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Abstract
Inter-symbol interference (ISI) exhibits major distortion effect often appears in digital storage and wireless communica-
tion channels. The traditional decision feedback equalizer (DFE) is an efficient approach of mitigating the ISI effect
using appropriate digital filter to subtract the ISI. However, the error propagation in DFE is a challenging problem
that degrades the equalization due to the aliasing distorted symbols in the feedback section of the traditional DFE. The
aim of the proposed approach is to minimize the error propagation and improve the modeling stability by incorporating
adequate components to control the training and feedback mode of DFE. The proposed enhanced DFE architecture
consists of a decision and controller components which are integrated on both the transmitter and receiver sides of
communication system to auto alternate the DFE operational modes between training and feedback state based on
the quality of the received signal in terms of signal-to-noise ratio SNR. The modeling architecture and performance
validation of the proposed DFE are implemented in MATLAB using a raised-cosine pulse filter on the transmitter side
and linear time-invariant channel model with additive gaussian noise. The equalizer capability in compensating ISI
is evaluated during different operational stages including the training and DFE based on different channel distortion
characteristics in terms of SNR using both 0.75 and 1.5 symbol duration in unit delay fraction of FIR filter. The
simulation results of eye-diagram pattern showed significant improvement in the DFE equalizer when using a lower
unit delay fraction in FIR filter for better suppressing the overlay trails of ISI. Finally, the capability of the proposed
approach to mitigate the ISI is improved almost double the number of symbol errors compared to the traditional DFE.
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I. INTRODUCTION

Contemporary communication systems often operate on mas-
sive data rate to fulfil the ongoing demand and quality re-
quirement of high-definition video communications and other
applications, such as big data, massive IoT, gaming, and vir-
tual surgery. Hence, the distortion effects in wireless com-
munications have become a dominant and challenging prob-
lematic due to dominant inter-symbol-interference (ISI) that
occurs often in bandlimited channels according to Shannon
theory [1–3]. Channel equalization systems are typically clas-
sified either linear or nonlinear techniques. Linear equaliz-
ers consist of simple digital architecture (i.e. finite impulse

response (FIR) filter) to compensate for the static linear dis-
tortion. Linear equalizers often fail to mitigate the ISI when
the channel characteristics is time-varying as in most mobile
wireless communications [2, 3]. In addition, they require a
huge number of parameters to mitigate sufficient ISI channel
distortion. On the other hand, blind equalization techniques,
such as in Lucky and Sato algorithms are more efficient and
have the capabilities of adaptivity to account for both Linear
and nonlinear channel distortion [4, 5]. The performance of
blind equalizers in terms of convergence speed and efficiency
is mostly affected by the deployed adaptation technique in
minimizing the error function. Hence, the adaptation tech-
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niques are mostly researched and implemented algorithms
in literature of adaptive equalizers. Example of the widely
used adaptation approaches including the constant modulus
algorithm, least mean squares (LMS), and recursive least-
squares (RLS) [5–7]. The performance comparison of differ-
ent adaptation algorithm is beyond the scope this paper since
the proposed approach focuses on the operational enhance-
ment of the decision feedback equalizer (DFE). In fact, the
DFE has gained significant interests in the literature of adap-
tive equalizers because of the simplicity in implementation,
as well as the system stability and high efficiency [8–12]. Im-
plementation of adaptive equalizer often requires an efficient
training phase that accounts for various channel character-
istics, such as the nonlinearity and other effects of channel
distortion [13–16]. The training mode of adaptive equalizers is
normally implemented during equalizer initialization based on
certain channel response. Hence, the equalizer performance
can significantly degrade when the channel characteristics
dramatically changes causing error propagation in DFE. This
paper proposes a deployment technique for regulating the
DFE training modes depending on severity of the channel
distortion to improve the equalizer performance in mitigating
the ISI and combating the error propagation. The coefficients
of DFE are dynamically estimated to improve the adaptation
convergence.

