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Abstract :  

This paper discusses and assesses diverse deep learning architectures to classify 

cardiac magnetic resonance (CMR) images to hypertrophic cardiomyopathy (a 

kind of heart disease). The study employs a relatively big sample size of 59,145 

images of both the healthy persons and those diagnosed with hypertrophic 

cardiomyopathy and combats the class issue by applying stratified sampling and 

accurate assessment methods. Preprocessing to be done on the images included 

resizing in 224 x 224 pixel size with preservation of aspect ratios, normalizing 

pixel intensities to range [-1.0, 1.0], and data storage format with HDF5 to speed 

up the training process. Rotation, translation, zooming and horizontal flipping were 

performed in real-time to augment data in an attempt to generalize.Several 

architectures were evaluated, and they included classic CNN structures to more 

advanced Swin Transformer based, with some with a combination in which the 

Swin Transformer is integrated excluding the embedding and patch embedding 

layers. Findings indicated that the MobileNetV2 with Swin Transformer (without 

embedding and patch embedding) attained the best accuracy of 96.22 percent. This 

detailed paper underlines the importance of proper model selection and 

architectural design to enhance the accuracy of the disease classification of 

cardiomyopathy based on CMR data, which would finally lead to better early 

disease screening machines and medical decision support. The discovery sets the 

path to the development of more effective and reliable models with which 

healthcare can be advanced. 

 Keywords: DenseNet121, Swin Transformer(without embedding and patch), 

CMR, CNN, Transfer Learning. 
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 ذُالش هزِ انىسلح انثحثُح وذمُُىّ تًُ انرؼهى انؼًُك انًرُىػح نرظُُف طىس انشٍَُ انًغُاطُسٍ نهمهة ملخص:

(CMR)  ٍَىع يٍ أيشاع انمهة(. ذسرخذو انذساسح ػُُح كثُشج َسثُاً، إنً اػرلال ػضهح انمهة انضخاي(

طىسج، لأشخاص أطحاء ويُشخظٍُ تاػرلال ػضهح انمهة انضخايٍ، وذؼانح يشكهح  541145ذثهغ 

انرظُُف يٍ خلال ذطثُك أخز انؼُُاخ انطثمٍ وأسانُة انرمُُى انذلُمح. ذضًُد انًؼاندح انًسثمح نهظىس 

تكسم يغ انحفاظ ػهً َسة انؼشع إنً الاسذفاع، وذطثُغ شذج انثكسم إنً  224×  224ذغُُش حدًها إنً 

نرسشَغ ػًهُح انرذسَة. أخُشَد ػًهُاخ انرذوَش  HDF5 [، وذخضٍَ انثُاَاخ تاسرخذاو1.1، 1.1-َطاق ]

وانركثُش والاَؼكاط الأفمٍ فٍ انىلد انفؼهٍ نضَادج انثُاَاخ فٍ يحاونح نرؼًًُها. ذى ذمُُى انؼذَذ يٍ  وانرحىَم

الأكثش ذطىسًا، يغ ديح  Swin Transformer انكلاسُكُح وطىلًا إنً تًُ CNN انثًُ، تذءًا يٍ هُاكم

 ُرائح إنً أٌ ًَىرجتاسرثُاء طثماخ انرضًٍُ وانرضًٍُ انشلؼٍ. أشاسخ ان Swin تؼضها يغ يحىل

MobileNetV2 يغ يحىل Swin  96.22)تذوٌ انرضًٍُ وانرضًٍُ انشلؼٍ( حمك أفضم دلح تُسثح  .%

فظهح أهًُح اخرُاس انًُىرج وانرظًُى  ًُ ُاسة نرؼضَض دلح ذظُُف  انهُكهٍذثُشص هزِ انىسلح انثحثُح ان ًُ ان

انًغُاطُسٍ انمهثٍ، يًا سُؤدٌ فٍ انُهاَح إنً يشع اػرلال ػضهح انمهة تُاءً ػهً تُاَاخ انرظىَش تانشٍَُ 

ذطىَش أخهضج فحض يُثكش نهًشع ودػى انمشاساخ انطثُح. ًَُهذ هزا الاكرشاف انطشَك نرطىَش ًَارج أكثش 

 فؼانُح ويىثىلُح ذًُكٍّ يٍ ذطىَش انشػاَح انظحُح.

1. Introduction 

Hypertrophic cardiomyopathy (HCM) is a hereditary heart disease which involves 

thickening of the left ventricular myocardium resulting in poor blood flow, 

arrhythmia, and sudden death heart attack in certain situations. Symptoms of 

patients include chest pains, chest dyspnea, fainting, predisposed heart murmur, 

and palpitation. HCM is strongly underdiagnosed as about 80-90 percent of cases 

do not get noticed, which makes HCM a growing global burden because it is seen 

in up to 200 cases per 100,000 people[1]. 

