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Abstract
Fast and accurate frequency estimation is essential in various engineering applications, including control systems,
communications, and resonance sensing systems. This study investigates the effect of sample size on the interpolation
algorithm of frequency estimation. In order to enhance the accuracy of frequency estimation and performance, we
describe a novel method that provides a number of approaches for calculating and defending the sample size for of the
window function designs, whereas, the correct choice of the type and the size of the window function makes it possible to
reduce the error. Computer simulation using Matlab / Simulink environment is performed to investigate the proposed
procedure’s performance and feasibility. This study performs the comparison of the interpolation algorithm of frequency
estimation strategies that can be applied to improve the accuracy of the frequency estimation. Simulation results shown
that the proposed strategy with the Parzen and Flat-top gave remarkable change in the maximum error of frequency
estimation. They perform better than the conventional windows at a sample size equal to 64 samples, where the maximum
error of frequency estimation is 2.13e-2 , and 2.15e-2 for Parzen and Flat-top windows, respectively. Moreover, the
efficiency and performance of the Nuttall window also perform better than other windows, where the maximum error is
7.76×10-5 at a sample size equal to 8192. The analysis of simulation result showed that when using the proposed strategy
to improve the accuracy of the frequency estimation, it is first essential to evaluate what is the maximum number of
samples that can be obtained, how many spectral lines should be used in the calculations, and only after that choose a
suitable window.
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I. INTRODUCTION

Currently, frequency estimation methods can be split into two
groups: the frequency estimation algorithms based on the time
domain, and the frequency estimation algorithms based on the
frequency domain. The algorithms of the time domain include
maximum likelihood algorithms (ML) [1–4] , algorithms of
autocorrelation [5, 6], algorithms of linear prediction [7], and
algorithms of the least squares [8]. However, these algorithms
are challenging to utilize in real-time applications due to the

significant amount of calculations needed. Recently, Discrete
Fourier Transform (DFT) is employed to estimate the frequen-
cies of signals, which requires even less computational effort,
therefore, it is useful for real-time applications. However, it
was shown that the DFT has critical constraints in estimating
the precision frequencies for short-time signals [9–16]. The
highest magnitude of the DFT samples is measured via tough
search utilizing simple maximum search steps.The search of
the precision allows proportional deviation of signal frequency
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from hard estimation by confirmed interpolation methods. In
this study, we develop a novel and effective strategy aimed at
evaluating the maximum number of samples and how many
spectral lines should be obtained, after that, we can choose
a suitable window to evaluate the frequency of signal, along
with a comparison of the results obtained for generated signals
to test efficiency. The rest of this paper is organized as follows.
In the second section, the proposed algorithm is described.
The results and discussion are explained in the third section,
and the conclusion is shown in the last section.

II. METHODOLOGY OF THE PAPER

The real sine wave paradigm is currently used in practical
applications, and real sine wave estimation of the frequency
is more complicated than complex sinusoidal signal because
of the spectrum leakage from the negative signal parame-
ter. Many researchers have provided their simple sine wave
algorithms [17–25].The authors in reference [17] proposed
an estimator similar to ML using spectrum matching. The
technique avoids spectral derivation by comprising it in the
signal’s spectrum. However, this algorithm requires a compre-
hensive search that requires much computation. In study [18],
it has been presented a new interpolation strategy relevant
to the complex spectrum of several windows, a complex for-
mula for finding the frequency of the component explained
in equations (1) and (2) . This complex spectral strategy is
less sensitive to spectral derivation than the modular methods.
The frequency correction value is calculated as flowing:

δ1 =± α1

α1 −1
δ1 =± α1

α1 −1
(1)

δ1 =±2α2 +1
α2 −1

(2)

where α1 =
Xk−1

Xk
if Xk−1 ⩾, and

α2 =
Xk

Xk+1
, if Xk−1 < Xk+1 (3)

There are three spectral lines’ highest amplitudes: Xk , Xk−1,
and Xk+1, as shown in Fig. 2, where δ is the offset of the
fractional standardized frequency with range (-0.5; 0.5). The
maximum spectral line, as well as two more spectral lines to
its right and left, are used by Ding to conduct a fine search
in [19]:

α =
Xk+1 −Xk−1

Xk +Xk−1 +Xk+1
(4)

In this study presents a precise frequency estimation of the

real sine wave employing DFT. The suggested estimation has
been tested with six windows (Parzen, Flat-top, Blackman,
Kaiser, Bohman, and Chebyshev) to minimize undesirable
effects resulting from spectral leakage caused by the FFT
process. The estimation relies on interpolating the peak DFT
spectral line and two DFT spectral lines and can be used with
most windows. The general procedure of the interpolation
estimator is explained in Fig.1. Let us consider the sinusoidal
signal as the discrete sequence [6]:

p[n] = Asin(2πF0n+φ), n = 0,1,2, . . . ,N −1 (5)

Where A is the amplitude,F0 is the frequency, φ is the initial
phase of sine wave, and N is the sample size. If the number
of periods of the sine wave are integer, consequently the
frequency of signal can be calculated as below:

F0 =
Fs

N
F0 =

Fs

K
(6)

Where K is the parameter of the discrete of the frequency
index of the maximum in spectral lines DFT, and Fs is the
sampling frequency as shown in Fig. 2. The frequency resolu-
tion [6]:
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Fig. 1. Procedure of the general interpolation method.