II. CHANNEL DISTORTION

Distortion effects of ISI is a major challenge that has gained
significant attention in modern generations of wireless com-
munications. This is because the ISI affects the data trans-
mission causing extreme degradation in bit-error rate (BER)
on receiver side. In certain channel conditions, ISI distor-
tion becomes unpredictable and it has more impact on the
signal than additive gaussian noise in the communications,
such as in multipath fading and time-varying channel char-
acteristics [17–21]. The effect of ISI on symbol recovery is
depicted in Fig. 1. For instance, a two-level slicer in the
receiver performs 100% of symbols recovery for all peaks
as shown in Fig. 1-b, but the slicer fails to detect symbols’
peaks that have lower amplitude attenuated by ISI as depicted
in Fig. 1-a. In communication theory, the impulse response
of the transmitted pulse, channel function, and matched filter
must satisfy Nyquist condition to eliminate all ISI distortion
in ideal scenario as described in this section [1]. Since the
pulse shaping and matched filters have static characteristics,
adaptive equalizers are widely deployed dynamic solution to
compensate for the time-varying characteristics of channel
model. In other simple words, equalizers would enable bet-
ter slicing operation (i.e decision block) in the final stage of
detecting received symbols. The estimation theory of ISI is
often described based on signal model of typical communi-

cation system in terms of transmitter model, channel model,

Fig. 1. Slicer operation for symbols recovery using two
scenarios. (a) without ISI. (b) with ISI.

and receiver model. In baseband representation as depicted in
Fig. 2, symbol waveforms are generated using pulse shaping
filter on the transmitter side and channel model consists of
linear time-invariant (LTI) filter with additive gaussian noise
to mimic the multipath fading channel [1,2], finally a matched
filter is used on the receiver side to recover the transmitted
symbols. Thus, the combined impulse response P(t) of the
communication system is a convolution operation as follows:

P(t) = r (t)∗ h(t)∗ r(T − t)+n(t) ∗ r(T − t) (1)

where r(t) is the basis function which represents the trans-
mitter pulse shaping filter, h(t) is the channel model, n(t) is
the additive white gaussian noise, and r(T-t) is the impulse
response of the matched filter on the receiver side. Thus, the
received signal y(t) is a convolution operation between the
baseband input signal x(t) and P(t) as follows:

y(t) = x(t)∗P(t) (2)

yk = p(0) xm +
∞

∑
m ̸=k

xm p(k−m)+nk (3)

Equation (3) describes mathematically the ISI effects, for
example, when one symbol is transmitted via communication
channel, the convolution operation outputs series of symbols
as depicted in Fig. 3. In other words, the output signal consists
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Fig. 2. A simplified modeling block diagram of typical communication system.

of the current input symbol xm and the filtered gaussian noise
plus a weighted sum of both previous and future symbols.
Thuse, this term ∑

∞
m ̸=k xm p(k−m) represents all ISI except the

transmitted symbol that satisfies Nyquist criterion as follows:

P(nT ) =

{
1, (n = 0)
0, (n ̸= 0)

(4)

Fig. 3. The aliasing between the main received symbol in
solid line and three adjacent ISI symbols in dashed/dotted
lines.

III. ADAPTIVE EQUALIZERS

The traditional architecture of adaptive equalizers consists
of digital filters (FIR/IIR) and adaptive algorithm, such as
LMS/RLS for dynamically estimating the filter coefficients to
compensate for time-varying channel distortion. Therefore,
the equalizer performance is specified by the filter design
(i.e type and number of coefficients) and the convergence
speed/accuracy of the used adaptive algorithm. FIR filter is a
popular solution in adaptive equalization because it is always
stable design, linear in parameters, and simple in implementa-
tion. Similarly, LMS algorithm is a widely adopted approach
in adaptive equalizers because of its computational efficiency
and design simplicity [4–7]. The integration of LMS and FIR
filter results in nonlinear equalizer model because the FIR
coefficients become dynamic based on the channel character-
istics. This property enhances the equalization to account for
both linear and nonlinear channel distortion. However, the
training mode in adaptive equalizers is crucial in coefficient
estimation especially during the decision feedback training
mode. For instance, DFE uses the feedback symbols from
slicer as a desired output symbols enable coefficient estima-
tion based on adaptive technique, such as in LMS. Therefore,

the problem of possible existing error symbols in the feedback
block has significant impact on coefficient estimation causing
error propagation which often leads to substantial degradation
and distortion, especially during high-rate data transmission
due to the increase in channel delay spread [13–16]. Finally,
the two different training scenarios in adaptive equalizers are
described in the next sections.

A. Decision Directed-Learning
Decision directed-learning (DDL) is a training mode using
a predefined sequence of the transmitted symbols over the
communication channel. The DDL technique performs well
when communication channel is statistically stationary that
exhibits time-invariant characteristics. The Lucky equalizer
as depicted in Fig. 4. is a popular example that is initial-
ized (i.e feedback switch off) based on DDL approach for
estimating the coefficients of the digital wiener filter [17–19].
During the training mode, a time-delayed version of the same
transmitted symbols is used as a desired response d(n) for co-
efficients estimation of the equalizer as presented in (5) based
on normalized least-mean squares (NLMS) algorithm [4].