An early and proper diagnosis of HCM is vital to treatment, risk avoidance, and 

fatalities. The echocardiography and cardiac magnetic resonance imaging (CMR) 

are the most widely used to diagnose myocardial morphology and functioning. Of 

these, CMR has become the gold standard because it has better imaging of the 

myocardial fibrosis, wall thickness and microscopic phenotypic characters that can 

be missed in other next modalities. In addition, CMR will eliminate the invasive 

procedures like biopsies[2]. 

These developments notwithstanding, the manual interpretation of the CMR 

images is still time-consuming and subjective. Recently, artificial intelligence (AI) 

and deep learning (DL) in specific have transformed the way medical imaging can 

be analyzed and have introduced automated methods of assessing, segmenting, and 
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classifying cardiac diseases. Transformer and convolutional neural network (CNN) 

designs have proven to be exceptionally effective when dealing with the 

identification of pathological features directly in the imagery data, increasing the 

findings that can be prosecuted in diagnosis and clinical decision-making[3]. 

With the complexity and the heterogeneity of the cardiomyopathies that are divided 

into dilated, hypertrophic and restrictive cardiomyopathies, objective based image-

based classification is a critical problem. The proposed study will fill the gap by 

comparing and contrasting the effectiveness of different deep learning models, 

namely, CNN, DenseNet121, MobileNetV2, and Xception along with their hybrid 

versions that incorporate the Swin Transformer (no embedding or patch 

embedding) and binary CMR dataset of large scale. The issue examined in the 

study is the influence of model architecture and transformer design on improving 

classification accuracy to enhance early identification of patients with HCM and 

cure their condition better[4,5]. 

To enhance the clinical and visual comprehension of HCM, the anatomical 

distinctions of a healthy heart as compared to a heart with hypertrophic 

cardiomyopathy will be described and detailed in figure -1. The figure clearly 

shows the thickened ventricular septum and reduced left ventricular chamber size 

in the HCM heart, which are among the key features targeted by deep learning 

models in CMR image classification[6]. 
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Figure 1: How the heart with Hypertrophic Cardiomyopathy (HCM) and a healthy 

heart differ anatomically. 

2. Related Work  

Kolluri and Hathwar (2024) suggested that two deep learning models were 

produced to aid hypertrophic cardiomyopathy (HCM) diagnosis with cardiac 

magnetic resonance (CMR) and electrocardiogram (EKG) data. Both convolutional 

neural network (CNN) and bidirectional long short-term memory (LSTM) 

networks were suggested as the models to be applied to the automatic classification 

of CMR images and EKG signals, respectively. They have a high performance 

measure in the CNN model with an accuracy of 94.71% and a precision of 96.97% 

with a recall of 91.21 and the F1-score of 94.85%[7]. 

Agibetov et al. (2021) suggested completely automatic diagnostic system to 

identify cardiac amyloidosis (CA) based on the convolutional neural network 

(CNN) learning the cardiac magnetic resonances (CMR) images. Three deep-

learning approaches were tested: feature learning, performing training without any 

initializations, and fine-tuning of pretrained VGG16 model. The outcomes 

indicated that the trained CNN with LGE images had the highest performance with 

ROC AUC of 0.96, sensitivity of 94% and the specificity of 90 which further 

showed that it had high potential on clinical use[8]. 

The study by Pu et al. (2023) compared five models of radiomics-based machine 

learning used to detect myocardial fibrosis in patients with hypertrophic 

cardiomyopathy (HCM) based on cine cardiac magnetic resonance (CMR) image 

data. among five models, ICMR+R2 model presented the best quality, the model 

had AUC of 0.898, accuracy of 89.02 percent, sensitivity of 92.54 percent, and F1-

score of 93.23 The authors have come to a conclusion that this method can be used 

in order to identify the patients with fibrosis efficiently[9]. 

In a recent analysis by Jacob et al. (2024), a deep-learning model was designed 

with the Cine CMR images as the target in identifying four conditions of a heart, 

including hypertrophic cardiomyopathy (HCM). Even though the research takes 

multiclass classification, specific to HCM measures are applicable to our binary 

research. The model attained an AUC of 0.908 in the detection of HCM, which is 

notable. The work presents a helpful point of reference against which other 

applications of deep learning to the classification of cardiomyopathy could be 

compared[10]. 

TransMed is a CNN-Transformer hybrid model proposed by Dai et al. (2021) and it 

aims to improve the classification performance in the multi-modal medical images. 

