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A B S T R A C T   

 
Image forgery, such as copy-move and splicing, poses significant challenges to the authenticity of digital images, 

and this challenge is exacerbated by the rapid development of image manipulation tools. Convolutional neural 

networks (CNNs) have shown promise in detecting such forgeries, but limitations remain, especially in detecting 

small duplicate regions and low-contrast regions, as well as in dealing with optical artefacts such as noise and blur. 

This systematic literature review examines CNN-based approaches to detect image forgery and explores strategies 

to mitigate data poisoning attacks, which can compromise the integrity of machine learning models. To our 

knowledge, there are currently no studies that comprehensively address the integration of forgery detection and 

splicing techniques with data poisoning detection. Our results reveal that while CNNs are effective in detecting 

manipulated images, challenges remain in dealing with complex manipulations and adversarial attacks. This review 

highlights the need for more robust detection methods and defence mechanisms against data poisoning, as current 

strategies are inadequate to address these issues comprehensively. We propose future research directions that focus 

on improving model generalizability, incorporating data poisoning defences, and enhancing the interpretability and 

flexibility of detection systems.

1. INTRODUCTION 
Currently, image forgery detection based on deep learning is essential in the digital age because of the ease with which 

photographs may be changed. Copy-move and splicing forgery are widespread ways to create fraudulent photographs, 

presenting a serious threat to the legitimacy of digital material [1]. These forgeries are sometimes difficult to distinguish 

because of the complexity of the modifications and the wide use of powerful image editing software applications. 

Convolutional neural networks (CNNs) and generative adversarial networks (GANs) have achieved powerful performance 

in detecting image forgeries by identifying different features and patterns that indicate image manipulations [2]. Some of 

the challenges described above have been solved by researchers using various deep learning models to detect certain types 

of forgeries, such as copy-move images. These models are meant to pave the way for improving the reliability of digital 

image content by effectively detecting the presence of forged regions and significantly helping improve the reliability of 

digital images in general. Various types of research have been conducted to identify fake images [3]. It becomes crucial to 

address specific challenges related to image forgery detection. such as small duplicated regions, low-contrast areas, and the 

presence of noise and other photometric distortions in images. There are two approaches employed for image forgery 

detection: active and passive approaches [4]. The active approach extracts hidden information from the image. The secret 

information is present in the form of watermarks and digital signatures. Passive methods detect region duplications, such 

as splicing and copy-move forgery, in an image. Moreover, highlighting the need for robust detection and defense 

mechanisms is imperative. Due to growing concerns about data poisoning attacks, the performance of machine learning 

models can be degraded by introducing malicious data into the training process. The aims of this systematic literature 

review (SLR) are as follows: 

1. An overview of current CNN-based techniques for detecting various types of image forgeries, including copy-move 

forgery, splicing, and noise-induced manipulations, is provided. 

2. The usefulness of these strategies in dealing with problems, including small duplicated sections, low contrast, and noise, 

is evaluated. 

3. The effectiveness of existing defensive data poisoning techniques in the context of image forensics is analysed. 

4. Research gaps should be identified, and future directions to improve robustness and model generalizability should be 

proposed. 

Mesopotamian journal of Cybersecurity 

Vol. 5, No.2, pp. 636–656 

DOI: https://doi.org/10.58496/MJCS/2025/038; ISSN: 2958-6542 

https://mesopotamian.press/journals/index.php/cybersecurity 

https://doi.org/10.58496/MJCS/2025/037
https://mesopotamian.press/journals/index.php/cybersecurity


 

 

637 Subhi et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 636–656 

This SLR also details vital domains yet to be explored to improve the robustness and reliability of such systems with 

practical applications. In recent years,  many studies have been conducted on copy-move, splicing, noise detection, and 

data poisoning defense methods, which have not been summarized together, thus leading to an extreme need for this 

systematic literature review (SLR) to achieve a complete overview of copy-move, splicing, noise detection, and data 

poisoning defense methods. The main contributions of this SLR are as follows: 
1. In-depth evaluation of convolutional neural network-based forgery detection methods: This review provides a 

comprehensive analysis of current convolutional neural network (CNN)-based techniques for the detection of image 

forgeries, including copy-move forgeries, splicing, and various forms of noise-induced manipulations. It critically 

examines the methodological approaches employed by these techniques and assesses their performance in real-world 

forensic applications. 