∆F =
Fs

N
(7)
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∆ F is the distance between two spectral lines (frequency
resolution). Applying the windowing function on p[n]:

P[n] = p[n]∗w[n] (8)

The windowing function Flattop, Parzen, and Bohman win-
dows are used in this paper and explained in the next sections.

A. Flattop window
The Flattop window has a very low passband ripple. However
this window drawback gives the low frequency resolution and
the broad bandwidth. Flattop windows are summations of
cosines as shown in equation (9):

w(n) = a0 −a1 cos
(

2πn
N −1

)
+a2 cos

(
4πn

N −1

)
−a3 cos

(
6πn

N −1

)
+a4 cos

(
8πn

N −1

)
(9)

The coefficients for this window are [20]:
a0 = 0.2155789, a1 = 0.4166315, a2 = 0.27726315, a3 =
0.083578947, a4 = 0.006947368

B. Parzen window
Parzen Window is a piecewise-cubic approximations of Gaus-
sian windows. This technique is usually applied to reduce
side lobe of a sine wave levels, but it tends to have large
scalloping loss. The Parzen Windows technique is explain
mathematically in flowing equation [21]:

w(n) = 1−6
(
|n|
N
2

)2

±6
(
|n|
N
2

)3

, 0 ⩽ |n|N −1
4

w(n) = 2
(

1− |n|
N
2

)2 N −1
4

< |n|⩽ N −1
2

n = 0,1,2, . . . ,N −1 (10)

Where n is the number of data points.

C. Bohman window
Bohman window is the convolution of two half-duration co-
sine lobes. In the time domain, Bohman window is the product
of the triangular window and the single cycle of a cosine with
the term added to set the first derivative to zero at the bound-
ary. The equation for computing the coefficients of Bohman
window is explained in the flowing equation [21]:

w(x) = (1−|x|)cos(π|x|)+ 1
π

sin(π|x|) −1 ⩽ x ⩽ 1

(11)

Where x is a length vector of linearly spaced values generated
using line space. The analysis program looked at the signal’s

spectral properties for many uses, including spectroscopy.
DFT is as well often mention to as (FFT) and is the algorithm
that perform DFT. In DFT, the sliding window technique is
first utilized to the input sine wave as a discrete sequence p[n].
That is, the signal could be soft at it is ends. The selection of
analysis window is an interesting developed field and affects
the spectral resolution of the analysis. The DFT for the sine
wave as a discrete sequence p[n] is calculated by the flowing
equation [21]:

X(k) =
1
N

N−1

∑
n=0

p(n)e− j2πkn/NT (12)

Where k is the DFT bin number in the range 0⩽ k ⩽N–1 , and
T is the sampling period .The crucial step in the analysis phase
is to determine the amplitude and detected peaks. The pro-
posed algorithm is similar to the idea of the different formulas
available of Li, Dian. As shown in Fig. 1, the procedure of the
general interpolation method of the computational steps start
with producing the signal and applying the sampling process
for the input signal with the number of samples in the range
(16-512), thereafter taking the time window process to this
sampled signal to minimize spectral dispersion, consequently
determine the (FFT) of the output signal, after that calculate
the sample that including the highest amplitude, which that
comprise desired frequency. However, if the number of cy-
cles captured in the sampling process is an integer number
of cycles, subsequently that clarify the desired frequency is
existing between the two samples that hold the highest am-
plitude, as demonstrate in Fig. 2. Then, using equation (15)

Fig. 2. The DFT spectrum applied for interpolation of the
three points.

to calculate the variation between k and k + 1 or k -1 based
on the amplitude with the highest value, we added it to k to
determine the necessary frequency and assess the error using
equations (16) and (17) [22]:

∆1 =
Xk

Xk−1
(13)
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∆2 =
Xk

Xk+1
(14)

δ =

∆2
∆1

−1
∆2
∆1

+1
(15)

The signal frequency is calculated by [22]:

FEst =
δ +K

N
FS (16)

where K′ = δ +K.
The error of the frequency estimation is calculated by [22]:

Error =
FEst −Fc

Fc
(17)