CNN and Transformer with low-level feature extraction methods and long-range 
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dependence capture was also used, which showed the effectiveness of the hybrid 

architecture from low-level information with limited data in the analysis of medical 

images in achieving 10.1 percent and 1.9 percent accuracy margins over the 

baseline techniques[11]. 

3. Dataset Description 

This study involved the cardiac magnetic resonance (CMR) dataset obtained at the 

Kaggle platform that was specially tailored towards the diagnosis of the 

hypertrophic cardiomyopathy (HCM) [12]. The data comprises 59, 145 grayscale 

images, which are separated into two folders, which are illustrated in Figure 2. 

 

 

Figure 2: Distribution of CMR images data into two classes: normal and HCM. 

The data has no special label files, instead the folder names are used directly as a 

source of label creation at the preprocessing stage. A major problem of medical 

imaging data collection, especially advanced methods, such as cardiac CMR, MRI 

and CT, is their cost, ethical, legal and resource logistics in the developing world. 

3.1 Preprocessing  

The preprocessing stage consisted of a few different steps to get the image data 

into a standard, but also effective, form to become compatible with deep learning 

models without losing the detail and balance of the classes. The procedures that 

were used were the following: 

1. Resizing: 
All the images were changed in size to 224x224 pixels which was retained 

at its original aspect ratio. As required, black padding was inserted to limit 

distortion as well as to center it well. 
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2. Normalization: 
The pixel intensities were transformed so that they were limited to original 

grayscale range [0, 255] down to the range [-1.0, 1.0], as shown in this 

relationship: 

 

3. This normalization was useful towards stabilising the model and 

accelerating convergence in training. 

 

4. HDF5 Storage: 

All the images and their labels were saved in HDF5 format, hierarchical, 

and efficient medium of storing large-scale datasets, to speed up the training 

process. 

5. Data Splitting: 
The data was stratified into training and testing with the proportion being 

80/20 and the classes percentages in the split matchedusing stratified split . 

All the experiments were made reproducible with a fixed random seed. 

6. Data Augmentation: 

Going forward to enhance generalization and avoid overfitting, real-time 

data augmentation was used in training using a custom generator, and this 

consisted of: 

o Random horizontal flipping 

o Random rotations within ±10° 

o Translations up to ±10% of the image dimensions 

o Random zoom and cropping 

The preprocessing procedures provided a better and diverse training data, which 

had a beneficial impact on the efficiency and generalizability of the deep learning. 

3.2 Model Architecture Design  

The proposed model adheres to a hybrid structure combining the Convolutional 

Neural Networks (CNNs) and Swin Transformer framework to use the benefits of 

both local and larger-scale features extraction in cardiac magnetic resonance 



 

687 
 

(CMR) images. The most basic components of the model, as shown in Figure 3-35, 

include the following: 

 CNN Backbone (Feature Extraction): 

Extraction of low level visual features of the input images e.g. edges, 

textures/spatial patterns. 

 Swin Transformer Block 1 – Local Window Attention: 

Uses self-attention on the data of non-overlapping local windows making it 

combine the information of localized areas of the image. 

 Swin Transformer Block 2 – Shifted Window Attention: 

Rotates the windows to allow cross-window connections, which improve 

the model capacity to observe the global structure and long term 

dependencies. 

 

 

 Classification Head: 

 

o Global Average Pooling (GAP): decrease feature maps to a constant-size 

vector. 

o Dense Layer: A learner of nonlinear feature combinations. 

o Dropout Layer: It prohibit overfitting, by randomly turning off neurons 

in the process of training. 

o Softmax Layer: product the probabilities for binary classification 

(healthy vs. sick). 

This architecture is an effective integration of spatial sensitivities of CNNs and 

contextual strength of Swin Transformer and is effective in classification of binary 

cardiomyopathy. 
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Figure 3: Hybrid Model Architecture Diagram. 

3.3 CNN Backbones  

In order to find out which convolutional feature extractor is more impotent in the 

classification of hypertrophic cardiomyopathy on the CMR images, four diverse 

CNN-based backbones were benchmarked: the Classic CNN, MobileNetV2, 

DenseNet121, and Xception, which each of them provided a different architectural 

benefit in a hybrid design modality. 

1. Classic CNN: 

This study developed a special architecture which was designed. It is constituted of 

sequence of 2D convolutional blocks, sequence of batch normalization and Leaky 

ReLU activations with max pooling operations.  To support gradient flow and 

maintain spatial information in higher levels identity blocks with skip connections 

were used. Figure 4 illustrates the structural design of this classic CNN that comes 

with skip-connected identity blocks. 
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Figure  4: network contains Identity Blocks and Skip Connections to improve the 

performance of its classic CNN architecture for the classification of CMR images. 