2. Critical Assessment of Deep Learning Techniques in Addressing Forgery Detection Challenges: This review evaluates 

the capabilities and limitations of deep learning models, specifically CNNs, in overcoming inherent challenges such as 

the detection of small duplicate regions, low-contrast areas, and resilience to photometric attacks such as noise, blurring, 

and compression. The analysis highlights the efficacy of these models in handling complex image manipulations. 

3. Comprehensive Analysis of Data Poisoning Defence Mechanisms in Image Forensics: This work systematically explores 

the various data poisoning detection strategies employed within image forensics, with a particular focus on defending 

CNN-based models from adversarial poisoning attacks. It critically analyses the strengths and shortcomings of these 

defence mechanisms in maintaining the integrity of forensic models during the training phase. 

In contrast to the work of [5], which compares the performance of CNN models such as ELA-CNN and VGG-16 for image 

forgery detection, this SLR expands the discussion by incorporating the detection of data poisoning alongside copy-move, 

splicing, and noise-based forgeries, thus offering a more comprehensive framework for maintaining model integrity under 

adversarial conditions. While the authors in [6] focused on poisoning attacks in recommender systems, this SLR is 

specifically concerned with image forensics, with an emphasis on the detection of poisoning in the context of forgery 

detection. Additionally, although the SLR in [7] provides an extensive review of deep fake detection techniques in both 

video and image formats, this SLR distinguishes itself by integrating data poisoning defences and image forgery detection 

methods, thereby offering novel insights into the development of more robust AI systems capable of withstanding diverse 

manipulation techniques. As such, this review contributes to the field by highlighting the intersection of forgery detection 

and data poisoning mitigation in deep learning models. 

While numerous studies have been published on forgery detection, data poisoning, and related topics, this review focuses 

on synthesizing and critically analysing the latest advancements across multiple domains of image forensics, with a 

particular focus on data poisoning in deep learning-based models for image manipulation detection. Unlike previous 

reviews that have focused primarily on traditional forgery detection or focused exclusively on adversarial attacks during 

training, this paper provides a comprehensive overview of the intersection of these areas, specifically addressing the impact 

of data poisoning on the testing phase of deep learning models. Moreover, the integration of state-of-the-art 

countermeasures, such as hybrid models and enhanced preprocessing techniques, is explored in greater depth, offering a 

forward-looking perspective on potential solutions. By highlighting key vulnerabilities and proposing novel research 

directions, this review offers fresh insights that have not been extensively discussed in the literature, establishing its 

originality. 

The rest of this paper is organized as follows: Section 2 provides the research background, Section 3 describes the SLR 

methodology, Section 4 presents the review outcomes, and finally, Section 5 outlines the challenges and future directions 

in this area. 
2. BACKGROUND AND TERMINOLOGY 
Our investigation in this section focuses on the essential basic principles and diagnostic approaches needed to understand 

the advanced techniques presented in this paper. This paper discusses different forgery detection methods together with 

data poisoning methods as well as deep learning techniques for detection and datasets utilized in image forensics. The 

foundation laid in this section enables an understanding of the proposed model's enhancements for accuracy and robustness 

in forgery detection practices. 

2.1 Image Forgery Techniques 

Understanding the many methods of image forgery that are now in use is essential for determining the authenticity of an 

image. These methods are divided into two categories: active methods and passive methods [3]. Active image forgery, 

which focuses on stating the legitimacy of images without having previous knowledge of the original image, is the 

modification of digital images without providing any new information. Passive image forgery detection encompasses a 

number of methods, including splicing and copy-move forgeries [8] [9]. Figure 1 illustrates the most frequently used 

techniques for identifying copy-move forgery (CMF) and splicing forgery (SF) [4]. 
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Fig. 1. Most commonly used techniques to detect image forgery. 

Copy-move forgery is performed by copying a part of an image and pasting it in another location, as shown in Figure 2 
[10]. The purpose is mainly to hide important information in the image. On the other hand, splicing is performed by 
removing a part of an image and placing it in another image, as shown in Figure 3 [11]. 

