
 

 

 

*Corresponding author. Email: salam.alaugby@uokufa.edu.iq 

 

 
 
 

Research Article 

A Stacked Ensemble Classifier for Email Spam Detection via an Evolutionary 

Algorithm 
Salam Al-augby1, * , Hasanen Alyasiri1 , Fahad Ghalib Abdulkadhim1 , Zahraa Ch. Oleiwi 2   

 

1 Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq 

2 Faculty of Computer Science and Information Technology, University of Al-Qadisiyah, Qadisiyah, Iraq 
 

A R T I C L E I N F O 
 

Article history 

Received 17 Dec 2024 

Revised: 25 May 2025 

Accepted 31 May 2025 

Published 6 Jul 2025 

 
Keywords 

Spam detection 

Ensemble learning 

Evolutionary Algorithm 

Data Analysis 

 

 

A B S T R A C T 

 
 Email communication is a crucial aspect of modern interactions. With the growing volume of spam 

emails, there is a pressing need for more effective antispam filters to detect unwanted messages. Existing 

spam detection techniques often fall short, prompting researchers to leverage machine learning and 

artificial intelligence to enhance online security. This study introduces an advanced spam detection 

technique using an ensemble learning approach. First, key features are extracted from both spam and 

non-spam emails via the term frequency-inverse document frequency (TF-IDF) method. Several 

classification algorithms, including cubist, naïve Bayes, support vector machine, rpart, and ctree, are 

applied to classify emails on the basis of the extracted features. A stacking model that uses an 

evolutionary algorithm is implemented to further increase the detection accuracy. The effectiveness of 

the proposed methodology is evaluated on widely adopted spam datasets. The results demonstrate its 

robustness, achieving an accuracy of 98.39% on the Enron dataset and 98% on the SpamAssassin dataset, 

highlighting its efficiency and significance in spam email detection.

 
1. INTRODUCTION 

As electronic communication has proliferated, email has emerged as one of the most prevalent modes of communication 

worldwide. Recent email data indicate that over 347.3 billion emails are sent and received daily in 2023, with projections 

exceeding 400 billion by 2027 [1]. Spam, in the case of online communication, can be defined as unwanted persistent 

messaging sent out in mass for commercial or other undesirable reasons. This can occur through multiple methods, including 

email, social media, instant messaging, and even phone calls [2]. In 2023, 45.6% of all emails were classified as spam [3]. 

Spam emails waste time and resources, potentially leading to malware dissemination, phishing efforts, and theft of valuable 

information, thus presenting a significant issue to individuals and companies alike. Consequently, spam email identification 

is an essential function in email security, as it protects internet users from such attacks. Machine learning (ML) can assist in 

preventing or alleviating numerous dangers, including spam. Supervised machine learning-based spam detectors have 

demonstrated efficacy by producing improved accuracy results with reduced variability, hence ensuring greater consistency 

for this approach [4], [5]. Malware detectors generated from a single ML algorithm have been clearly studied and have 

achieved excellent results. However, compared with single classifiers, ensemble learning has achieved superior results [6], 

[7]. The process of combining a set of models (i.e., classifiers) and forming a single strong model is referred to as an 

ensemble. The primary objective is to utilize the strengths of each algorithm within the ensemble to achieve a resilient 

classifier. 

Ensemble learning can be classified into three categories: stacking, boosting, and bagging. Bagging is a simple yet powerful 

ensemble method. This method involves dividing the training dataset into several samples through random selection of data 

with replacement. Each sample is subsequently utilized to train the respective base model. In classification tasks, the outputs 

of all models are aggregated, resulting in a solitary conclusion via a voting mechanism. In the regression analysis, the results 

of all the models are consolidated to derive the final conclusion. The model demonstrates stability by reducing variance and 

bias in the data distribution [6]. Boosting is an ensemble technique that transforms a collection of weak classifiers into robust 

classifiers [8]. The predictors are obtained progressively. The initial predictive model is trained via comprehensive datasets, 

whereas subsequent models derive insights from the performance of prior learners, and so on. In each iteration, the weight 

must be increased for every instance misclassified by prior learners. In the classification problem, the ultimate prediction is 

Mesopotamian journal of Cybersecurity 

Vol. 5, No.2, pp. 657–670 

DOI: https://doi.org/10.58496/MJCS/2025/039; ISSN: 2958-6542 

https://mesopotamian.press/journals/index.php/cybersecurity 

https://doi.org/10.58496/MJCS/2025/039
https://mesopotamian.press/journals/index.php/cybersecurity


Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

658 

ascertained by consolidating the outputs of all the predictors via a weighted majority vote. In regression problems, the 

ultimate prediction is ascertained by the weighted sum of the outputs from all the predictors. The bagging and boosting 

ensemble techniques depend on voting, whereas stacking combines lower-level base learners to produce high-level learners. 

Wolpert reported that ensemble approaches produced greater accuracy than did a singular trained model [7]. In a stacking 

model, the individual learners are referred to as base models, each trained on the entire training dataset. A meta-model is 

then employed to combine the outputs of these base models, aiming to determine the optimal combination of predictions for 

improved overall performance. While prior studies have explored the use of evolutionary algorithms (EAs) to select the most 

effective base models and their combinations, comprehensive ablation studies remain essential. Such studies are critical for 

understanding the contributions of individual components within ML strategies [9]. Hence, it is essential to understand the 

reasons behind and the processes by which ML models make decisions when they are applied in security contexts. Recently, 

several frameworks for interpreting ML models have been developed, helping to enhance users’ comprehension of and 

confidence in these models [10]. 

Detection techniques based on ensemble learning are able to satisfy the growing demand for reliable and intelligent solutions. 

Ensembles help meet various security challenges, such as an insufficient amount of quality training data, a reduction in false 

alarms (i.e., false positives and false negatives), high-dimensional features, and various applications or parts of the 

investigated system [11], [12]. EAs are a class of optimization and search algorithms inspired by natural selection. They 

solve complex problems by iteratively improving a population of candidate solutions [13]. Both ML and EA have been used 

to address various security problems, including networks [14], botnet [15], phishing attacks [16], IoT threats [17], VANET 

[18], and insider threats [19]. EAs exhibit several advantageous characteristics, including generating interpretable outcomes, 

producing lightweight models, and utilizing fewer features than traditional ML algorithms do [13]. These attributes are 

particularly valuable for security teams seeking efficient and transparent spam detection solutions [20]. Furthermore, we use 

DistilBERT, a resource-efficient pre-trained language model, to perform comparative analysis in email classification. A 

distilled version of the larger BERT model called DistilBERT comes with a more compact and faster architecture and yet 

achieves strong results across several natural language tasks [21]. 