2. MobileNetV2: 
It is a lightweight architecture that incorporates inverted residuals and linear 

bottlenecks, which is quite appropriate to deploy in resource-limited cases. The one 

involved in this work produced on pretrained Keras weights and comprised global 

average pooling and dense classification head. 

3. DenseNet121: 

This model allows the reuse of its features and it resolves the problem of the 

vanishing gradient due to its dense connected layers. It is based on the one taken 

out of the Keras library and optimized to support binary classification to enable the 

transfer of features via layers.  

4. Xception: 
Relaying on depthwise separable convolutions, Xception has fewer trainable 

parameters, but high accuracy. It was picked because of its high representational 

power and harmonization to hybrid structure as an up-to-date alternative to 

conventional CNNs. 

All these CNN backbones were subsequently incorporated with Swin Transformer 

modules and a classification head to become the entire hybrid architecture applied 

in the current paper. 

3.4  Swin Transformer – Traditional Version  

The standard Swin Transformer implementation was absorbed into the selective 

hybrid model variations in this work, as it shows an advantage in terms of 

capturing local patterns and long-range contextual aspects in medical images. 

3.4.1 Key Components 

1. Patch Extraction & Embedding: 

The original image is split into the same sized patches. The patches are then run  

through an embedding layer that could transform it into a numerical vector 

representation[13]. 

2. Position Embedding: 

Each patch gets additional positional encodings made to maintain the spatial 

order in the image. 

3. Swin Transformer Block 1 – Local Window Attention: 
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The self-attention operates in each of the non-overlapping windows and the 

local context can be understood[14]. 

4. Swin Transformer Block 2 – Shifted Window Attention: 

In the next block, the windows are moved a little to enable exchange of 

information between the windows to facilitate global context modeling[15]. 

This strategy offers an efficient tradeoff that can be identified as local detail 

extraction and global awareness, and thus it becomes an ideal combination to apply 

high-resolution medical image classification, including cardiomyopathy detection 

within CMR scans. 

3.5  Swin Transformer – Simplified Version (No Windows / No Embedding) 

A simplification variant or variant of Swin Transformer was also discussed in this 

study. In contrast to the classical Swin, none of the components of the window 

partitioning/patch embedding/position embedding is used and touches upon a more 

computationally efficient and general design[16]. 

3.5.1 Reason to Simplify 

The purpose of this version is to minimize the level of architectural complexity and 

evading the limitation brought about by image patching, but remain the strength of 

self-attention to exploit global image context. 

3.5.2 Key Characteristics of the Simplified Version: 

1. Full-image processing: 

Instead of partitioning the image to fixed-size windows, self-attention blocks 

are directly consuming the feature maps produced by the CNN backbone. This 

makes the model to process through the complete context of the image with no 

segment boundaries. 

2. No Patch Embedding Layer: 

The model does not transform images to the patch tokens. It does this by using 

the raw CNN feature maps as inputs  but this has the advantage of fewer 

parameters and flexibility[17]. 

3. No Position Embedding 

They do not perform spatial encoding, but are instead based on the spatial 

structure naturally inherent in the feature maps of CNNs, that are naturally 

spatially encoded[18]. 
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Such reduced architecture saves on computation expense and matches well 

comparative in performance to CNNs. It is suitable especially in the medical field 

where speed and efficiency is needed, like in the image classification of 

cardiomyopathy. 

3.6 Training & Experimental Setup 

All the values of the main hyperparameters that were used to train all types of 

CNN and hybrids are shown in Table 1 as a consistency point of comparison in the 

experiments. 

Table 1: summarizing the hyperparameters used in training. 

 

To be able to compare architectures and achieve reproducibility in training and 

testing results, all the settings were standardized when configuring the training and 

evaluation environment. 

3.7 Evaluation Metrics  

Six evaluation metrics were used to thoroughly gauge the model performance in 

classification of images of cardiomyopathy. All these measures indicate a level of 

accuracy in making a prediction, the discrimination between the classes, and the 

strength of the model to process medical data[19]. 
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 Confusion Matrix: 

The overall layout of a binary classification confusion matrix giving relation of the 

actual and predicted labels (true/false positives and negatives)is given in figure 

5[20]. 

 

Figure 5: The Basic Structure of a Confusion Matrix. 

4. Results and analysis 
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The chapter finds an in-depth analysis of the findings achieved with the proposed 

models, applying a complete range of assessment measures widely used in the 

medical imagery classification. The performance of each model is measured with 

regards to accuracy, precision, the recall, F1 score, AUC, and Matthews 

Correlation Coefficient (MCC). Training-validation plots and confusion matrices 

are given too to provide a visual aid to the evaluation. The last stage is to compare 

the performance of the best working models to identify the conclusions of how 

well each architecture can classify cardiomyopathy. 

