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Abstract
Growing interests in nature-inspired computing and bio-inspired optimization techniques have led to powerful tools
for solving learning problems and analyzing large datasets. Several methods have been utilized to create superior
performance-based optimization algorithms. However, certain applications, like nonlinear real-time, are difficult to
explain using accurate mathematical models. Such large-scale combination and highly nonlinear modeling problems
are solved by usage of soft computing techniques. So, in this paper, the researchers have tried to incorporate one of the
most advanced plant algorithms known as Venus Flytrap Plant algorithm(VFO) along with soft-computing techniques
and, to be specific, the ANFIS inverse model-Adaptive Neural Fuzzy Inference System for controlling the real-time
temperature of a microwave cavity that heats oil. The MATLAB was integrated successfully with the LabVIEW platform.
Wide ranges of input and output variables were experimented with. Problems were encountered due to heating system
conditions like reflected power, variations in oil temperature, and oil inlet absorption and cavity temperatures affecting
the oil temperature, besides the temperature’s effect on viscosity. The LabVIEW design followed and the results figure in
the performance of the VFO- Inverse ANFIS controller.
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I. INTRODUCTION

Numerous studies and books have been written on nature-
inspired optimization algorithms [1–7] that have proven highly
effective in solving a wide variety of optimization problems.
These algorithms are typically rooted in swarm intelligence,
such as the Darwinian evolution and natural selection of
biological systems utilized by genetic algorithms. Various
mathematical operators, such as crossover or recombination,
mutation, fitness and selection of the fittest, are employed.
Additionally, some algorithms are based on insects, including
bee colonies, a, firefly, and glowworms, as well as animals
such as birds, bats, monkeys, lions, and wolves. Each of
these algorithms boasts unique advantages and perspectives
on how to best solve optimization problems, including neural
networks, genetic algorithms, particle swarm optimization,

bacterial foraging algorithm, shuffled frog leaping algorithm,
flower pollination algorithm, and artificial plant optimization
algorithm.
One of the latest meta-heuristic algorithms is the Venus Fly-
trap Optimization (VFO) algorithm, which takes inspiration
from the survival strategies of plants in nature. This algorithm
is based on the rapid closure behavior of the Venus Flytrap’s
leaves, which possess two heart-shaped lobes complete with
hairs on their surface. The Venus Flytrap has three states of
movement [8]: fully open, semiclosed, and fully closed. These
states are illustrated in Fig. 1(a). The trap operates by go-
ing through three phases: trigger, tightening, and re-opening.
Once the prey is inside the trap, it causes the tightening of the
trap. However, if there is no movement inside the trap, then
the prey escapes and there is no sealing phase. Additionally,
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if the prey is not caught fully and damages the trap, it will
not be sealed, and the trap will be reopened. The algorithm
flowchart for the Venus Flytrap can be seen in Fig. 1.
Researchers have utilized the closing mechanism of a Venus
flytrap [9]. Esser, et al. [10], have provided a comprehensive
overview of the recent advancements in flytrap-inspired soft
machine systems, focusing on principles of motion. Amany,
et al. [11]proposed algorithm Venus Flytrap Optimization
(VFO), for solving numerical optimization problems. Experi-
mental analysis is implemented on some benchmark functions
to show the performance of the proposed algorithm.
The goal is to combine a smart Venus Flytrap Flower algo-
rithm with an inverse ANFIS model for microwave heating
cavity and to integrate it with LabVIEW and MATLAB. Lab-
VIEW uses a graphical programming language to visualize
applications, whereas MATLAB is a computer programming
language that focuses more on numerical functions. Lab-
VIEW is more focused on working with computer hardware,
and it is easy to connect different pieces of hardware on the
platform because of its graphical interface. In comparison,
MATLAB may require more work to interface with hardware,
but as a platform, it does support a wider range of equipment,
making it more versatile. Integrating MATLAB with Lab-
VIEW enables the complete reuse of MATLAB code which is
used in this paper to build the inverse ANFIS that mimics the
real-time microwave heating cavity. as shown in Fig. 2.