This study introduces a tree-based method, evtree, which leverages the EA paradigm to construct an ensemble-based spam 

detection model. While ensemble learning and evolutionary approaches have been explored in prior research, evtree offers 

a refined mechanism for autonomously selecting and integrating multiple base classifiers to increase performance. The key 

contributions of this study are as follows: 

1. We assess the effectiveness of five independent supervised classification algorithms in identifying spam emails, 
providing insights into their individual performance. In addition, to provide a comparison with deep learning 
methods, we use the DistilBERT model as a benchmarking reference. 

2. We propose an evolutionary ensemble learning framework (evtree) tailored for spam detection, enabling the 
adaptive formulation of ensemble models. 

3. Comparative evaluations demonstrate that the evtree-based ensemble consistently outperforms its corresponding 
single-base classifiers across supervised and ensemble settings (i.e., averaging and majority voting). However, 
while performance improvements are observed, they align with incremental advancements reported in prior 
literature on evolutionary-based ensemble learning. 

4. To validate our methodology, experiments were conducted on two widely recognized spam benchmark datasets. 

The results confirm the robustness and effectiveness of the evtree approach in spam classification. Furthermore, an 

ablation study was carried out by systematically excluding each of the base models used in the ensemble to evaluate 

their individual contributions to the overall performance of evtree. 

Section 2 provides an overview of existing spam detection approaches in related works. Section 3 outlines the Enron dataset 

and its preprocessing for feature extraction. Sections 4 and 5 present the nonensemble and ensemble learning paradigms, 

demonstrating the combination of base classifiers via evtree. The detailed results of the analysis of various algorithms and 

the probable explanations for our findings are presented in Section 6. The final component comprises the conclusion and 

prospective endeavors. 

 

2. RELATED WORK 

The problem of email spam detection has been studied intensively, and different approaches have been introduced to enhance 

the classification performance. Some of the research papers are more specific to particular types of methods, ranging from 

basic machine learning methods to layered models that include deep learning. 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

659 

The classification model for spear-phishing emails by Zuhdi et al. [22] does not depend on headers, bodies or attachments 

but rather on content-based features. In their study, they incorporated a new feature known as the ‘Email contain Position’, 

which was used to distinguish spear-phishing emails from the ensemble from the Enron dataset. They used random forest 

and naïve Bayes classifiers: although both were successful, random forest had a higher area under the curve (AUC) of 99.6% 

and F1 of 96.8%. On the other hand, the naïve Bayes classifier used in this experiment reflected a moderate level of accuracy, 

which suggested that decision tree-based models are more effective than others for classifying spear-phishing via content-

based features. This demonstrates that feature engineering, alongside selecting specific classifiers, can help increase the 

accuracy of email classification, which is the objective of the proposed approach using a stacked ensemble with evolutionary 

algorithms. 

In the same manner, Junnarkar et al. [23] developed an ML approach to assess email spam classification and NLP. Their 

solution included text classification that was previously supplemented with URL-based filtering; they applied metrics that 

include random forest and naïve Bayes filtration. Their work focused on identifying the need for semantic-based text 

classification along with URL filtering as an additional layer that can enhance multiple-layer security for spam detection 

systems. The random forest yielded a high accuracy of 97.83%, whereas naïve Bayes obtained a mean accuracy of 91.11%, 

revealing the efficiency of augmenting the system with semantic-based text classification for spam detection via a URL filter. 

A more detailed comparison can be made with one of their feature sets: they employed both the content of the site and the 

URL for their model, which is similar to the feature mixture used in this work because the greater difference between features 

and algorithms makes the result more accurate. 

Douzi et al. [24] presented a hybrid spam detection model that relies on deep learning together with the paragraph vector-

distributed memory (PV-DM) model. As mentioned previously, previous works applied conventional approaches such as 

bag-of-words (BOW) and recognized some issues in the original model, which failed to express the order or context of the 

words, reducing the performance of the model when trying to focus on the semantics of the words. To address this issue, 

Douzi et al. suggested extending the work of the PV-DM with a context-constructing model to generate a context-aware 

representation of emails and combined the improved approach with BOW. Their hybrid model, which they used in this 

scenario, yielded good results compared with the baseline BOW and PV-DM models on the Enron dataset, where it yielded 

95.88%, whereas on the Ling dataset, it yielded 98.27%. Its model easily outperforms their previous methods in terms of 

both the accuracy and classification of the Enron and Ling spam sets. 

Tida and Hsu [25] presented a spam detection framework named the Universal Spam Detection Model (USDM) derived 

from transformer technology used by Google. A pretrained BERT model from four datasets was adapted by their system, 

which included SpamText and Enron. The model reached extraordinary success, with an overall accuracy of 97% and an F1 

score of 96%, which illustrates the power of transformer models in immediate spam identification across different datasets. 

Guo et al. [26] constructed a spam detector model that integrates the BERT transformer architecture with ML algorithms, 

namely, logistic regression and support vector machines. The model demonstrated exceptional accuracy, with logistic 

regression exceeding all compared classifiers and scoring 97.84% on the Enron-Spam dataset. Improving the classification 

of spam is highly dependent on transformers' ability to gather context-rich information within texts. 

Zavrak and Yilmaz [27] used the hierarchical attention hybrid neural network (HAN) algorithm and the FastText (FT) model 

for email spam detection, combining convolutional neural networks, gated recurrent units and attention mechanisms. Their 

approach selects which parts of the email text to pay particular attention to to to improve classification accuracy. Their model 

is based on combining convolution layers for extracting useful features with GRUs for sequence processing and performs 

well across several datasets, such as TREC 2007, Enron, and SpamAssassin, with a very high AUC of 99.9% being achieved 

on the TREC 2007 dataset. 

In [2], Nicholas and Nirmalrani developed a hybrid model that utilized bioinspired algorithms to optimize deep learning 

models efficiently. During each epoch, the algorithm refined weight optimization by using the sand cat swarm optimization 

(SCSO) technique to address issues with high-dimensional data challenges. After data processing, BoW was used for 

extracting features and optimal feature selection. Using a dataset of email spam from the UCI machine learning repository, 

the hybrid model achieved 92.50% accuracy. 

In conclusion, the studies mentioned above reflect various methodologies and developments in the implementation of 

ML/DL techniques for spam email classification. To improve the recall, a stacking ensemble method is introduced to 

combine the classifiers from the multiple base classifiers, considering the requirement of managing the dynamic spam 

techniques. We validate the effectiveness and generalizability of our approach via several experimental evaluations across 

different datasets, which are composed of diverse data distributions, along with various further experiments. This model has 

higher recall and addresses the limitations found in individual models, thereby improving the overall performance. By 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

660 

establishing a new baseline for counterfactual classifiers and considering the ability to retrieve spam emails as part of a 

metric of classifier performance, we demonstrate the potential of our model to improve spam email classification accuracy. 