4.1 CNN Model (Original &Hybrid)  

The CNN model is an from scratch , and its basic version provided background to 

the current study. It returned great results, it showed an accuracy of 93.60%, 

precision of 94.11%, recall of 92.32% and an F1 Score of 93.01. It also recognized 

a high Area Under Curve (AUC) of 98.90 % and Matthews Correlation Coefficient 

(MCC) of 86.32 % which signifies a balanced and strong classifier in any of the 

classes. 

The results were worsened when the standard Swin Transformer was attached to 

the CNN. The accuracy of the model reduced to 64.40%, and F1 Score reduced to 

48.11%, and MCC is very low 12.31%. This drop indicates that there is an 

architectural mismatch between CNN backbone and complete Swin attention. But 

applying Swin Transformer simplified version (without patching and embedding), 

the performance of the model recovered. It obtained 91.91 accuracy, 91.52 F1 

Score, an AUC of 98.30 and an MCC of 83.20 per cent accuracies, as indicated on 

Table 2. 

Table 2: The analysis results of the proposed CNN model. 

Model Accurac

y 

Pre. Recall F1 

Score 

AUC MCC 

 CNN 93.60 94.11 92.32 93.01 98.90 86.32 

CNN + Swin 64.40 61.50 53.32 48.11 57.50 12.31 

CNN + Swin 

(no embedding 

/patch) 

 

91.91 90.90 92.32 91.52 98.30 83.20 

 

Comparison among the three variants based on CNN indicated that the original 

model performed better than the other two modelsAs illustrated in Figure 6, 
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confusion matrix reveals that the model has very good capacity to differentiate 

normal and HCM cases with a few misclassifications. Additional evidence of the 

steady learning behavior and a continuous decrease in loss over time is provided by 

the training and validation curves (Figures 7). 

 

Figure 6: confusion matrix for CNN  model. 

  

 

 

 

 

 

Figur

e 7: (a) Training and validation accuracy and (b) loss curves for CNN  model. 

 

4.2 DenseNet121 Model (Original &Hybrid)  

DenseNet121, due to dense connections of its layers and feature re-usage, have 

performed fairly well in their original variants, reporting 87.51accuracy, and F1 

Score of 86.20. The AUC of the model was 94.50% showing that it was also a 

trusted architecture in extracting fine-grained features in the heart. Introducing the 

classic Swin Transformer into DenseNet121 had a rather demonstrable effect 

positively. The accuracy increased to 91.20 percent, the values of the remaining 

performance measures also increased, as indicated in Table 3. 

Surprisingly, the strongest were the results of the DenseNet121 + Swin (no 

embedding/patch) version. In this hybrid, the accuracy was 96.02 percent and F1 

Score was 95.70 percent. This model also reported AUC of 99.22% that ranks 

(a)                                                     (b)  
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among the high-performance models in the whole experiment. As Figure 8 shows 

(the confusion matrix), it was correctly classified precisely well with the least 

error, and the training plot (Figures 9) shows steady progress with little overfitting. 

Table 3: The analysis results of the proposed DenseNet121 model. 

Model 
Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 
AUC 

MC

C 

DenseNet121 

 87.51 87.70 85.22 86.20 94.50 

72.9

1 

DenseNet121 +Swin 
91.20 92.21 88.91 90.22 97.90 

81.1

2 

✔ DenseNet121+Swin (no 

embedding/patch) 

 96.02 95.90 95.51 95.70 99.22 

91.5

0 

 

The integration and the ability to increase performance with hybridization were 

high in DenseNet121. Although the initial variant has been strong, the classical 

Swin helped improve the performance, and simplified Swin version provided 

excellent outcomes. This implies that designed with architectural simplicity in 

mind, dense connections in DenseNet121 can complement attention. 

 

Figure 8: confusion matrix for DenseNet121+ Swin (No Embedding / Patch 

Splitting) model. 

                                (a)                                                              (b)  
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Figure 9: (a) Training and validation accuracy and (b) loss curves for 

DenseNet121+ Swin (No Embedding / Patch Splitting)model. 

 

4.3 MobileNetV2 Model (Original & Hybrid)  

Lightweight MobileNetV2 with an efficient architecture demonstrated a rather low 

level of performance with its standalone implementation. It had an accuracy of 

63.41%, . The model had 1.22% Matthews Correlation Coefficient (MCC), which 

was hardly decent (poor balance and less discriminating power between the 

classes). Combining MobileNetV2 and complete Swin Transformer generated a 

significant increase in performance. The hybrid model performed at 92.90 % 

accuracy and the MCC is at 86.30%. Such combination proved that Swin 

Transformer attention mechanism can be useful supplement to the feature 

extraction of MobileNetV2 even though being lightweight. 