II. REAL TIME CONTINUOUS FLOW
MICROWAVE REACTOR

The benefits of heating in the different chemical processes,
which use the microwave in an increase the reaction rate with
short time, and improve the product purity compared to con-
ventional heating. On another side, continuous flow heating
has shown benefits over batch heating mode in terms of envi-
ronmental impact, efficiency, and safety [12]. Combining mi-
crowave heating with the continuous flow technique creates a
promising way to scale up microwave-assisted syntheses [13].
Precise parameter control is the key to yielding the target
with better purity and selectivity.So, relatively small quanti-
ties are present in the microwave cavity using continuous flow
allowing for better heating exchange and faster response on pa-
rameters adjustments and regulations for control signals.There
are many types of continuous flow microwave reactors [14],
like normal tub, Ω tub, U tub or spiral tubes, and so on. Some
times used a mixed tube [13]. There are several papers, which
reported on continuous flow microwave reactors in different.
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Fig. 2. Integrating MATLAB with LabVIEW

scales [15]. Fig. 3 illustrates the real time continuous
flow of oil within coil in the microwave cavity, and it is clear
that the cavity parameters can be controlled.The experimental
data [16] in Fig. 4 provides a comprehensive overview of
the microwave cavity, including the inlet and outlet tempera-
ture, inflow rate, delivered power, reflective power, and outlet
temperature, making it extremely useful for system modeling.
With this data, the ANFIS model can accurately reflect the
cavity’s behavior.

Fig. 3. Continuous Flow Rector

III. INVERSE ADAPTIVE NEURAL FUZZY
INFERENCE SYSTEM (ANFIS)

The ANFIS model principles, initially proposed by Jang in
1992 [17] have emerged as a highly effective approach for

generating fuzzy IF-THEN rules with appropriate member-
ship functions based on input-output pairs. Recent studies
demonstrate that ANFIS outperforms classical models when
provided with sufficient information to construct fuzzy rules.
Additionally, the ANFIS inverse model controller provides a
straightforward method for controller design, where the con-
troller functions as the inverse of the plant [18]. Despite the
advantages of ANFIS inverse controllers, several challenges
may impede their performance, such as model uncertainties,
measurement noise, and the absence of sufficient training
parameter data.
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To overcome these challenges, researchers have adopted
various techniques, including modified ANFIS inverse learn-
ing methods and adaptive ANFIS inverse controllers.Overall,
the ANFIS model and its inverse controller have proven to
be promising tools for a range of applications, including con-
trol engineering, robotics, and data mining. Further research
in this area will undoubtedly lead to even more advanced
methods for addressing the challenges associated with ANFIS
inverse controllers and expanding the scope of their applica-
tions 19.
The ANFIS inverse network and VFO algorithm operate in
tandem to capture real-time microwave oil heating temper-
ature errors. By emulating real-time systems using ANFIS
and ANFIS inverse models, we can effectively address nar-
row errors without inducing any uncertain system behavior
stemming from high nonlinearities. This proposed method
proactively eliminates errors offline by forecasting appropriate
parameter changes in the system based on present operating
conditions. Such a technique can facilitate the prediction and
updating of system parameters to achieve desired results while
mitigating any negative consequences that nonlinearities may
cause and maintaining system stability. Fig 5 exhibits ANFIS
parameters, training data, and ANFIS output. ANFIS training
was carried out using the MATLAB software in conjunction
with LabVIEW.
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Fig. 5. (a) Adaptive Neural Fuzzy Inference (ANFIS) model,
(b) Training data.