 

  
a. Original image b. Forged image 

 
Fig. 2. Copy moves forgery image 

 

 
Fig. 3. Splicing forgery image 

2.2 Deep Learning For Forgery Detection 

Image splicing and copy-move forgery detection are two types of image forgery techniques that can be effectively detected 

via convolutional neural networks (CNNs), which are a type of deep learning (DL). Many studies utilizing CNNs have 

managed to obtain satisfactory performance levels in regard to detecting copy-move forgeries and splicing of images [12]. 

These methods utilize CNN capabilities that manage to accurately determine the manipulated area. The CNN is also able 

to identify areas in the image where potential manipulation might have taken place. Furthermore, CNNs can distinguish 

between real and fake areas not only on the basis of colour but also on the basis of texture and spatial connections. In 

addition, the CNN is also able to detect possible rotation and scaling of the image, which is a common technique in copy-

move forgery. 

2.3 Data Poisoning Attacks in Image Forensics 

The process of data poisoning attacks threatens machine learning models by injecting harmful data contents into training 
datasets. These attacks cause severe damage to models both in performance and reliability, which results in inaccurate 
predictions and system security threats. 

The attackers manipulate training data, which results in degraded machine learning model integrity. The data poisoning 
attacks utilize malicious training samples that include backdoor patterns to both misidentify poisoned test samples and 
maintain accurate classification of clean test samples [13]. The hidden attacks against training data create major 
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misalignments between desired and actual classifications within deep learning solutions [14]. Various methods for testing 
deep learning system vulnerabilities have been developed into poisoning attack types. 

 

2.3.1 Types of Data Poisoning Attacks 

The main goal of data poisoning attacks involves destroying machine learning models through modifications of training 
data [15] [16]. Identifying different types of data poisoning attack remains essential for establishing efficient protection 
systems against such threats. Several types of data poisoning attacks represent the most prevalent group of malicious 
operations: 

1. Label Flipping: The attack of label flipping modifies training data point labels by replacing them with inaccurate 

values through which attackers modify a portion of training data classifications, thus forcing the model to learn from 

incorrect information. 

2. Outliers/Noise Injection: Noise injection and outlier data points cause both interference with models and a reduction 

in their performance levels. 

3. Backdoor Attacks: This represents an attack method that allows attackers to add secretive triggers into training data, 

which activate model-based malicious functions during specific inference activations [16]. 

While untargeted data poisoning attacks aim to degrade the overall performance of the model, targeted attacks seek to 

manipulate the model's predictions for specific inputs [17]. In a targeted data poisoning attack, a fraudster’s goal is to make 

a model misclassify a specific test sample to any given target class [16] [15]. Depending on the threat model, the attacker 

could have access to the training data or the ability to provide data [16]. 

 

2.3.2 Impact on Machine Learning Models 

The deliberate alteration of training data inside machine learning systems constitutes a significant threat that results in 

unfavourable predictions [18]. Such attacks negatively affect different aspects of model performance through accuracy 

reduction and precision and recall level lowering alongside the injection of biases and system vulnerabilities. Data 

poisoning attacks specifically threaten image forensics systems because adversaries can use the attacks to corrupt the 

detection of manipulated digital images by misdirecting the models' identification of forged and edited content [19] [16] 

[15]. 

Multiple studies have investigated the risk of data poisoning within this particular scenario [15]. One successful method of 

attacking machine learning classifiers, particularly those used in image forensics, is poisoning attacks. In this type of attack, 

the attacker creates harmful samples on a substitute dataset and then transfers the attack to the target model [20] [15]. For 

example, attackers may add stop signs with articular stickers to the training data to manipulate the decision boundary so 

that the traffic sign classifier will misjudge the “stop” as the “speed limit” in the testing phase (Figure 4), which could 

cause self-driving cars to maintain steering without stopping obstacle avoidance [21]. Studies have shown how difficult it 

is to recognize these kinds of attacks since they can look very similar to real training data [16]. 

 
Fig 4. Representation of a data poisoning attack: (a) The classifier correctly classifies the training data. (b) Attackers insert poisoned 

samples into the training dataset, which manipulates the decision boundary. (c) Consequently, some test data are misclassified during 

the testing phase because of the poisoning attack (e.g., a "stop" sign is mistakenly identified as a "speed limit" sign). 

