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Abstract
In this paper, enhancing dynamic performance in power systems through load frequency control (LFC) is explored
across diverse operating scenarios. A new Neural Network Model Predictive Controller (NN-MPC) specifically tailored
for two-zone load frequency power systems is presented. ” Make your paper more scientific. The NN-MPC marries the
predictive accuracy of neural networks with the robust capabilities of model predictive control, employing the nonlinear
Levenberg-Marquardt method for optimization. Utilizing local area error deviation as feedback, the proposed controller’s
efficacy is tested against a spectrum of operational conditions and systemic variations. Comparative simulations with a
Fuzzy Logic Controller (FLC) reveal the proposed NN-MPC’s superior performance, underscoring its potential as a
formidable solution in power system regulation.
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I. INTRODUCTION

Large-scale power systems typically consist of multiple in-
terconnected sub-systems, each linked by tie-lines. Control
areas, equipped with one or more generators, are tasked with
managing their own demand and power exchanges with adja-
cent regions [1]- [2]. Given the fluctuating nature of power
system loads, load frequency controllers are essential to sus-
tain system frequency at its nominal value [3]- [4] . It is
understood that variations in real power primarily influence
system frequency, and mechanical power input to generators
is pivotal for regulating the frequency of the electrical output.
In the context of a deregulated power system, control areas
are subject to a range of uncertainties and disturbances due to
increased complexity, errors in system modeling, and evolving
power system configurations [5]- [6]. An effectively designed
and managed power system must adapt to load changes and
disturbances [7]. delivering high-quality power while keeping

voltage and frequency within acceptable bounds [8]- [9]. Over
the past few decades, a Plethora of control strategies for Load
Frequency Control (LFC) has emerged, as highlighted in the
literature [10]– [11]. This surge of interest stems from LFC’s
critical role in power system operations, its primary goal
being the regulation of generator output to set levels while
maintaining frequency fluctuations within predetermined lim-
its. Advanced robust adaptive control frameworks [12]. Have
been formulated to address LFC’s system parameter variations.
Innovative algorithms [13], have enhanced multi-area power
system operations, while decentralized control designs for
multi-input multi-output systems [14]. Have shown that a co-
hort of local controllers can ensure systemic stability and per-
formance. The significance of robustness and stability in LFC
design is evident in findings from [15]- [16], and practical con-
siderations concerning current utility technologies and hybrid
LFC structures are discussed in [17]- [18] . The integration
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of artificial neural networks, genetic algorithms, fuzzy logic,
and optimal control into LFC is well-documented [19]– [20].
Model Predictive Control (MPC), a mainstay in industrial
applications, relies on process models to forecast plant be-
havior, distinguishing itself by incorporating constraints for
tighter control and reliability 17–18. Variants of MPC, such as
Model Algorithmic Control (MAC), Dynamic Matrix Control
(DMC) [21], and Internal Model Control (IMC) [22], share
a fundamental reliance on linear process modeling. Neural
Network Model Predictive Control (NN-MPC) represents a
direct application of neural networks to nonlinear control,
where the neural network serves as a predictive model for
process output [23]. While NN-MPC has seen application in
fields like chemical and industrial processes [24] its adoption
in power system stability and control remains nascent [25].
This study delves into the deployment of an NN-MPC for ad-
dressing the LFC and inter-area tie-power control challenges
within a multi-area power system [26]. Through rigorous
modeling and simulation, the NN-MPC’s design and imple-
mentation are explored. Comparative analyses with A Fuzzy
Logic Controller (FLC) under diverse conditions substantiate
the NN-MPC’s feasibility and superior efficacy [27]. The sim-
ulation outcomes affirm the proposed controller’s enhanced
performance capabilities, with NN-MPC showing consider-
able promise in improving system response [28]

II. LOAD-FREQUENCY CONTROL (LFC)
ACROSS A TWO-AREA POWER SYSTEM

Figure 1 presents a schematic of the area within an n-area
power system, employing a linearized model suitable for mi-
nor load variations typical of regular operations. This ap-
proach simplifies the load-frequency control analysis. For the
study at hand, we consider an interconnected two-area load-
frequency control system, depicted in Figure 2. The model’s
governing equations, which are integral to the two-area load-
frequency control, are enumerated as follows:
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In a two-area power system, the dynamic behavior can be
described using the following terms:

ḟi : Incremental frequency deviation in the ith area.
∆Pdi : Incremental change in load demand in the ith area.
∆Ptie : Incremental change in tie-line power.
∆PGi : Incremental change in governor position for the ith area.
∆PTi : Incremental change in power generation level for the ith area.
Bi : Frequency bias constant for the ith area.
TGi : Governor time constant for the ith area.
TTi : Turbine time constant for the ith area.
Kpi : Power system gain for the ith area.
Tpi : Power system time constant for the ith area.
Ti j : Synchronizing constant between the ith and jth areas.