IV. VENUS FLYTRAP-ANFIS CONTROL
SYSTEM

In this section, it is explained the Venus flytrap -ANFIS Con-
trol System as following:

A. Artificial Venus Flytrap Control Algorithm
As a common basis for a comparison nature and the artificial
VFO algorithm for real time continuous microwave flow re-
actor system describe on Fig. 6. The known observation is
that the real-time continuous flow reactor system operates un-
der constant monitoring and often triggers alarms indicating
errors and needs to be automated and dealt with quickly to
prevent instability. However, the techniques which deal with
the error may lead to instability special if the techniques face
high non linearity with rapid action. The different states of the
system, including open, semi-closed, and closed, can be used
to detect the existence of errors and take action to correct them
when they cross certain thresholds. By capturing the error at
a second the inverse ANFIS controller can be used to update
the system parameters and resolve the error occurrence offline
and then passed it online safely without any hard transient
action that may lead to instability.
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B. Controller Design
After achieving the final ANFIS model design that takes

into account the reactor medium and the microwave applica-
tor, the next step is controlling the process accurately. Both
temperature and power control are necessary to proceed un-
der controlled conditions. However, measuring the delivered
power is quite rare, and most equipment only provides a value
of the input power and sometimes a global value of the re-
flected power. Therefore, in this paper, the power supply is
the main component under control consideration, leading to
temperature control. The aim of the controller is to provide
the closest possible value of delivered power match to the
required setpoint temperature. The reactor cavity contains a
continuous flow of oil, which is subject to many parameters
that can affect its temperature. There are various disturbances
and noises that can cause the temperature to fluctuate, making
it difficult to maintain a stable degree. As seen in Fig. 4,
the oil flow contributes to the cavity temperature, while the
reflective power is a crucial factor in determining the amount
of power received by the reactor. Moreover, the heat exchange
with the oil is dependent on the viscosity and type of oil used.
The block diagram of the closed-loop system controller is
shown in Fig 7, while fig. 8 shows the controller flowchart de-
scribing the controller steps. With this controller, it is possible
to maintain the required temperature and power conditions,
making the process more reliable and efficient.

Fig. 7. System under closed loop controller.

C. LabVEIW Controller Implemented
The microwave system monitoring system is an advanced plat-
form based on LabVIEW technology. The LabVIEW front
panel program is designed with various control structures and
data displays, making it easy for users to monitor and manage
the system. The block diagram is composed of various func-
tion modules that enable data collection through sequential
structure, conditions of the structure, and the form of the while
loop. Users can read, write, and call C language source code
and call the dynamic link library directly, allowing for the
combination of many programs with LabVIEW. Fig. 8 and
Fig. 9 displays the system’s front panel and block diagram.

As mentioned in the paper, ANFIS was implemented in Mat-
lab and appointed as part of LabVIEW. To implement VFO
sequence as in controller flowchart shown in Fig. 10 , users
can use the Flat Sequence Structure, and Case Structure as
shown in Fig. 11.

Fig. 8. LabVIEW front panel of the proposed controller.

Fig. 9. LabVIEW block diagram of the proposed controller.

D. LabVIEW Controller Implemented sequences
Fig. 11 are declares the controller design sequences:
First stage: The monitoring of the output temperature in real-
time, keeping a close on any changes above or below the
setpoint, or sometimes, it’s necessary to adjust the setpoint
itself in order to maintain optimal temperature levels. Fig. 12
(a) illustrates the error monitoring process scenario.
Second Stage: Analyzing the error in range or not, as shown in
Fig. 12(b). If the error has a large value, it is essential to drop
the error to be within the range of the controller. There are
several ways to achieve this, such as reducing the reflective
power in the microwave tuning section. Once the error is
within the controller range, the controller can move on to the
next stage.
Third Stage: Fig. 12(c) ANFIS model and the ANFIS inverse
model controller work together to initiate and process control
action and send the signal to the real-time system.

V. RESULTS AND DISCUSSION

The effectiveness of the control depends on the accuracy of
the mathematical model. Thanks to artificial intelligence tech-
niques that allow for modeling any system as a black box
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based on its experiment data, even nonlinear systems can be
perfectly mimicked using an efficient algorithm like ANFIS
with VFO algorithm that allows the updating and prediction
in confined regions around the error, which makes it easy to
deal with and gives a good result. The performance of the pro-
posed VFO ANFIS inverse model has been widely examined,
as shown in Fig. 13 for set point changes, Fig. 14 for inlet tem-
perature changes, and Fig. 15 for flow changes. The controller
demonstrates excellent performance, effectively automating
a complex heating system with nontraditional temperature
control. All of the controller evaluation parameters indicate
that it accurately reflects the set point applied, with good rise
time, settling time, and steady-state error.
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(a)

(b)

(c)

Fig. 12. Three stages for proposed controller.