The improvement became even greater when the simplified version of Swin 

Transformer, namely the one which does not include an embedding or patch 

procedure, was used. This version of the model was the highest performer of the 

models based on MobileNetV2, with accuracy of 96.22%,the AUC of 99.23%, 

table 4 depicts this. ,documenting great balance and durability in the model with 

regards to classification. Figure 10, shows the confusion matrix of MobileNetV2 + 

Swin (no embedding / patch) which depicts few misclassification errors. On 

training and validation accuracy and loss curves (Figure 11) there was a stable 

convergence and improving the performance was consistent throughout the epochs. 

 Table 4: The analysis results of the proposed MobileNetV2 model. 

Model 
Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 
AUC MCC 

MobileNetV2 63.41 81.60 50.02 38.80 61.01 01.22 

MobileNetV2 +Swin 92.90 93.41 92.91 93.12 98.20 86.30 
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✔ MobileNetV2 +Swin 

(no embedding/patch) 

 96.22 96.51 95.40 95.90 99.23 91.80 

 

Compared with the original standalone version of the MobileNetV2, the hybrid 

variants outperformed it by far, which confirmed the importance of attention 

mechanism of the Swin Transformer in improving feature representation. The best 

overall performance was obtained with the Swin which lacked the embedding and 

patching, meaning there is, possibly, greater synergies between the base CNN and 

the transformer block to achieve performance in this scenario. 

 

Figure 10: confusion matrix for MobileNetV2+ Swin (no embedding/patch) model. 

 

   

 

 

Figure 11: (a) Training and validation accuracy and (b) loss curves for 

MobileNetV2+ Swin (no embedding/patch)  model. 

 

4.4 

Xception Model (Original & Hybrid)  

Xception model is noteworthy of its depthwise separable convolutions and 

powerful feature extraction, and thus showed good baseline performances. The 

single Xception model had the accuracy of 93.90%. It also showed high AUC of 

98.90% which implies that it is a very reliable and balanced classifier. However, 

when used together with the full Swin Transformer, its performance dragged. The 

hybrid had an accuracy rate of 66.30 with the MCC lower at 19.9 %. The drop 

                                   (a)                                                               (b)  
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shows the architectural incompatibility or inefficiencies of using this configuration 

of the full Swin attention mechanism and Xception backbone. 

Applying the simplified version of the Swin Transformer, without using 

embedding or patching led to better performance as compared to the original 

version of Swin. The model had an 80.60 percent accuracy, 84.90 percent 

precision, and the AUC increased to 91.80 percent, as shown in Table 5. Whereas 

this is still not good enough compared to the standalone Xception model. 

Xception-based In the variants using Xception, the original standalone model is 

still the best performing configuration, and this alone demonstrates the power of 

the convolutional design in this architecture alone is very good. 

Table 5: The analysis results of the proposed Xception model. 

Model 
Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 
AUC MCC 

✔  Xception 93.90 94.51 93.42 93.91 98.90 87.92 

Xception + Swin 66.30 65.02 56.61 54.12 62.30 19.90 

Xception + Swin (no 

embedding/patch) 

 80.60 84.90 74.41 76.21 91.80 58.30 

 

4.5 Models performance comparison 

This part gives a comparative review of the model whose performance was the best 

within each of the categories of architectural designs that are used during the study. 

The algorithm comparison is on the six main evaluation metrics which are 

Accuracy, Precision, Recall, F1 Score, AUC, and Matthews Correlation Coefficient 

(MCC) parameters. When applying a simplified Swin Transformer (without patch 

embeddings), the hybrid model that uses MobileNetV2 as the backbone had the 

best scores according to all the metrics, as it can be seen in the table 6 below. This 

means that it is superior to the other settings and it is the best model of binary 

classification of cardiomyopathy in this study. 

Table 6: Comparison results of the proposed models. 

Model 
Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 
AUC MCC 

CNN 93.60 94.11 92.32 93.01 98.90 86.32 

DenseNet121+Swin (no 

embedding/patch) 

96.02 95.90 95.51 95.70 99.22 91.50 

✔ MobileNetV2 +Swin 

(no embedding/patch) 

96.22 96.51 95.40 95.90 99.23 91.80 

  Xception 93.90 94.51 93.42 93.91 98.90 87.92 
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4.6  Analysis and comparison with other work 

It is a comparison of the proposed models with a few related studies in the area of 

cardiac disease classification with CMR and similar medical imaging data in the 

past. Some of the recent articles that applied both conventional and hybrid deep 

learning models have been provided as a reference. A more detailed model 

comparison, over architecture, datasets and performance indicators is shown in 

Table 7. This discussion will aid in pointing out the bright and weaknesses of the 

suggested models, especially the simplified hybrid architecture comprising 

MobileNetV2 and Swin Transformer. 