ŵ(n+1) = ŵ(n)+u(n)e(n)g/∥u(n)∥2 (5)

where ŵ(n) is a vector of the filter coefficients at time index n,
u(n) is a vector of the symbols on the equalizer input, g is the
learning rate, and e(n) is the residual error which is calculated
as follows:

e(n) = d (n)− ŷ (n) (6)

ŷ (n) = ŵTu(n) (7)

where ŷ is a vector of the equalizer output symbols.

B. Decision Feedback Equalizer
The adaptive equalizer employs a reinforcement learning tech-
nique when the equalizer output is switched from the desired
response during the training mode to the decision feedback
output under the assumption that the output symbols of the
decision block (i.e. slicer) have more than 75% error-free
symbols. Therefore, the equalizer converges only for initial
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Fig. 4. Block diagram of the Lucky equalizer.

errors less than 25% of the total sequence of the output sym-
bols [1, 2]. The error symbols between the equalizer input
and the decision-block output are directly proportional to the
channel distortion and LMS convergence rate which is an
important factor that specifies the performance of the equal-
izer in mitigating ISI. The NLMS algorithm is used in the
proposed DFE architecture for estimating the equalizer coeffi-
cients because it has the following advantages over the LMS:
1) The rate of convergence is significantly faster than the stan-
dard LMS algorithm.
2) The NMLS combats the effect of the gradient noise when
the error, number of model’s coefficients, or the symbol input
amplitude are large [1–4].

C. Improved Architecture of DFE
The improved DFE is shown in Fig. 5 which consists of the
typical architecture of DFE with additional adaptive FIR filter
on the decision feedback branch for efficiently subtracting
trailing ISI [12]. In other words, the improved DFE makes
use of prior decision output for estimating current symbol as
described by (8)-(11) as follows:

Zk =
m−1

∑
n=0

wn yk−n −
N

∑
n=1

bn x̂k−n (8)

where Zk is the residual symbols between the output of the
feedforward and the feedback filters. Equation (8) can be
represented in a matrix form as follows:

Zk =
[
wo · · · wm−1 ,−b1 · · · −bN

] yk
...

x̂k−n

 (9)

Zk = w̃kxk (10)

where w̃k is a row vector consists of the filter coefficients;
feedforward (W ) and feedback (B), xk is a column vector
includes the input and output symbols of the DFE. Finally, the
filter coefficients can be estimated using the following NLMS
approach:

w̃k+1 = w̃k +2g(x̂k −Zk)xk/∥xk∥2 (11)

where g is the learning rate and the term (x̂k −Zk) represents
the residual errors. Although the DFE consists of a simple
modeling approach in terms of computation, the conventional
DFE structure suffers from error propagation phenomenon
because its operational capability depends significantly on the
output symbols of the decision component block. This sce-
nario occurs when some error symbols are sent back through
the feedback filter which enhances ISI leading to degradation
in BER. In some cases, error propagation leads to instabil-
ity, especially in transmission scenarios of high data rate and
mobile wireless communication channel. In some cases, the
DFE fails to recover the correct symbols from the interfer-
ence [15,16]. Thus, alternating the equalizer operational mode
from the decision feedback to DDL is the most appropriate
option to combat the error propagation during the operation of
decision feedback as discussed in this section. The SNR is a
figure of merit widely used to measure signal quality and dis-
tortion effects on the receiver side. In other words, when the
SNR decreases, the ISI is proportionally increasing because
the ISI increases the noise level [1, 2]. Thus, the SNR criteria
is adopted in this work as indication to control the operational
states of DFE using two switches as depicted in Fig. 6 and
described in this section. The proposed architecture of DFE
consists of two switches; one on the transmitter side and an-
other switch on the receiver side. These switches are used for
setting/resetting the operational modes from training state to
online state and vice versa based on the quality of the received
signal in terms of SNR. For instance, during the online mode
when the SNR degrades (i.e. SNR≤ SNRthreshold), the con-
troller on the receiver side sends a narrow-band control signal
(i.e pilot) requesting to re-train the DFE based on a predefined
and known training symbols. A detailed operational scenario
of the proposed enhanced DFE is described in algorithm 1.