(a) Setpoint changing.

(b) Errors at setpoint changes.

(c) Delivered power at setpoint changes.

Fig. 13. Controller response at setpont changing, flowrate
109ml/s, inlet Temperature17.5, reflective power 330 W.
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(a) Output Temperature changes at inlet temperature.

(b) Errors at disturbance rejection.

(c) Delivered power at disturbance rejection.

Fig. 14. Controller response at inlet temperature changing
(17.5,10,18,16)flowrate109ml/s,reflective power 330 W.

(a) Output Temperature at flowrate changes.

(b) Error at changing flowrate(Disturbance rejection).

(c) Delivered power at flowrate changes(Disturbance rejection).

Fig. 15. Disturbance rejection: flowrate changing (109, 93,
110, 96) ml/sec, ,inlet temperature 17.5 C, reflective power
330 W.
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VI. CONCLUSION

In this paper, the Venus Flytrap algorithm has been designed
based inverse ANFIS system model. VFO technique has been
used to discover the error and capture the satellited one the
passed it to another stage that ANFIS inverse act offline con-
trol signal to avoid unsuitability. Experimental data was used
to design ANFIS and inverse ANFIS microwave reactor as
heating system model and controller. LabVIEW and Matlab
software used based on a set of parameters such as delivered
power, reflected power, inlet temperature flowrate and outlet
temperature. It can be seen that the results demonstrate that
the controller is capable of tracking different reference sig-
nals, rejecting disturbances, and achieving good performance
without compromising the system’s stability. This is achieved
by compensating for the differences between the real system
and the ANFIS model, which can be affected by reflective
power.

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

REFERENCES

[1] X.-S. Yang, Nature-inspired algorithms and applied op-
timization, vol. 744. Springer, 2017.

[2] X.-S. Yang, Nature-inspired optimization algorithms.
Academic Press, 2020.

[3] S. Kaul, Y. Kumar, U. Ghosh, and W. Alnumay, “Nature-
inspired optimization algorithms for different comput-
ing systems: novel perspective and systematic review,”
Multimedia Tools and Applications, vol. 81, no. 19,
pp. 26779–26801, 2022.
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R. Bierbaum, P. A. Püschner, T. N. Glasnov, and C. O.
Kappe, “Microwave-assisted continuous flow synthesis
on industrial scale,” Green Processing and Synthesis,
vol. 1, no. 3, pp. 281–290, 2012.

[16] RF and M. lab, “Built environment and sustainable tech-
nologies, research institute,” LJMU, 2013.



198 | Wali, Abdul Zahra & Ahmed

[17] A. M. Ahmed and S. M. A. Shah, “Application of adap-
tive neuro-fuzzy inference system (anfis) to estimate
the biochemical oxygen demand (bod) of surma river,”
Journal of King Saud University-Engineering Sciences,
vol. 29, no. 3, pp. 237–243, 2017.

[18] Y. I. Al Mashhadany and H. MIEEE, “Anfis-inverse-
controlled puma 560 workspace robot with spherical
wrist,” Procedia Engineering, vol. 41, pp. 700–709,
2012.

[19] L. Torres-Salomao, J. Anzurez-Marin, J. Orozco-Sixtos,
and S. Ramirez-Zavala, “Anfis data driven modeling and
real-time fuzzy logic controller test for a two tanks hy-
draulic system,” in 2015 IEEE International Conference
on Evolving and Adaptive Intelligent Systems (EAIS),
pp. 1–5, IEEE, 2015.


	Introduction
	Real Time Continuous Flow Microwave Reactor 
	Inverse Adaptive Neural Fuzzy Inference System (anfis) 
	Venus Flytrap-Anfis Control System
	Artificial Venus Flytrap Control Algorithm
	Controller Design 
	LabVEIW Controller Implemented 
	LabVIEW Controller Implemented sequences 

	Results and Discussion
	Conclusion