The dynamic model of this two-area power system can be
succinctly represented in a state-space form as follows:

ẋ = Ax+Bu+d (8)

In this representation, x is the state vector, A and B are system
matrices, u is the control input vector, and dd is the disturbance
vector. This framework allows for a comprehensive analysis of
the system dynamics, facilitating the understanding and design
of control strategies for effective power system management.
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III. MODEL BASED PREDICTIVE CONTROL
MB PC

MB PC encompasses a variety of control strategies unified by
a common concept. The core principle involves forecasting
based on a model of the process, which is depicted in Figur 3.

The objective of Model-Based Predictive Control (MBPC)
is to forecast the future dynamics of a system within a spec-
ified timeframe using a dynamic model and to determine
control measures that optimize a given criterion. Typically,
this involves minimizing the function J, which is defined as
follows:

J =

{
n1

∑
k=n2

[M(t + k)−Ym(t + k)]

}2

+
nu

∑
k=1

{λ (∆Un(t + k))}2

(9)

In the given control function, M(k+ t), Ym(k+ t), and Un(k+
t) represent the predicted process output, the desired refer-
ence trajectory, and the control input projected t steps ahead,
respectively. n1 and n2 denote the minimum and maximum
prediction horizons for the process output, while nu signifies

Fig. 1. Schematic representation of the power system for area
i.

Fig. 2. Two-Area Load Frequency Management Framework.

the control input’s prediction horizon. n2 is chosen to capture
the significant portion of the step response curve. Employ-
ing a control horizon nu serves to mitigate the computational
intensity of the approach. The factor λ adjusts the influence
of the control signal. At each sampling interval, only the
initial control action from the computed sequence is enacted
on the system. The process is then reiterated at the succeed-
ing sampling instant. This iterative process is referred to as
the receding horizon principle. The control architecture is
composed of the plant model and an optimization module.
The optimization leverages Equation 9 in conjunction with
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Fig. 3. Traditional Scheme of Model-Based Predictive
Control.

constraints on the inputs and outputs.

umin ≤ ui ≤ umax, i = 0, . . . ,N2 −1
∆umin ≤ ∆ui ≤ ∆umax, i = 0, . . . ,N2 −1

ymin ≤ yi ≤ ymax, i = 1, . . . ,N2

The capability of MBPC to incorporate constraints is a defin-
ing feature that contributes to its widespread adoption, utility,
and success in industrial contexts. MBPC techniques are cel-
ebrated for their adaptability and resilience in the realm of
process control.

IV. NEURAL NETWORK-BASED PREDICTIVE
CONTROL

Neural networks have been employed with considerable suc-
cess for the identification and control of dynamic systems due
to their universal approximation capabilities. The multilayer
perceptron (MLP), in particular, is favored for its effectiveness
in modeling nonlinear systems and for the implementation
of nonlinear controllers. The process of utilizing a neural
network for system modeling is illustrated in Figure 4. Within
this context, the unknown function may be associated with
the system under control, with the neural network serving as
the model for the identified plant. Networks comprising two
layers, which utilize sigmoid functions in the hidden layer
and linear functions in the output layer, are recognized as
universal approximators. The training signal for the neural
network is derived from the prediction error between the ac-
tual plant output and the neural network’s output. This plant
model, built on a neural network, leverages historical inputs
and outputs to forecast future plant outputs. The configuration
of this neural network plant model is detailed in Figure 5.
Here, u(t) represents the input to the system, and yp(t) is the
predicted output from the plant model.

Using Previous Plant Outputs for Future Predictions with
Neural Network Models

Fig. 4. Neural Network Utilized for Approximating
Functions.