In this algorithm the SNRT is initially set according to
the deployed application, such as voice, video, etc for the
required accurate symbol recovery. Firstly, the DFE is initial-
ized (toggle SW1 and SW2) on the training symbols that are
installed on both the transmitter and receiver side to allow the
adaptation algorithm of estimating the equalizer’s coefficients.
After the initialization stage, the DFE is deployed (toggle
back SW1 and SW2) to operate on any received signal that
has SNR higher than the SNRT . In case the channel distortion
increases, the SNR is directly degraded on the receiver side
causing increase of the error propagation (SNR≤ SNRT ) in
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Fig. 5. Proposed adaptive architecture of DFE with controller blocks.

Algorithm 1 DFE training scenario

1: Set SNRT ▷ SNRthreshold
2: Load training symbols (xm) on transmitter side
3: Load training symbols (xm) on receiver side
4: Toggle SW1 to port 2 ▷ transmitting payload
5: Toggle SW2 to port 2 ▷ DFE mode
6: Start online DFE mode
7: Calculate SNR output on the equalizer (xk)
8: While (SNR ≤ SNRT ) do
9: Toggle both SW1 & SW2 to port1 respectively

10: Sync transmitted and received symbols
11: Start training DDL mode
12: Update the FIR coefficients W& B
13: Stop DDL training mode
14: Toggle both SW1&SW2 to port2 respectively
15: Start DFE online mode

Fig. 6. A block diagram of the proposed switching scenarios
between training mode and online mode.

the decision feedback and potential of failure in DFE. Hence,
this algorithm is proposed to ignore the incoming symbols
from the feedback branch in DFE (toggle SW1 and SW2 to
port) and re-training the equalizer back based on the same
training symbols during the initialized stage. Finally, the
equalizer operational mode is set back to decision feedback
after successful updating the equalizer’s coefficients.

IV. SYSTEM SIMULATION AND RESULTS

A simulation set-up is implemented using MATLAB software
for system modeling and performance evaluation of the en-
hanced DFE based on the digital communications as described
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in Fig. 7, which consisting of a random binary generator on
the transmitter side and BPSK digital modulator. A total num-
ber of 3000 random binary symbols are modulated in base-
band using a raised-cosine pulses with roll-off factor of 0.25.
The channel model employed in this simulation is a four-way
multipath fading channel of a truncated raised-cosine function
as follows:

h(t) =
3

∑
i=0

air (t −di)L(t −diT ) (12)

where r(t) is a raised-cosine function as depicted in (13),
L(t) is a rectangular pulse of width [−3T,3T ] for bandlim-
ited truncation, ai are the attenuation factors, and di are the
corresponding offset of the multipath fading channel.

Fig. 7. Block diagram of the simulated communication
system with equalizer.

In this simulation the parameters are set for severe ISI as
follows:
a0=1, a1=0.6, a2= –0.8, a3=0.1, d0=0, d1=0.25, d2=0.5, d3=2.
The above coefficients represent the attenuation factors (a0,
a1, a2, a3) and the corresponding time dispersion (d0, d1, d2,
d3) of each transmission path in the multipath channel. These
parameters were chosen randomly based on rule-of-thumb
proportions. For example, the main signal is travelled via
the main path (i.e. shorter distance) from the transmitter to
the receiver, which is normally exhibits higher magnitude.
The second signal path is attenuated by factor 0.6 due to
certain reflection criteria in addition the signal typically travels
longer distance assuming a symbol delay equivalent to 0.25T.
Similarly, the impact of the third and fourth arrays is used in
this simulation to control the severity of the channel ISI.

r (t) = sinc(tT )cos(παtT )/(1−4α
2t2T 2) (13)

where α is the pulse roll-off factor (0 ≤ α ≤ 1) and T is a
symbol period. The channel impulse response is depicted
in Fig. 8(a) which shows the ISI aliasing in time domain;
furthermore, the channel characteristics and attenuation in
the frequency domain are depicted in Fig. 8(b). The signal

on the receiver side is obtained from a convolution operation
between the channel model and the pulse shaping filter, and
then the resulted signal is convoluted with matched-filter that
has impulse response h(t) = r(T − t) for optimal receiver
architecture. Finally, signal demodulation and equalization
operation are both applied to recover the transmitted symbols.