Table 7: The comparison between the proposed classification models and previous 

works. 

Ref. Ye

ar 

Classifier Dataset Accur

acy 

Precisi

on 

Rec

all 

F1 

Score 

AU

C 

MC

C 

[7] 20

24 

CNN (CMR)  CMR 

images 

(Hypertro

phic 

Cardiomy

opathy 

Dataset 

(Omid 

Hospital, 

Iran)) 

 

94.710 96.971 91.2

10 

94.850 / / 

[8] 20

21 

Fine-uned 

VGG16 CNN

  

CMR 

images 

(LGE 

protocol) 

– Cardiac 

Amyloid

osis  

/ / 94.0 / 0.96 / 

[9] 20

23 

ICMR + R2  Cine 

CMR 

(HCM 

patients, 

fibrosis 

detection)

  

89.02 / 92.5

4

  

93.23  0.89

8 

/ 

[10] 20 VAE + Deep Cine 77.8 / / / 0.90 / 
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24 CNN  CMR 

(Omid 

Hospital, 

USA)  

8 

(HC

M)

  

[11] 20

21 

TransMed 

(CNN + 

Transformer) 

       

├─TransMed

-S 

PGT 88.9 88.3 / / / / 

├─TransMed

-S 

MRNet  

(ACL 

Tear) 

94.9 / / / / / 

├─TransMed

-S 

MRNet  

(Abnorm

ality) 

91.8 / / / / / 

├─TransMed

-B 

MRNet 

(Meniscu

s Tear) 

85.3 / / / / / 

Cur

rent 

Aut

hors  

20

25 

Proposed 

Model 

       

CNN CMR 93.6 94.1 92.2 93.0 98.9 86.3 

Xception CMR 93.9 94.5 93.4 93.9 98.9 87.9 

DenseNet121 

+ Swin (no 

embed)  

CMR 96.0 95.9 95.5 95.7 99.2 91.5 

MobileNetV

2 + Swin (no 

embed)  

CMR 96.2 96.5 95.4 95.9 99.2 91.8 

5. Conclusions  

Following the results of the analysis period during the evaluation stage, the models 

that performed better and were used during all evaluation metrics are hybrid 

models with only the combination of MobileNetV2 with simplified Swin 

Transformer (which does not use patch embedding method) providing superior 

performance on all evaluation metrics. Those configurations managed to take 

effective advantage of the spatial sensitivity of CNNs and of the contextual power 

of attention mechanisms. The traditional models like CNN and Xception did not 

outperform the hybrid models; nevertheless, they were performing decently. These 

findings lay emphasis on the role of an architectural synergy in improving the 



 

701 
 

medical image classification by providing potent and precise tools to help 

clinicians in an earlier diagnosis and in a better patient management. 

References 

[1]  Q. Liu, Y. Chai, J. Meng, and C. Hu, "Convolutional neural networks to 

differentiate hypertrophic cardiomyopathy from hypertensive heart disease 

based on cardiac cine imaging", In: Proc. of International Society for 

Magnetic Resonance in Medicine ... Scientific Meeting and Exhibition , 

2023, doi:10.58530/2022/4123.  

[2]  V. Sangha et al., "Identification of hypertrophic cardiomyopathy on 

electrocardiographic images with deep learning", medRxiv, 2023.  

[3]    H. Wu, Z. Huang, J. Liu, J. Dai, Y. Zhao, and W. Luo, "The predictive value 

of deep learning-based cardiac ultrasound flow imaging for hypertrophic 

cardiomyopathy complicating arrhythmias", Eur. J. Med. Res., Vol. 28, No. 1, 

pp. 36, 2023.  

[4]    R. K. Hughes et al., "Improved diagnostic criteria for apical hypertrophic 

cardiomyopathy", Cardiovasc. Imaging, Vol. 17, No. 5, pp. 501-512, 2024.  

[5]   Yilmaz, A., Bauersachs, J., Bengel, F., Büchel, R., Kindermann, I., Klingel, 

K., ... & Frey, N. (2021). Diagnosis and treatment of cardiac amyloidosis: 

position statement of the German Cardiac Society (DGK). Clinical Research 

in Cardiology, 110, 479-506.  

[6]   Das, S., Sultana, M., Bhattacharya, S., Sengupta, D., & De, D. (2023). XAI–

reduct: accuracy preservation despite dimensionality reduction for heart 

disease classification using explainable AI. The Journal of Supercomputing, 

79(16), 18167-18197.  