3. DATASET PREPROCESSING AND FEATURE EXTRACTION 

Before this study, two widely used datasets considered benchmarks in spam investigations were adopted: Enron [28] and 

SpamAssassin [29]. Enron has 33,715 emails, 50.92% of which are spam, whereas 31.35% of SpamAssassin's 5,795 emails 

are spam. In the preprocessing step, each text column contained the subject and content of that email. A series of text data 

preprocessing operations are performed on the datasets employed in the Natural Language Toolkit (NLTK). The first 

operation converts all the text to lowercase and removes special characters and multiple spaces. The next step is to eliminate 

stop words from the text via a predefined set of stop words from the NLTK library. Adapting data constitutes a vital first 

step in NLP initiatives [30]. Previous studies have investigated various NLP approaches for feature extraction from emails 

aimed at improving spam detection through ML techniques. According to [31], the most commonly adopted methods include 

bag-of-words (BoW), N-grams, term frequency-inverse document frequency (TF-IDF), and word embeddings such as 

word2vec. TF-IDF has demonstrated strong performance in spam email classification, offering both computational efficiency 

and meaningful word importance weighting [5]. Therefore, this paper adopts TF-IDF for feature extraction. This technique 

used for assessing the relevance of a word in a document versus a set of documents or a corpus is the aim of the statistical 

indicator TF-IDF [32]. It consists of two elements: we measure both term frequency (TF) and inverse document frequency 

(IDF) [33]. TF indicates how many times a particular word occurs in a document. This increases the importance of words 

that are used frequently. The rarity of a term within the corpus is indicated by the IDF component (refer to)34]) such that the 

TF-IDF weight for word 𝑖 in document 𝑗 is given by: 

𝑤𝑖𝑗 = 𝑡𝑓𝑖𝑗 ∗ log (
𝑁

𝑑𝑓𝑖
) ,               

where 𝑡𝑓𝑖𝑗  is the number of times word 𝑖 appears in document 𝑗 divided by the total number of words in document 𝑗; 𝑁 is 

the total number of documents in the corpus; and 𝑑𝑓𝑖 is the number of documents in the corpus that contain word 𝑖. 
 

Algorithm 1: TF/IDF Algorithm [35] 

Input: R is the set of prediction rules (ranking tables) 

              N is the set of documents 

Output: F is the output file (table of ranking, 𝑡𝑐, 𝑡𝑓, 𝑀, 𝑖𝑑𝑓, and (𝑡𝑓 − 𝑖𝑑𝑓) 

1. Begin 

2. String Matching (R, N) 

3. F =  

4. For each rule r in the prediction rule base R Do  

5.       For each example n in  N 

6.            If r refers to n (R, N) 

7.                   Add information to F  

8. Return F 

9. End 

 

Algorithm 1 shows how TF/IDF works. By using Python, TF-IDF values can be calculated via the 𝑇𝑓𝑖𝑑𝑓𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟() 

method in the sklearn module. TfidfVectorizer is a feature extraction method used to convert a collection of raw documents 

into a matrix of TF-IDF features. When using the 𝑇𝑓𝑖𝑑𝑓𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟, 4500 max TF-IDF features are employed in this 

particular work. The general steps are as follows: 

1- The dataset was downloaded, followed by a thorough review of its contents. 

2- A pre-processing step is applied to remove stop words from the dataset via NLTK. This step involves utilizing 

NLTK's built-in list of common stop words, which includes 40 words, such as "a", "an", "the", and "of", with 

attention given to some words that may affect the meaning change of the emails. By removing these stop words, we 

aim to increase the quality of the data by focusing on meaningful words and reducing noise in the dataset. This 

process is beneficial for researchers and practitioners working with NLP tasks. 

3- We call 𝑇𝑓𝑖𝑑𝑓𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟 by sting the max feature to 4500. 

4- The 𝑡𝑓 − 𝑖𝑑𝑓 values are obtained by applying the 𝑓𝑖𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚() method to the training and testing datasets. 

5- The result in step 4 is used as the input to the proposed classifier. 

(1) 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

661 

4. CLASSIFIER MODELS 

4.1 Cubist Algorithm 

Cubist is a rule-based model that is an extension of Quinlan's M5 model tree. It is a powerful classifier that combines 

decision trees with linear models. This hybrid approach manages to handle complex datasets by capturing nonlinear 
relationships and linear trends. Cubist splits the dataset into multiple partitions via decision trees. For each leaf, a linear 

regression model is fit. To smooth the transitions between these linear models, Cubist uses a linear combination of the 

current model's prediction, 𝑦(𝑘), and the parent model's prediction, 𝑦(𝑝𝑑), as follows: 

𝑦𝑝𝑎𝑟 = 𝑎 × 𝑦𝑝𝑎𝑟 + (1 − 𝑎) × 𝑦𝑝𝑎𝑟 ,              

where a is a weighting factor. These models make predictions on the basis of the rules derived from the decision tree 

structure. 
[36], [37]. 

 

 

4.2 Naïve Bayes (NB) 

As a probability classifier that uses Bayes' theorem and assumes feature independence on the basis of class labels, naïve 

Bayes performs its function. Although this model achieves great success with extensive datasets, it still functions 

appropriately when the independence assumption is neglected. This model appeals to many users for its straightforward 

application and its ability to classify texts and identify spam in different machine learning scenarios [38]. However, the 

naïve Bayes algorithm is relatively impervious to the violation of these assumptions in real-world scenarios. In addition, it 

is among the best algorithms in data mining. In this case, let 𝐶 represent the class in which a given observation 𝑋 belongs. 

To predict the class of this observation, the highest posterior probability must be calculated according to Bayes' theorem: 

𝑃(𝐶|𝑋) =
𝑃(𝐶)𝑃(𝑋|𝐶)

𝑃(𝑋)
,                        

where 𝑃(𝐶), 𝑃(𝑋|𝐶), and 𝑃(𝑋) denote the prior probability, likelihood, and evidence (probability of 𝑋), respectively. 

Under the assumption that the features 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛 are conditionally independent given the class, the equation 

becomes: 

𝑃(𝐶|𝑋) =  𝑃(𝐶) ∗
∏𝑃(𝑋𝑖|𝐶)

𝑃(𝑋)
,            

where 𝑃(𝐶) is the prior probability, the product of all likelihoods is ∏𝑃(𝑋|𝐶), and 𝑃(𝑋) is the evidence. 

 

4.3 Support Vector Machine (SVM) 

Support vector machines (SVMs) provide strong classification and regression tools. In a large-dimensional space, SVMs 

define a hyperplane to distinguish different classes of data effectively while maximizing the margin between them. This 

is achieved by utilizing a linear model of the form: 

𝑦(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏,                   

where 𝜙(𝑥) denotes a fixed feature-space transformation, w is the weight vector, and b is the bias parameter. By using a 

range of kernel functions, this strategy addresses nonlinear relationships efficiently, making SVMs particularly useful for 

intricate datasets. Many SVMs are recognized as having excellent generalization abilities, and they commonly appear in 

domains such as bioinformatics and image recognition [38]. 