III. RESULTS AND DISCUSSION

To exemplify how the proposed algorithm work, we consid-
ered the parameters of simulations as follows: the phase in
the range [-π , π ] with step size 100 , Fs/Fc is equal to 4,
the sampling frequency is chosen as (16,32,64,.....,512) Hz,
and the sample size is equal to (16,32,64,.....,512) respectively.
The most common interpolation methods (Parzen, Flat-top,
Blackman, Kaiser, Bohman, Bartlett, Triangular, Nuttal, and
Chebyshev) employed to estimate the frequency of the signal,
along with the comparison of the results obtained for gener-
ated signal in order to test their performance.All the presented
results are shown in Table I and Fig. 3. Table I compares the
highest relative frequency estimation error and sample size
across six windows. Kaiser window is used to implement the
simulations’ best outcomes when the sample number is small,
such as N=16 and 32 samples. When using a Parzen, Flat-top
window with medium sample size, such as N=64 samples,
the efficiency of this algorithm is improved.The maximum
systematic errors in these cases were 2.13e-2 and 2.15e-2,
respectively. Chebyshev window was used to achieve the fre-
quency estimation accuracy using the interpolation method
algorithm, with 512 samples as the sample size and 2.44e-3 as
the maximum systematic error. The findings also demonstrate
that as the sample size increases, the suggested algorithm’s
maximum error gradually decreases. Fig. 4 shown graphs
of the calculated maximum error values for the three spec-
tral lines, three different windows (Bartlett, Triangular, and
Nuttall), N= (16 to 512) samples, and a signal phase shift
from -180 to +180.The Nuttall window performs better than
other windows, where the maximum error =1.2e-3, while in
Bartlett and Triangular, equal to 3.9e-3 and 2.9e-3, respec-
tively, in Fig. 4. Fig. 4 shown graphs of the three different

Fig. 3. Comparative analysis of the three windows.

Fig. 4. Comparative analysis of the three windows.

windows (Hann, Hamming, and Nuttall) for N= (16 to 8192)
samples. The Nuttall window also performs better than other
windows, where the maximum error =7.76e-5, while Hann
and Hamming are equal to 1.9e-4 and 1.8e-4, respectively, in
Fig. 4. To demonstrate the effects of non-integer signal pe-
riod numbers, consider the situation where N=16 and the Fc
signal is between (3-4) Hz and 3.5 Hz, where the maximum
frequency estimation error occurs. We have created a signal
with a duration of N = 16, a step of 0.05, and a frequency
spacing of 1 Hz between each component. Table II displays
the Blackman window’s impact on the frequency estimation
mistake using Fc. The table shows that the highest frequency
error occurs when the signal frequency approaches 3.5 Hz.
A Blackman window was used, where the mistakes at N=16
were 1.4263x10−1 .

IV. CONCLUSION

This study proposes a novel and effective algorithm based on
the DFT samples of three point interpolation to estimate the
fundamental frequency. The analysis of the simulation results
shown that when using the proposed method, it is first neces-
sary to evaluate what is the maximum number of samples that
can be obtained, how many spectral lines should be used in
the calculations, and only after that choose a suitable window.
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TABLE I.
MAXIMUM ERROR FOR SIX WINDOWS

Maximum error for windows
N Parzen Flat-top Blackman Kaiser Bohman Chebyshev
16 1.13e-1 1.53e-1 1.43e-1 8.76e-2 1.43e-1 1.16e-1
32 5.88e-2 7.28e-2 6.67e-2 5.57e-2 6.66e-2 5.88e-2
64 2.13e-2 2.15e-2 3.23e-2 2.99e-2 3.22e-2 3.03e-2
128 1.54e-2 1.75e-2 1.59e-2 1.53e-2 1.10e-2 1.53e-2
256 7.76e-3 8.72e-3 4.87e-3 7.74e-3 7.87e-3 7.75e-3
512 3.89e-3 4.35e-3 3.92e-3 3.80e-3 3.92e-3 2.44e-3

TABLE II.
THE SYSTEMATIC ERRORS FOR BLACKMAN WINDOW

FC Error FC Error
3.05 8.8944e-5 3.55 1.5283e-1
3.10 -1.022e-2 3.60 1.1613e-1
3.15 -2.0592e-2 3.65 9.4090e-2
3.20 -3.1214e-2 3.70 7.5704e-2
3.25 -4.2403e-2 3.75 6.0203e-2
3.30 -5.4468e-2 3.80 4.6971e-2
3.35 -6.7762e-2 3.85 3.5511e-2
3.40 -8.2695e-2 3.90 2.5409e-2
3.45 -9.9762e-2 3.95 1.6319e-2
3.50 1.4263e-1 4.00 7.9387e-3

The results shown that the proposed algorithm performs better,
especially when the Chebyshev window is used at a sample
size = 512 samples. Furthermore, the proposed strategy offer
high performance when the number of samples (N) is 128,
and the Bohman window is used where the error drops to
(1.10x10−2). The proposed algorithm could be apply as a
framework for other interpolation algorithms, for improving
overall performance in frequency evaluation.
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