The communication model with DFE is simulated dur-
ing the two modes; DDL and DFE to compare and monitor
the equalizer performance during all the stages. The symbol
synchronization between the transmitter and the receiver side
is implemented using the cross-correlation function in MAT-
LAB for accurate estimation the equalizer’s coefficients. The
simulated output result in terms of BER with respect to SNR is
illustrated in Fig. 9, which shows significant improvement in
BER (i.e more than 100 times decreases in error rate based on
the same SNR) due to the obtained mitigation of ISI when the
DFE is applied on the receiver side. The margin the between
the theoretical ideal characteristics (blue curve in Fig. 9) and
the measured BER/SNR (red curve in Fig. 9 ) characteristics
increases proportionally due to the impact of multipath fad-
ing channel. In addition, the receiver performance in BER
decaying rapidly to optimal point with respect to SNR (green
curve) due to the obtained improvement using the DFE. The
equalizer operation is evaluated during different time peri-
ods; before equalizer to show the error symbols, during the
training mode, and during regular DFE operation mode as
depicted in Fig. 10, using two different quantities of SNR
and the same equalizer time spacing τ . Whereas the equalizer
performs well during the DFE mode for both SNR quantities,
the residual errors decrease rapidly using fewer steps during
the training mode when the channel distortion is minor (i.e
higher SNR). The eye diagram is another measure to describe
visually the channel distortion and ISI, such that the wider the
eye-openings, the higher channel capacity, and lower ISI dis-
tortion. Hence, Fig. 11 shows clearly the simulation results of
symbols overlap on the receiver side at different time instance;
before the equalizer, during and after the training mode of the
DFE. The simulation results show a huge randomness in sym-
bol overlap due to severe channel ISI which is compensated
gradually during the training phase until obtaining the optimal
results during the DFE mode. In this simulation, two different
quantities of equalizer’s time spacing (τ) with respect to sym-
bol duration are used to evaluate the efficiency of DFE based
on eye diagram. The compared eye diagrams with respect
to the parameter τ shows clear improvement in eliminating
the ISI when τ is set to 0.75T versus 1.5T . This is because
the equalizer model of a higher time-spacing bypasses some
of ISI symbols that have lower time duration. Finally, the
convergence rate of NLMS algorithm in estimating the equal-
izer’s coefficients is depicted in Fig. 12 to investigate the
adaptation’s performance under different SNR. In this figure
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Fig. 8. Multipath raised-cosine fading channel. (a) Impulse time response (b) Frequency domain.

the mean square-errors (MSE) criteria decays exponentially as
calculated for the three different values of SNR (20dB, 15dB,
10dB). In addition, Fig. 12 shows adequate convergence rate
among these values of channel SNR such that the learning
curve reaches the optimal point in a faster trend (i.e within
fewer iterations) when the SNR is relatively high as in blue
curve compared to slower decaying trend as in black curve
which requires more iteration steps to reach the optimal point.
The learning rate in each iteration of the presented simulation
is set to 0.01 which is relatively small for slower convergence
to avoid possible estimate divergence scenario. The compared
calculated ISI of the enhanced DFE approach with respect to
the traditional DFE is depicted in Table I. Of the 1000 received
symbols, it is observed that 37 symbols containing error in
the traditional DFE compared to only 18 error symbols in the
proposed enhancement architecture of DFE.

TABLE I.
PERFORMANCE RESULTS OF ADAPTIVE EQUALIZERS IN

MITIGATING ISI

Adaptive Equalizer Symbol Error
DFE 3.7%

Enhanced DFE 1.8%

V. CONCLUSIONS

An enhanced deployment architecture of DFE has been pre-
sented in this paper. The SNR on the receiver side is monitored
instantaneously to set the operational state of DFE for improv-
ing the adaptive estimation of the equalizer coefficients. The
error analysis and evaluations of the adaptive equalizer have
been presented during training and running modes over ban-
dlimited 4-array multipath fading channel based on system

Fig. 9. Performance evaluation results of the equalizer in
terms of SNR and BER.

simulation using MATLAB. The modeling theory structure
of DFE was developed using the combination of wiener digi-
tal filter and NLMS algorithm for dynamic estimating of the
equalizer coefficients. The proposed model is appropriate
for different communication scenarios, especially in severe
channel distortion that degrades the performance of DFE due
to the increase in multipath fading and other aspects, such as
the time-varying and nonlinear characteristics. Finally, the
obtained validation results showed modeling improvement in
DFE which performs well in mitigating the error symbols of
ISI during the running state and converges faster using lower
number of iterations.
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Fig. 10. Residual errors of the DFE during different operational modes.

Fig. 11. Eye diagram for BPSK signal over the simulated multipath fading channel for assessing the DFE in eliminating the ISI
during different scenarios. SNR = 25dB, τ = 0.75T (RHS) and SNR = 15dB, τ = 1.5T (LHS).
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