 

4.4 Recursive Partitioning Tree (part) 

A recursive algorithm in the recursive partitioning tree (rpart) splits the dataset into groups on the basis of feature values. 

This approach seeks to establish a tree framework that precisely forecasts the target variable by ensuring the equality of the 

generated subsets [36], [39]. The standard Gini index offers a useful interpretation related to misclassification. Consider 

selecting an object from one of 𝐶 classes with probabilities (𝑝1, 𝑝2, … , 𝑝𝐶) and randomly assigning it to a class via the same 

probability distribution. The probability of misclassification is given by: 

(2) 

(3) 

(4) 

(5) 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

662 

∑ ∑ 𝑝𝑖𝑝𝑗

𝑗≠𝑖𝑖

= ∑ ∑ 𝑝𝑖𝑝𝑗

𝑗𝑖

− ∑ 𝑝𝑖
2

𝑖

= 1 − ∑ 𝑝𝑖
2

𝑖

,               

This final expression, 1 − ∑ 𝑝𝑖
2

𝑖 , is the Gini index for the probability distribution 𝑝. Now, let 𝐿(𝑖, 𝑗) represent the loss 

incurred when an object is assigned to class 𝑗 while it actually belongs to class 𝑖. The expected cost of misclassification 

can be expressed as ∑ ∑𝑖 𝑗
𝐿(𝑖, 𝑗)𝑝𝑖𝑝𝑗. This motivates the definition of the generalized Gini index of impurity as follows:  

𝐺(𝑝) = ∑  
𝑖

∑  
𝑗

𝐿(𝑖, 𝑗)𝑝𝑖𝑝𝑗 ,               

This generalized index is promising for applications where misclassification costs vary. However, it suffers from certain 

drawbacks. First, 𝐺(𝑝) is not necessarily a concave function of 𝑝, which is a desirable property for impurity measures. 

Second, 𝐺 effectively symmetrizes the loss matrix. This is evident from the equivalent form: 

𝐺(𝑝) =
1

2
∑ ∑[𝐿(𝑖, 𝑗) + 𝐿(𝑗, 𝑖)]𝑝𝑖𝑝𝑗

𝑗𝑖

,                 

In particular,  for two-class problems,  𝐺 essentially ignores the loss matrix, rendering it less useful in scenarios where the 

misclassification costs between the two classes are significantly different. 

 

4.5 Conditional inference trees (ctree) 

This statistical technique named Conditional Inference Trees (ctree) resolves issues with traditional tree models, especially 

in dealing with bias and overfitting. This approach selects splits within a statistical context for a tree that has both a sound 

structure and an interpretable form [36], [40]. 

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) = (∑ 𝑤𝑖

𝑛

𝑖=1

(𝑥))

−1

∑ 𝑤𝑖(𝑥)

𝑛

1=1

𝐼(𝑌𝑖 = 𝑦), 𝑦 = 1, … , 𝐽,             

where: 

• 𝑃^(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) is the estimated conditional probability that the response variable 𝑌 equals y given that the 

covariate 𝑋 equals 𝑥. 

• 𝑤𝑖(𝑥) is a weight function for the 𝑖 − 𝑡ℎ observation, which is dependent on the covariate value x. 

• 𝐼(𝑌𝑖 = 𝑦) is an indicator function that equals 1 if the response variable 𝑌 for the 𝑖 − 𝑡ℎ observation is equal to 𝑦 

and 0 otherwise. 

• 𝑛 is the total number of observations. 

• 𝑦 represents one of the 𝐽  classes of the response variable 𝑌. 

• 𝐽 is the total number of classes in the response variable 𝑌. 

• 𝑥 represents the given value of the covariate 𝑋. 

 

5. ENSEMBLING CLASSIFIERS USING EVTREE 

Evolutionary algorithms offer an effective foundation for the independent creation of computer programs [17]. An 

evolutionary algorithm paradigm begins with the creation of a set of solutions (i.e., population) that could address the 

problem. Solutions are subsequently assessed to ascertain the effectiveness of their problem-solving abilities or their 

closeness to a solution. The evaluation of a person's closeness to resolving the issue is denoted by a 'fitness function'. The 

simulated evolutionary process seeks to cultivate progressively optimal populations of candidate solutions, utilizing 

operators driven by biology concepts, including reproduction, which involves crossover, mutation, and selection. The three 

evolutionary operators are used iteratively until the stopping criteria are met. Crossover entails the 'mating' of solutions, 

whereby two individuals exchange components to generate children. Mutation allows a component of a solution to undergo 

spontaneous modification, enabling it to adopt values that may not have been previously enclosed by any candidate solution 

within the population. Ultimately, selection determines which solutions progress to construct the successive generations of 

the population. This creates a 'survival of the fittest' framework, in which superior solutions have more chances of 

progression. By continually following the established cycle, it is predicted that future generations will yield more fit 

(6) 

(7) 

(8) 

(9) 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

663 

solutions, ultimately resulting in at least one that addresses the issue or is considered acceptable. The fundamental 

procedures of an EA are delineated in Algorithm 2: 

 

Algorithm 2: Evolutionary Algorithm [13] 

Input: input dataset 

Output: the best solution 

1. Start 

2. Create randomly the initial population 

3. Assess the quality of each solution through using the fitness function. 

4. While termination conditions not met: Do  

5. Assess the fitness of each solution in the population. 

6. Apply genetic operators to the solutions 

7. Produce a new population 

8. End While 

9. Return the best solution 

10. End 

 

This research aims to create a classification tree that more accurately identifies spam. evtree is employed as an evolutionary 

algorithm for the categorization of trees. The tree algorithm is implemented via an evolutionary approach grounded in 

Darwinian concepts. Grubinger et al. first introduced it in 2014 [41]. evtree generates candidate solutions in the form of 

trees and systematically modifies them after each generation to improve the classification tree for the specific environment. 

The root nodes are initialized via a random, valid splitting criterion in the initial phases of population development. The 

assessment function reflects the requirements of the population. Individuals are evaluated according to their 

misclassification rate and complexity, as determined by the evtree algorithm, specifically the utilized terminal nodes. The 

aim is to increase accuracy in the training data while minimizing complexity. The effectiveness of a classification tree is 

primarily assessed through its misclassification rate (𝑀𝐶), whereas its complexity is determined by the number of terminal 

nodes (𝑀). evtree employs 2𝑁 ·  𝑀𝐶(𝑌, 𝑓(𝑋, 𝜃)) as its loss function. The complexity of trees is measured by the number 

of terminal nodes, adjusted by 𝑙𝑜𝑔 𝑁 and a user-defined parameter 𝛼. Equation (2) aims to identify trees 𝜃 that minimize 

misclassification loss while balancing a BIC-type trade-off with the number of terminal nodes [41]. Consequently, it may 

generate effective solutions with decreased complexity, which is beneficial for resource-constrained settings. 