The architecture of the neural network model for predict-
ing future plant outputs is outlined in Figure 5. In this setup,
u(t) is the input to the system, yp(t) denotes the actual output
of the plant, and ym(t) represents the output predicted by the
neural network model. The model includes tapped delay lines
(TDL), which are used to retain previous input values. The
weight matrices {IW}I, j and {LW}i, j correspond to the con-
nections from input j to layer ii and from layer j to layer i,
respectively. This neural network can be trained in an offline
batch mode using data gathered from the plant’s operations.
The process of selecting the network parameters is referred
to as training the network. The Levenberg–Marquardt (LM)
algorithm is particularly effective for this purpose. The LM
algorithm is an iterative method designed to find the minimum
of a function represented as the sum of squares of nonlinear
functions. It is a well-established approach for nonlinear least-
squares problems, combining elements of steepest descent
and the Gauss–Newton method. The LM algorithm oper-
ates in two modes: like a steepest descent method when the
current solution is far from the target, ensuring convergence
albeit slowly, and like a Gauss–Newton method when the so-
lution is near the target. Assuming a functional relationship
f that maps a parameter vector P ∈ Rm to an estimated mea-
surement vector x̂ = f (p)x, x̂ ∈ Rn, the goal is to refine the
parameter estimate P to minimize the squared distance eT e
with e = x− x̂. The LM algorithm uses a linear approximation
of f near P, employing a Taylor series expansion for small
changes δp, leading to f (P+δp)≈ f (P)+Jδp where J is
the Jacobian matrix. Through iterative steps, starting from
an initial estimate p0, the algorithm generates a sequence of
vectors converging towards a local minimizer p̂ for f . Each
step involves solving a linear least-squares problem to find
the δp that minimizes e−Jδp.

In the context of the Levenberg–Marquardt (LM) algo-
rithm, the product Jδp− e is orthogonal to the column space
of the Jacobian matrix J. This orthogonality condition leads
to the equation JT (Jδp−e) = 0, which results in deriving δp



149 | Yunis & Djemel

Fig. 5. Configuration of the Plant Model Based on Neural
Networks.

as the solution of the normal equations:

JT Jδp = JT e (10)

Here, the matrix JT J on the left side of the equation represents
the approximate Hessian matrix, essentially an estimation of
the matrix of second-order derivatives. However, the LM
method slightly modifies this equation, leading to what is
known as the augmented normal equations:

Nδp = JT e (11)

In these augmented equations, the off-diagonal elements of N
match those in JT J, while the diagonal elements are defined
as Nii = µ +[JT J]ii, where µ > 0, is a positive value. This
alteration of the diagonal elements of JT J introduces damping
into the system, with µ being the damping term. The process
involves updating the parameter vector p with δp computed
from the normal equations. If this update results in a reduction
in the error e, it is accepted, and the procedure is repeated
with a reduced damping term. Conversely, if the error does
not decrease, the damping term is increased. The augmented
normal equations are then solved again, continuing iteratively
until a value of δp is found that reduces the error. This itera-
tive adjustment is key to the algorithm’s ability to converge
effectively to a solution. Adjustment of Damping in the Lev-
enberg–Marquardt Algorithm and Termination Criteria In the
Levenberg–Marquardt (LM) algorithm, the damping term is
finely tuned during each iteration to ensure a consistent reduc-
tion in the error e. The algorithm concludes its process when
any of the following criteria are met: The iterative process is
terminated when one of the following conditions is met:

1. The gradient of eT e (represented by JT e on the right-
hand side of Equation 10 falls below a predetermined
threshold ε1.

2. The relative change in the magnitude of δp becomes
lesser than a specified threshold ε2.

3. The error eT e itself dips below a set threshold ε3.

4. The process reaches a predefined maximum number of
iterations, kmax.

In cases where a covariance matrix Σ for the measured vector x
is accessible, the solution is obtained by addressing a weighted

least squares problem, as defined by the weighted normal
equations:

JT
Σ
−1Jδp = JT

Σ
−1e (12)

Regarding model predictive control utilizing neural network
models for single-input, single-output systems, there have
been a limited number of studies, as detailed in reference
[27]. For multivariable systems, a strategy employing three
fixed multilayer perceptron (MLP) models is described in
reference [28]. In our approach, this strategy is adapted to two
MLP models with an additional adaptive model, as depicted
in Figure 6.

V. FUZZY LOGIC CONTROL STRATEGY

Fuzzy Logic Control (FLC) mimics the decision-making pro-
cess of a human operator by modulating the input signal based
solely on the system’s output. This approach to control in-
volves three key stages: fuzzification, the implementation of
fuzzy control rules, and defuzzification, as illustrated in Fig-
ure 7. The process of designing a fuzzy logic load frequency
controller involves using specific input signals.