[7]   Kolluri, S., & Hathwar, S. (2024, July 29). Diagnosing hypertrophic 

cardiomyopathy using machine learning models on CMRs and EKGs of the 

heart. Journal of Emerging Investigators, 7(1). https://doi.org/10.59720/23-

209. 

[8]   Agibetov, A., Kammerlander, A., Duca, F., Nitsche, C., Koschutnik, M., Donà, 

C., Dachs, T.-M., Rettl, R., Stria, A., Schrutka, L., Binder, C., Kastner, J., 

Agis, H., Kain, R., Auer-Grumbach, M., Samwald, M., Hengstenberg, C., 

Dorffner, G., Mascherbauer, J., & Bonderman, D. (2021). Convolutional 

neural networks for fully automated diagnosis of cardiac amyloidosis by 

cardiac magnetic resonance imaging. Journal of Personalized Medicine, 

11(12), 1268. https://doi.org/10.3390/jpm11121268. 

https://doi.org/10.59720/23-209
https://doi.org/10.59720/23-209
https://doi.org/10.3390/jpm11121268


 

702 
 

[9]   Pu, C., Hu, X., Lv, S., Wu, Y., Yu, F., Zhu, W., Zhang, L., Fei, J., He, C., Ling, 

X., Wang, F., & Hu, H. (2023). Identification of fibrosis in hypertrophic 

cardiomyopathy: A radiomic study on cardiac magnetic resonance cine 

imaging. European Radiology, 33, 2301–2311. https://doi.org/10.1007/s00330-

022-09217-0. 

[10] Jacob, A. J., Chitiboi, T., Schoepf, U. J., Sharma, P., Aldinger, J., Baker, C., 

Lautenschlager, C., & others. (2024). Deep-learning-based disease 

classification in patients undergoing cine cardiac MRI. Journal of Magnetic 

Resonance Imaging. https://doi.org/10.1002/jmri.30071. 

[11] Dai, Y., Gao, Y., & Liu, F. (2021). TransMed: Transformers advance multi-

modal medical image classification. Diagnostics, 11(8), 1384. 

https://doi.org/10.3390/diagnostics11081384. 

[12] D. Sharifrazi and R. Alizadeh, "Hypertrophic Cardiomyopathy Dataset," 

Kaggle, 2021. [Online]. Available: 

https://www.kaggle.com/danialsharifrazi/hypertrophic-cardiomyopathy-

datase. 

[13] R. A. Dihin, W. A. M. Al-Jawher, and E. N. AlShemmary, "Diabetic 

retinopathy image classification using shift window transformer," Baghdad 

Sci. J., vol. 21, no. 8, pp. 2741-2756, 2024. 

[14] Z. Liu et al., "Swin transformer: Hierarchical vision transformer using shifted 

windows," in Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 10012-10022, 

2021. 

[15] Y. Sun, L. Ning, B. Zhao, and J. Yan, "Tomato Leaf Disease Classification by 

Combining EfficientNetv2 and a Swin Transformer," Appl. Sci., vol. 14, no. 

17, p. 7472, 2024. 

[16] Z. Li, G. Xie, G. Jiang, and Z. Lu, "ShadowMaskFormer: Mask Augmented 

Patch Embeddings for Shadow Removal," arXiv preprint arXiv:2404.18433, 

2024. 

[17] M. Kumar, U. Mehta, and G. Cirrincione, "Enhancing neural network 

classification using fractional-order activation functions," AI Open, vol. 5, pp. 

10-22, 2024. 

[18] E. U. Henry, O. Emebob, and C. A. Omonhinmin, "Vision transformers in 

medical imaging: A review," arXiv preprint arXiv:2211.10043, 2022. 

https://doi.org/10.1007/s00330-022-09217-0
https://doi.org/10.1007/s00330-022-09217-0
https://doi.org/10.3390/diagnostics11081384
https://www.kaggle.com/danialsharifrazi/hypertrophic-cardiomyopathy-datase
https://www.kaggle.com/danialsharifrazi/hypertrophic-cardiomyopathy-datase


 

703 
 

[19] D. Chicco and G. Jurman, "The Matthews correlation coefficient (MCC) 

should replace the ROC AUC as the standard metric for assessing binary 

classification," BioData Mining, vol. 16, no. 1, p. 4, 2023. 

[20] D. Chicco and G. Jurman, "The advantages of the Matthews correlation 

coefficient (MCC) over F1 score and accuracy in binary classification 

evaluation," BMC Genomics, vol. 21, pp. 1-3, 2020. 