𝑙𝑜𝑠𝑠(𝑌, 𝑓(𝑋, 𝜃)) = 2𝑁. 𝑀𝐶(𝑌, 𝑓(𝑋, 𝜃)) 

                                        = 2. ∑ 𝐼(𝑌𝑛  ≠ 𝑓(𝑋𝑛, 𝜃))

𝑁

𝑛=0

, 

𝑐𝑜𝑚𝑝(𝜃)   = 𝛼 . 𝑀 .  𝑙𝑜𝑔 𝑁 
 

 

Genetic operators modify the tree at each iteration of the 𝑒𝑣𝑡𝑟𝑒𝑒 algorithm, which employs one crossover operator and four 

types of mutation operators. The crossover operation generates two new trees by recombining two subtrees extracted from 

randomly selected trees. Mutation involves several processes: 

• Split: A terminal node is randomly selected and assigned a valid, randomly generated split rule, converting it into 

an internal node with two new terminal nodes. 

• Pruning: A random internal node with two terminal children is selected and pruned, becoming a terminal node. 

• Major split rule mutation: A random internal node is chosen to modify both the split variable and the split point. 

• Minor Split Rule Mutation: This mutation is similar to the major split rule mutation but with only slight modifications 

to the split point. 

The newly generated trees are reintegrated into the population, and this process continues until a predefined termination 

criterion, such as a set number of generations, is met. 

This paper involves training ML algorithms on a uniform dataset to develop base models. Initially, multiple models are 

trained via the dataset, and their predictions are combined to form a final decision. In the second phase, evtree is applied to 

construct the stacked model. The stacked models are represented as trees, with each solution illustrating a possible 

configuration of the available base learners. Acquiring the stacking procedure via the suggested method may result in 

nonlinear combination mechanisms that can more effectively utilize the outputs of various learners. Stacking systems that 

(10) 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

664 

utilize weighting or majority voting strategies, which linearly integrate several learners, are not the most effective option 

for ensemble construction [38]. In the stacking process, we employed the prediction probabilities of the base learners to 

train the event tree (i.e., meta-learner) rather than the prediction labels. evtree performs two operations during the assembly 

of stacked models: picking members from a pool of base models and combining the selected base models (i.e., fusing the 

base models). Hence, the members of the stacked models are automatically selected instead of a predetermined size (i.e., 

fixed). The stacking method has demonstrated efficacy in overcoming numerous machine learning challenges. However, 

extra time is needed because of the requirement for meta-learning training. To mitigate this limitation, the training portion 

is partitioned into 80% for training base learners and 20% for training the stacking algorithm (i.e., evtree). The computing 

effort is manageable when the stacked model is reconstructed in response to data alterations. The overall structure of the 

proposed framework utilizing the evtree method is illustrated in Figure 1. The algorithm is given in Algorithm 3. 

 

 
Fig.1 Workflow of the proposed stacking schema 

 

Algorithm 3: Stacking using evtree 

Input: train_X: train attributes, train_y: train label, test_X: test attributes, test_y: test label 

Output: best performing stacked tree 

               base_classifiers = [‘cubist, ‘NB, ‘SVM, ‘rpart, ‘ctree’] 

1. Step 1: learn base classifiers 

2. foreach classifier ∈ base_classifiers do 

3.        Train classifier on train_X and train_y 

4.        Examine classifier performance using test_X and test_y 

5.        Save performance metrics 

6. end 

7. Step 2: formulate a training set for meta-learning classifier. 

8. foreach classifier ∈ base_classifiers do 

9.        Obtain probability = a list of predicted probability on 20% of train_X using classifier 

10.        Attach probability in new_dataset 

11. end 

12. Append the 20% train_y in new_dataset 

13. Step3: learn a meta-classifier 

14. Run evtree algorithm on new_dataset to stack base_classifiers as a tree 

15. Return best performing stacked tree 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

665 

6. EXPERIMENT DETAILA AND RESULTS 

The studies were conducted on a 2.9 GHz Intel Core i7 with 8 GB of RAM operating on macOS Mojave. The detectors 

were developed via open-source machine learning packages in R, specifically Cubist, naïvebayes, rpart, e1071, partykit, 

and evtree. Upon training evtree, the standard metrics for assessing the performance of the evolved tree include accuracy, 

recall, precision, and the F1 score. These measurements are derived from a confusion matrix that encompasses the four 

types of outputs from a binary classifier. In this context, the classifications are as follows: (1) true positive (TP) indicates 

how a model accurately detects a spam email; (2) true negative (TN) indicates the correct detection of a legitimate email; 

(3) false positive (FP) indicates the erroneous classification of a legitimate email as spam; and (4) false negative (FN) 

reveals that the model mistakenly categorizes a spam email as legitimate. The performance score can be computed on the 

basis of the aforementioned four values as follows: 

1. Accuracy [(TP + TN)/Total]: the proportion of correct classification determinations. 

2. Recall [TP/(FN + TP)]: the metric indicating the proportion of spam emails accurately identified by the model. 

Recall is often referred to as the detection rate. 

3. Precision [TP/(FP + TP)]: the metric assessing the frequency with which the model accurately identifies spam 

emails. 

4. F1 score [2 * (accuracy ∗ Recall)/(Precision + Recall)]: the harmonic mean of accuracy and recall. 

. 

6.1 Experimental Results 

To evaluate the proposed schema on spam datasets, we report the performance of trained models—both individual 

classifiers and stacking—on the testing dataset. We employed a 5-fold cross-validation technique, where the reported 

results represent the average of five runs along with the standard deviation (SD). 

 

Table 1 presents key classification metrics from the testing phase, including accuracy, recall, precision, and F1 score, with 

the best results highlighted in bold. The Cubist model achieved the highest accuracy, closely followed by evtree. In terms 

of spam detection, evtree demonstrated superior performance. Additionally, the highest test precision (98.36) and F1 score 

(98.42) were obtained by evtree, whereas the lowest values (83.25 for precision and 86.57 for F1 score) were recorded for 

the average and majority vote techniques. In contrast, the simpler models, such as NB, average, and majority vote, 

consistently underperformed across all the metrics compared with the other classifiers. Table 1 highlights the strength of 

stacking via evtree, which effectively integrates the strengths of multiple base learners to achieve better spam detection 

performance. Overall, the results show that while individual classifiers, particularly SVM and DistilBERT, are strong 

performers, carefully designed stacking methods can increase performance even more. 

TABLE I. TECHNIQUES PERFORMANCE FOR THE ENRON DATASET (%). ± REFERS TO THE STD VALUE. THE BETTER RESULTS ARE IN BOLD TEXT. 