The aim of this control strategy is to regulate terminal fre-
quency at the output of each area and reduce the discrepancy
between actual and reference Area Control Error (ACE). The
block diagrams illustrating Load Frequency Control (LFC)
with the proposed Neural Network Model Predictive Control
(NN-MPC) and Fuzzy Logic Control (FLC) are presented in
Figures 9 and 10, respectively. For the proposed system, the
cost function as described in Equation 9 is modified to:

TABLE I. FUZZY LOGIC CONTROL PROTOCOLS FOR
FREQUENCY DEVIATION

∆ACE/d∆ACE LN MN SN Z SP MP LP

LN LP LP LP MP SP Z -
MN LP MP MP SP Z SN -
SN LP MP SP Z SN MN -
Z MP SP Z SN MN MN -

SP MP Z SN MN MN LN -
MP SP SN MN MN LN LN -
LP Z SN MN LN LN LN -

The cost function is defined as:

J =
n2

∑
k=n1

k
(
ACE(t + k)−ACEpred(t + k)

)2

+λ∆ACRref(t + k)2

where (13)

∆ACRref = ACRref(t + k)−ACRref(t + k−1) (14)
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Fig. 6. Strategy for Multivariable Neural Network Model Predictive Control (NN-MPC)

Fig. 7. Tripartite Structure of a Fuzzy Logic Controller.

Constraints are set such that the area output frequency and tie-
line power are normalized to 1, correlating to output frequency
and tie-line power. Thus, the control input uu is constrained
by:

ACRre f − ε ≤ u ≤ ACRre f + ε (15)

Abbreviations:

• LN: Large Negative

• MN: Medium Negative

• SN: Small Negative

• Z: Zero

• SP: Small Positive

• MP: Medium Positive

• LP: Large Positive

VI. 7. RESULTS AND SIMULATION

A controller utilizing a neural network model for forecasting
future LFC responses and potential control actions was de-
veloped. An optimization algorithm, based on Equation 12,
computes control signals to enhance future plant performance.
The neural network plant model was trained using the Leven-
berg–Marquardt algorithm with data derived from the LFC
model . The model predictive control method employed was
grounded in the receding horizon principle, where the neural
network predicts the plant response over a designated time
horizon. These predictions inform a numerical optimization
program to determine the control signal that best minimizes
the performance criterion over this horizon. Implementation
of the controller was carried out in Matlab/Simulink, with the
following constraint and parameter settings:

N1 = [1,1] , N2 = [7,6] ,
Nu = [2,3] , λ = [0.05,0.08] .

The state constraints were set to ensure that signals remain
within physically plausible ranges, specified as:

XminI3 ≤

∆ f1
∆ f2
∆ f3

≤ XmaxI3

he boundaries for the state variables are defined as follows:

xmin =

−0.05
−0.05
−0.03

 , xmax =

0.05
0.05
0.03


Comparative analysis has been conducted to assess the

responses of the power system under the control of the fuzzy
logic controller versus the proposed Neural Network Model
Predictive Control (NN-MPC). The system parameters under
investigation are detailed as follows:

• Nominal frequency ( f0) is 60 Hz,

• Speed regulation constants (R1 and R2) are 2.4 Hz per
unit MW,

• Governor time constants (TG1 and TG2) are set at 0.08
seconds,

• Turbine time constants (TT 1 and TT 2) are set at 0.3 sec-
onds,

• Frequency bias coefficients (B1 and B2) are 0.4 MW/Hz,

• Power system time constants (Tp1 and Tp2) are 20,

• Synchronizing coefficient between the two areas (a12)
is -1,

• Power system gains (Kp1 and Kp2) are 120,

• Synchronizing power coefficient (T12) is 0.545 MW.

Figure 11 illustrates the response in frequency deviation for
Area 1 following a 0.05 per unit (p.u.) load change in Area
1, comparing the performance of the Fuzzy Logic Control
(FLC) with that of the proposed Neural Network Model Pre-
dictive Control (NN-MPC) in a two-area power system. Fig-
ure 12 presents the analogous frequency deviation response
for Area 2 resulting from the same disturbance in Area 1 un-
der both control methods. Figure 13 depicts the deviation in
tie-line power prompted by a 0.05 p.u. load change in Area 1,
showcasing the effects of employing FLC and the proposed
NN-MPC. Figure 14 demonstrates the frequency deviation in
Area 1 due to a 0.05 p.u. load disturbance in Area 2 when
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Fig. 8. Membership Functions: (a) Control Error in Area One,
(b) Fluctuation of Control Error in Area One, (c) Control
Error in Area Two, and (d) Fluctuation of Control Error in
Area Two.

Fig. 9. The Proposed Neural Network Model Predictive
Control for the Two-Area Load Frequency Regulation in
Power Systems.

both areas are managed by FLC and proposed NN-MPC, with
an additional consideration of a 30% increase in the values
of regulators R1 and R2. Similarly, Figure 15illustrates the
frequency deviation response in Area 2 owing to a 0.05 p.u.
load disturbance in Area 2 under both control strategies, also
with the regulators increased by 30%. Additionally, this figure
presents the tie-line power deviation response for the same dis-
turbance and control settings. Table II provides a comparison
of the maximum overshoot (max. O.S.) and the settling time
(Ts) for the system responses under the FLC and the proposed
NN-MPC configurations.

