),t € A,
£ n(s) [m(t) — Jim(t)|?* < [m(t) — n(t)|* implies

IT (o, B,m () = T (o, B, n (O < bizlm(t) —n@)

where J; has the following definition:

fora € A,me B(A); Jim(a) =sup{p(a,B)+T (o, 8. m(¢ (x,¥)))}
BeB

Then the solution to the system of Eq. (13) with T;= T, = T is unique in B(A).
Proof: Corollary 6 directly yields the outcome when T;= Ty = T.

Conclusion

This study has successfully extended the Suzuki-type contraction framework to a more generalized form,
facilitating the identification of common fixed points for three mappings in b-metric spaces. Under Suzuki-type
contraction, we demonstrated how our obtained results could be applied to solve specific classes of functional
equations in dynamic programming. Our approach included detailed graphical and computational analyses,
along with an algorithmic iterative process, which provided a robust verification of our theoretical findings.
This work not only generalizes the results of Suzuki, Chandra, et al., and Roshan et al., but also makes these
results more accessible and adaptable for a broader audience, enhancing their practical utility in various
mathematical and computational fields. The work presented here opened the way for future research and
applications in the realm of fixed point theory and dynamic programming.
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