Technique Accuracy Recall Precision F1-score 

Cubist 98.42 ± 0.003 98.23 ± 0.01 93.16 ± 0.007 95.63 ± 0.005 

NB 93.17 ± 0.009 93.58 ± 0.004 93.08 ± 0.025 93.33 ± 0.015 

SVM 97.57 ± 0.001 97.86  ± 0.005 97.40  ± 0.004 97.63  ± 0.002 

rpart 90.58 ± 0.006 96.51 ± 0.017 86.56 ± 0.009 91.26 ± 0.009 

ctree 92.94 ± 0.006 97.69 ± 0.016 89.44 ± 0.012 93.38 ± 0.007 

DistilBERT 97.70 ± 0.005 97 ± 0.004 97.60 ± 0.025 97.24 ± 0.005 

Average 85.75 ± 0.011 90 ± 0.016 83.35 ± 0.025 86.57 ± 0.016 

Majority Vote 85.88 ± 0.011 90.53 ± 0.016 83.25 ± 0.025 86.74 ± 0.017 

evtree Stacking 98.39 ± 0.003 98.49 ± 0.012 98.36 ± 0.011 98.42 ± 0.005 

 

The performance metrics tested on the SpamAssassin dataset for our proposed system are presented in Figure 2 and are 

shown in graphical form. Each bar plot represents the average result over five runs, with an error bar on top indicating the 

SD around the average. Among the evaluated models, SVM achieved the highest performance in terms of accuracy, 

precision, and F1 score, whereas evtree obtained the best recall score. In contrast, the stacked models based on merging 

without learning delivered the lowest performance across all the metrics when tested on the SpamAssassin dataset. 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

666 

 
Fig. 2 Barplots for implemented technique performance for the SpamAssassin dataset with an error bar on top, which shows the SD around the average 

Certainly, the ability to produce human-readable outputs helps explain the decision-making process. Figure 3 shows one 

of the best trees assembled via the evtree algorithm. This tree evolved using 2 base classifiers only, with a total size of 7 

nodes. This tree is based on probabilities from the SVM and Cubist models. The first split occurs at svm_Prob = 0.269, 

followed by further splits based on cubist_Prob = 0.632 and another svm_Prob threshold of 0.96. The leaf nodes display 

bar charts representing the proportions of class 0 and class 1 nodes, with darker bars indicating a greater presence of class 

1 nodes. The tree automatically selects and assembles base classifiers to form a stacking classifier with the best spam email 

detection ability models dynamically instead of stacking all of them. Hence, the computational cost when deployed for 

such a classifier is reduced. 

 

Fig 3. Tree for spam email detection evolved by evtree 

Figure 4 presents a bar chart comparing the performance of a stacked ensemble model before and after performing an 

ablation analysis on each of its five base learners. Ablating the learners, namely, ctree, rpart, or naïve Bayes, results in only 

marginal declines across all performance metrics. In contrast, the removal of SVM and Cubist leads to the most significant 



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

667 

drop in performance, indicating that while all the models contribute to the ensemble's effectiveness, the SVM is the most 

critical component. 

 
Fig. 4 Comparative Analysis of the Ablation Study 

To further examine how each base model contributes to individual email classification outcomes, we selected two emails 

from the testing dataset, one labelled spam and the other labelled nonspm, for illustration. We computed breakdown profiles 

via the DALEX package. DALEX is a model-agnostic tool, meaning that it can extract valuable insights from any predictive 

model regardless of its internal mechanics [10]. Figure 5 displays the breakdown profiles, showing how the evtree meta-

learner integrates predictions from various base models (SVM, Cubist, NB, rpart, and ctree) to generate its final decision. 

On the left (representing the ham email), the baseline (intercept) begins at approximately 0.517, but the SVM’s strongly 

negative contribution (with a probability near zero) dominates, lowering the final prediction to approximately 0.014. The 

other models exert little to no noticeable influence. On the right (representing the spam email), the SVM probability is 

close to one, providing a strong positive effect (+0.44), whereas Cubist adds a modest positive contribution (+0.03), raising 

the final output to approximately 0.986. Again, NB, rpart, and ctree contribute insignificantly. Overall, these plots 

emphasize that evtree relies heavily on SVM predictions in both cases, largely disregarding the other base models. This 

finding indicates that SVM plays the most influential role in the ensemble’s decision-making for these examples. 

  
Fig. 5 This figure was made with the DALEX package for explaining evtree model predictions relying on base models where the left instance (ham) 

and right instance (spam) 

Table 2 compares the proposed approach with recently published works using ML and DL studies that performed 

experiments on the same datasets. According to the outcomes, the proposed approach is comparable and, in some metrics, 

0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99

No Cubist

No SVM

No NB

No rpart

No ctree

Full

F1-score Precision Recall Accuracy



Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

668 

even outperforms the alternatives. As shown in Table 2, evtree outperforms various published classification techniques, 

including ensemble, hybrid, and deep learning approaches, on the Enron dataset, which is recognized for its 

comprehensiveness and up-to-date sample. Although the work in [25] achieved higher recall than evtree on the 

SpamAssassin dataset did, evtree outperformed it in all other metrics. Furthermore, the suggested algorithm automatically 

constructs ensemble models without the constant need for manual intervention. Hence, the research presented here reduces 

highly computationally intensive training demands, which require substantial resources. 

TABLE II. COMPARISON OF THE PROPOSED APPROACH WITH THE ML AND DL METHODS (%). 

Ref. Year Method Dataset Accuracy Recall Precision F1-score 

Douzi et al. [24] 2020 PV-DM + SVM Enron 96.16 95.59 96.55 96.07 

Junnarkar et al. [23] 2021 Gensim + SVM Enron 97.83 95 97.5 95.5 

Tida and Hsu [25] 2022 BERT 
Enron 97 93 96 97.2 

SpamAssassin 98 99 96 97.64 

Zavrak and Yilmaz [27] 2023 FT + HAN 
Enron 95.8 93.7 98.1 95.8 

SpamAssassin 95.5 97.8 89.3 93.3 

Zuhdi et al. [22] 2024 Random Forest Enron NA 96.7 96.9 96.8 

This study 2024 Stacking 
Enron 98.39 98.49 98.36 98.42 

SpamAssassin 98.79 98.76 97.6 98.17 

 

6.2 Limitations 

Despite its strong effectiveness in detecting spam emails, the evtree model is currently limited to this specific application 

(i.e., email spam). To broaden its applicability, future work should extend the approach to other sources of similar threats, 

such as social network spam and SMS spam. Moreover, while the stacking system enhances the classification accuracy, it 

also increases the detection time because of the use of multiple models. Optimizing the system through feature selection 

techniques is essential for reducing model complexity and improving efficiency. Finally, although the proposed system 

effectively mitigates computational demands by leveraging appropriate algorithms, further refinements may be necessary 

to ensure scalability and robustness in real-world deployments. 