TABLE II. DISTURBANCE IN AREA 1 AND AREA 2 WITH
PI

Parameter Area 1 with PI Area 2 with PI
T (s) Max (p.u) T(s) Max (p.u)

∆ f1 4.8 0.024 15 0.026
∆ f1 5.2 0.006 13 0.008
∆ f2 3.9 0.013 14.5 0.014

TABLE III. DISTURBANCE IN AREA 1 AND AREA 2 WITH
NN-MPC

Parameter Area 1 (NN-MPC) Area 2 (NN-MPC)
Max (p.u.) Ts (s) Ts (s) Max (p.u.)

∆ f1 0.013 2.8 14 0.012
∆ f2 0.014 3.2 12 0.0012
∆Ptie 0.0009 2.9 14 0.015
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Fig. 10. Schematic Representation of Fuzzy Logic Control
for Two-Area Load Frequency Regulation in Power Systems.

Fig. 11. Response to Frequency Deviation in Area 1
Resulting from a 0.05 p.u. Load Disturbance in a Two-Area
Power System Using FLC and NN-MPC.

VII. EXPLANATION AND DISCUSSION

This study has developed a matrix of fuzzy rules for the fuzzy
logic controller, incorporating 49 rules using triangular mem-
bership functions. Additionally, a Neural Network Model
Predictive Control (NN-MPC) system has been designed and
optimized based on the power system model, as well as con-
trol and prediction horizons. Comparative analyses of various
transient response curves, including ∆ f1, ∆ f2, and ∆Ptie-line,
have been conducted. Key observations (refer to Figure 16)
include:

1. The frequency deviation responses, as illustrated in
Figurs 11–16 and summarized in Table 2, indicate that
the NN-MPC outperforms fuzzy logic control in terms
of quicker response and reduced maximum overshoot.

2. The tie-line power declines more rapidly with the NN-
MPC compared to FLC.

3. As depicted in Figs. 11–16 and Table II, the NN-MPC

Fig. 12. Response to Frequency Deviation in Area 1
Resulting from a 0.05 p.u. Load Disturbance in a Two-Area
Power System Using FLC and NN-MPC.

Fig. 13. Response of Area 2 to Frequency Deviation Arising
from a 0.05 p.u. Load Disturbance in Area 1 of a Two-Area
Power System, Utilizing FLC and NN-MPC.

efficiently mitigates mechanical oscillations within 3
seconds.

4. Conversely, the performance of the FLC, shown in the
same figures and table, reveals its limited effectiveness
in damping mechanical oscillations within 16 seconds.

5. For accurate predictions of the power plant’s future
behavior, the prediction horizon should exceed the sys-
tem’s oscillation period.

6. The NN-MPC has proven successful in managing sev-
eral large-scale nonlinear control challenges, making it
a superior choice for power system stabilization.

TABLE IV. DISTURBANCE PARAMETERS IN AREA 1 AND
AREA 2 WITH FLC

Parameter Area 1 (FLC) Area 2 (FLC)
Max (p.u.) T (s) T (s) Max (p.u.)

∆ f1 0.012 4.4 4.2 0.022
∆ f2 0.015 5.1 5.2 0.005
∆Ptie 0.0009 3.6 3.5 0.012
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Fig. 14. Frequency Deviation Response in Area 1 Triggered
by a 0.05 p.u. Load Disturbance in Area 2 of the Two-Area
Power System, Employing FLC and NN-MPC with an
Enhanced Setting of Regulators R1 and R2.

Fig. 15. Frequency Deviation in Area 1 due to 0.05 p.u. Load
Change in Area 2.

VIII. CONCLUSIONS

This study explores the enhancements that can be realized by
applying neural predictive strategies to load frequency control
in a two-area interconnected power system. The efficacy
of the proposed neural Network Model Predictive Control
(NN-MPC) is demonstrated through a comparative analysis
with a Fuzzy Logic Controller (FLC). Both controllers were
evaluated under load disturbances within the LFC framework.
The simulation results indicate that the proposed NN-MPC
controller exhibits robustness, with superior transient and
steady-state responses, and maintains performance despite
variations in system parameters. Furthermore, the simulations
suggest that the proposed NN-MPC outperforms the fuzzy
logic controller in terms of control efficacy.
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