7. CONCLUSION AND FUTURE WORK 

Spam emails have become a favoured technique for cybercriminals to collect sensitive information. Techniques based on 

machine learning algorithms are promising for preventing such threats, and this research is not yet mature. The models are 

validated via K-fold cross-validation, which is assessed through accuracy, recall, precision, and the F1 score. By conducting 

comprehensive analyses and benchmarking against state-of-the-art models, this research seeks to advance the field of email 

spam detection. In this study, we used the evtree algorithm to evolve stacking solutions to address the issue of recognizing 

spam emails. The suggested approach is useful since it gives security teams a less complex and effective detector. The 

ensemble arising via the proposed technique permits the automatic construction of detectors. These results showed that the 

suggested stacking approach is more profitable than nonensemble techniques and published works using examined datasets. 

We plan to extend our evaluation as part of our future work in several ways, such as implementing feature selection 

techniques that can be implemented to address high-dimensional datasets. For further testing, we are planning to consider 

existing models with different types of cybersecurity threats. 

Conflicts of interest 

The authors declare that they have no conflicts of interest. 

Funding 

There is no funding for the paper. 

Acknowledgement 

None. 

 

References 

[1] L. Ceci, “Emails sent per day 2025,” Statista. Accessed: Sep. 29, 2024. [Online]. Available: 

https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/  

https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/


Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

669 

[2] N. N. Nicholas and V. Nirmalrani, “An enhanced mechanism for detection of spam emails by deep learning technique with 

bio-inspired algorithm,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 8, 2024, doi: 

10.1016/j.prime.2024.100504. 

[3] A. Petrosyan, “Spam e-mail traffic share 2023,” Statista. Accessed: Sep. 29, 2024. [Online]. Available: 

https://www.statista.com/statistics/420400/spam-email-traffic-share-annual/  

[4] M. Raza, N. D. Jayasinghe, and M. M. A. Muslam, “A Comprehensive Review on Email Spam Classification using 

Machine Learning Algorithms,” in International Conference on Information Networking, 2021, pp. 327–332. doi: 

10.1109/ICOIN50884.2021.9334020. 

[5] K. Yusupov, M. R. Islam, I. Muminov, M. Sahlabadi, and K. Yim, “Comparative Analysis of Machine Learning and Deep 

Learning Models for Email Spam Classification Using TF-IDF and Word Embedding Techniques,” Lecture Notes on Data 

Engineering and Communications Technologies, vol. 231, pp. 114–122, 2025, doi: 10.1007/978-3-031-76452-3_11. 

[6] L. Breiman, “Bagging predictors,” Mach Learn, vol. 24, no. 2, pp. 123–140, 1996, doi: 10.1007/bf00058655. 

[7] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259, Jan. 1992, doi: 10.1016/S0893-

6080(05)80023-1. 

[8] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), Springer Verlag, 1995, pp. 23–37. doi: 10.1007/3-540-59119-2_166. 

[9] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation Studies in Artificial Neural Networks,” Jan. 2019, Accessed: 

May 02, 2025. [Online]. Available: https://arxiv.org/pdf/1901.08644  

[10] B. Przemyslaw, “DALEX: Explainers for complex predictive models in R,” Journal of Machine Learning Research, vol. 

19, pp. 1–5, 2018, Accessed: May 25, 2025. [Online]. Available: http://www.jmlr.org/papers/v19/18-416.html  

[11] G. Kumar and K. Kumar, “The Use of Artificial-Intelligence-Based Ensembles for Intrusion Detection: A Review,” Applied 

Computational Intelligence and Soft Computing, vol. 2012, pp. 1–20, 2012, doi: 10.1155/2012/850160. 

[12] G. Folino and P. Sabatino, “Ensemble based collaborative and distributed intrusion detection systems: A survey,” 2016. 

doi: 10.1016/j.jnca.2016.03.011. 

[13] S. Sen, “A Survey of Intrusion Detection Systems Using Evolutionary Computation,” in Bio-Inspired Computation in 

Telecommunications, 2015, pp. 73–94. doi: 10.1016/B978-0-12-801538-4.00004-5. 

[14] H. Alyasiri, J. A. Clark, and D. Kudenko, “Evolutionary computation algorithms for detecting known and unknown 

attacks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics), Springer Verlag, 2019, pp. 170–184. doi: 10.1007/978-3-030-12942-2_14. 

[15] S. Khanchi, M. I. Heywood, A. Vahdat, and A. Nur Zincir-Heywood, “On botnet detection with genetic programming 

under streaming data, label budgets and class imbalance,” in GECCO 2018 Companion - Proceedings of the 2018 Genetic 

and Evolutionary Computation Conference Companion, 2018, pp. 21–22. doi: 10.1145/3205651.3208206. 

[16] T. A. Pham, Q. U. Nguyen, and X. H. Nguyen, “Phishing attacks detection using genetic programming,” in Advances in 

Intelligent Systems and Computing, Springer Verlag, 2014, pp. 185–195. doi: 10.1007/978-3-319-02821-7_18. 

[17] H. Alyasiri, J. A. Clark, A. Malik, and R. De Frein, “Grammatical Evolution for Detecting Cyberattacks in Internet of 

Things Environments,” in Proceedings - International Conference on Computer Communications and Networks, ICCCN, 

Institute of Electrical and Electronics Engineers Inc., Jul. 2021. doi: 10.1109/ICCCN52240.2021.9522283. 

[18] F. G. Abdulkadhim, Z. Yi, A. N. Onaizah, F. Rabee, and A. M. A. Al-Muqarm, “Optimizing the Roadside Unit Deployment 

Mechanism in VANET with Efficient Protocol to Prevent Data Loss,” Wirel Pers Commun, vol. 127, no. 1, pp. 815–843, 

Nov. 2022, doi: 10.1007/S11277-021-08410-6. 

[19] B. Almusawy and A. A. H. Alrammahi, “Insider Detection Using Combination of Machine Learning and Expert Policies,” 

International Journal of Electrical and Electronic Engineering and Telecommunications, vol. 13, no. 5, pp. 389–396, 2024, 

doi: 10.18178/IJEETC.13.5.389-396. 

[20] A. Orfila, J. M. Estevez-Tapiador, and A. Ribagorda, “Evolving high-speed, easy-to-understand network intrusion 

detection rules with genetic programming,” in Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, pp. 93–98. doi: 10.1007/978-3-642-01129-0_11. 

[21] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and 

lighter,” Oct. 2019, Accessed: May 25, 2025. [Online]. Available: https://arxiv.org/pdf/1910.01108  

[22] M. Akmal Afif Mohd Zuhdi, I. A. Rahmi Hamid, and F. Sains Komputer dan Teknologi Maklumat, “Classification of 

Spear Phishing Email using Machine Learning Approach,” Applied Information Technology And Computer Science, vol. 

5, no. 1, pp. 34–51, Aug. 2024, doi: 10.30880/aitcs.2024.05.01.003. 

[23] A. Junnarkar, S. Adhikari, J. Fagania, P. Chimurkar, and D. Karia, “E-mail spam classification via machine learning and 

natural language processing,” in Proceedings of the 3rd International Conference on Intelligent Communication 

Technologies and Virtual Mobile Networks, ICICV 2021, Institute of Electrical and Electronics Engineers Inc., Feb. 2021, 

pp. 693–699. doi: 10.1109/ICICV50876.2021.9388530. 

https://www.statista.com/statistics/420400/spam-email-traffic-share-annual/
https://arxiv.org/pdf/1901.08644
http://www.jmlr.org/papers/v19/18-416.html
https://arxiv.org/pdf/1910.01108


Al-augby et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 657–670  

 

670 

[24] Samira. Douzi, F. A. AlShahwan, Mouad. Lemoudden, and Bouabid. El Ouahidi, “Hybrid Email Spam Detection Model 

Using Artificial Intelligence,” Int J Mach Learn Comput, vol. 10, no. 2, pp. 316–322, 2020, doi: 

10.18178/ijmlc.2020.10.2.937. 

[25] V. S. Tida and S. H. Hsu, “Universal Spam Detection using Transfer Learning of BERT Model,” in Proceedings of the 

55th Hawaii International Conference on System Sciences, Hawaii International Conference on System Sciences, Jan. 

2022. doi: 10.24251/hicss.2022.921. 

[26] Y. Guo, Z. Mustafaoglu, and D. Koundal, “Spam Detection Using Bidirectional Transformers and Machine Learning 

Classifier Algorithms,” Journal of Computational and Cognitive Engineering, vol. 2, no. 1, pp. 5–9, 2023, doi: 

10.47852/bonviewJCCE2202192. 

[27] S. Zavrak and S. Yilmaz, “Email spam detection using hierarchical attention hybrid deep learning method,” Expert Syst 

Appl, vol. 233, 2023, doi: 10.1016/j.eswa.2023.120977. 

[28] “The Enron-spam datasets.” Accessed: Sep. 29, 2024. [Online]. Available: https://www.cs.cmu.edu/~enron/  

[29] “The Spam Assassin Email Classification Dataset.” Accessed: Sep. 29, 2024. [Online]. Available: 

https://www.kaggle.com/datasets/ganiyuolalekan/spam-assassin-email-classification-dataset  

[30] S. Al-Augby and K. Nermend, “Using rule text mining based algorithm to support the stock market investment decision,” 

Transformations in Business and Economics, vol. 14, no. 3C, pp. 448–469, 2015. 

[31] S. Kaddoura, G. Chandrasekaran, D. E. Popescu, and J. H. Duraisamy, “A systematic literature review on spam content 

detection and classification,” PeerJ Comput Sci, vol. 8, p. e830, Jan. 2022, doi: 10.7717/PEERJ-CS.830/TABLE-14. 

[32] M. Parmar and A. Tiwari, “Enhancing Text Classification Performance using Stacking Ensemble Method with TF-IDF 

Feature Extraction,” in Proceedings - 2024 5th International Conference on Mobile Computing and Sustainable 

Informatics, ICMCSI 2024, 2024, pp. 166–174. doi: 10.1109/ICMCSI61536.2024.00031. 

[33] D. Pakpahan, V. Siallagan, and S. Siregar, “Classification of E-Commerce Product Descriptions with The Tf-Idf and Svm 

Methods,” sinkron, vol. 8, no. 4, pp. 2130–2137, 2023, doi: 10.33395/sinkron.v8i4.12779. 

[34] D. S. Ramdan, R. D. Apnena, and C. A. Sugianto, “Film Review Sentiment Analysis: Comparison of Logistic Regression 

and Support Vector Classification Performance Based on TF-IDF,” Journal of Applied Intelligent System, vol. 8, no. 3, pp. 

341–352, 2023, doi: 10.33633/jais.v8i3.9090. 

[35] M. Rajman and R. Besançon, “Text Mining: Natural Language techniques and Text Mining applications,” in Data Mining 

and Reverse Engineering, Springer US, 1998, pp. 50–64. doi: 10.1007/978-0-387-35300-5_3. 

[36] M. Kuhn and K. Johnson, Applied predictive modeling. 2013. doi: 10.1007/978-1-4614-6849-3. 

[37] M. Kuhn and S. Weston, “Package ‘Cubist’ R Package Version 0.4,” mirror.las.iastate.edu, 2024, Accessed: Oct. 20, 2024. 

[Online]. Available: https://mirror.las.iastate.edu/CRAN/web/packages/Cubist/Cubist.pdf  

[38] R. M. Neal, “Pattern Recognition and Machine Learning,” Technometrics, vol. 49, no. 3, pp. 366–366, 2006, doi: 

10.1198/tech.2007.s518. 

[39] T. M. Therneau and E. J. Atkinson, “An introduction to recursive partitioning using the RPART routines,” 1997. Accessed: 

Oct. 06, 2024. [Online]. Available: http://stat.ethz.ch/R-manual/R-patched/library/rpart/doc/longintro.pdf  

[40] T. Hothorn, K. Hornik, W. Wien, and A. Zeileis, “ctree: Conditional Inference Trees,” The Comprehensive R Archive 

Network;, no. Quinlan 1993, pp. 1–34, 2015, Accessed: Oct. 06, 2024. [Online]. Available: 

http://cran.irsn.fr/web/packages/partykit/vignettes/ctree.pdf  

[41] T. Grubinger, A. Zeileis, and K. P. Pfeiffer, “Evtree: Evolutionary learning of globally optimal classification and regression 

trees in R,” J Stat Softw, vol. 61, no. 1, pp. 1–29, 2014, doi: 10.18637/jss.v061.i01. 

  
 

 

https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/datasets/ganiyuolalekan/spam-assassin-email-classification-dataset
https://mirror.las.iastate.edu/CRAN/web/packages/Cubist/Cubist.pdf
http://stat.ethz.ch/R-manual/R-patched/library/rpart/doc/longintro.pdf
http://cran.irsn.fr/web/packages/partykit/vignettes/ctree.pdf

	1. INTRODUCTION
	2. RELATED WORK
	3. DATASET PREPROCESSING AND FEATURE EXTRACTION
	4. CLASSIFIER MODELS
	4.1 Cubist Algorithm
	4.2 Naïve Bayes (NB)
	4.3 Support Vector Machine (SVM)
	4.4 Recursive Partitioning Tree (part)
	4.5 Conditional inference trees (ctree)

	5. ENSEMBLING CLASSIFIERS USING EVTREE
	6. EXPERIMENT DETAILA AND RESULTS
	6.1 Experimental Results
	6.2 Limitations

	7. CONCLUSION AND FUTURE WORK
	Conflicts of interest
	Funding
	Acknowledgement
	References