 

2.3.3 Detection and Defence Mechanisms 

In artificial intelligence systems, data poisoning attacks are intentional alterations of training data to decrease machine 

learning model performance or behaviour [20]. This type of attack may have disastrous results, such as inaccurate 

classifications, weak security, or unfair decisions [22]. Several types of detection and mitigation strategies exist for 

preventing data poisoning attacks. Data poisoning detection techniques work together with probability reduction methods 

to protect machine learning models from poisoning attacks during their training and testing operations [23]. Three detection 

approaches that researchers propose for AI data poisoning attacks include outlier detection together with consistency 

checks and anomaly detection systems [20]. Robust training and model verification are the cornerstones of AI defense 

methods that aim at preventing data poisoning attacks [23]. One of these defense mechanisms is data sanitization, which 
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involves locating and removing poisoned data from the training dataset. Another approach would be to implement robust 

model training, where the model is strengthened against poisoning attacks by using regularization and adversarial training, 

among other techniques [24]. By detecting and reducing the effects of data poisoning attacks on machine learning models, 

these defensive and detection techniques are essential for guaranteeing the safety and dependability of AI systems [25]. 

 

2.3.4 Motivation 

Many techniques have been proposed to detect whether an image is authentic or forged. There are also techniques that use 
localization to find the forged region(s) in a forged image. It is very important to know whether these methods are robust, 
reliable and properly model the structural changes that occur in images due to copy-move [26]. Deep learning methods, 
such as convolutional neural networks (CNNs) and convolutional long short-term memory (LSTM) models, excel in 
automatically extracting complex features from images, enabling them to effectively distinguish between authentic and 
tampered images with high accuracy [27], [28]. Deep learning models also have superior performance to conventional 
methods in terms of presenting better metrics in general to detect tampered images [29]. Furthermore, deep learning 
techniques make advances in obtaining geometric feature detection and thus improve methods for detecting such 
manipulated images, especially in deep fake videos. 
 
2.3.5 Challenges 
Current image forgery detection models, including both keypoint-based  approaches and deep learning approaches, face 
some limitations, such as identifying small duplicate portions, low-contrast regions, and noise in copy-move and splicing 
forgeries. Moreover, the presence of noise and other photometric attacks further complicates detection efforts. Deep 
learning approaches seem to be promising for detecting forgery images. In addition, CNN-based techniques have 
limitations compared with other deep learning methods in the detection of image forgery [12]. These traditional approaches 
lack the ability to automatically extract intricate features from images, which is crucial for accurate detection [30]. 

3. METHODOLOGY 
We follow the guidelines presented in Budgen and Brereton [31] to describe our systematic literature review methodology. 

Our research design uses a precise method to identify research publications and develops particular standards for selecting 

studies that maintain both high-quality and suitable content relevance. The document outlines the procedure for collecting 

data together with specific criteria used for quality assessment. The following sections detail the complete process through 

an overview. 

 

3.1 Review Protocol 

This section explains the research procedure implemented for this study. The entire procedure for this SLR includes three 

distinct phases, as illustrated in Figure 5, according to [32]: 

• Planning the Review: This phase focuses on defining the objective and developing the protocols for this SLR. 

• Conducting the Review: This phase outlines the main research content in this SLR, which is divided into six steps: 

1. Research Questions: This SLR will answer research questions that establish which problems need analysis and feed 

into the discussion section. 

2. Search strategy: The search strategy part defines which search databases and keywords will help gather primary 

studies. 

3. Study selection criteria: The selection criteria, which include inclusion and exclusion parameters, separate 

appropriate studies from inappropriate studies for inclusion in this systematic literature review. 

4. Quality Assessment Criteria: This step evaluates how well the chosen studies match the main goal of this SLR through 

the quality assessment criteria. 

5. Data Extraction: Designing an accurate data extraction form stands as the objective of this step to record research-

related information. 
6.  Data Synthesis: The comprehensive process of this step combines and groups findings from original studies. 

Reporting the Review: According to these guidelines, review completion takes place within this phase. 

 

 

3.2 Research Questions 

This section takes steps to address the identified research questions and achieve the study's objectives as described below. 

The protocol includes a thorough review of the literature, identification of research gaps, formulation of research questions, 

and an explanation of the motivations behind each question. 

RQ1: How do current detection models address the limitations in identifying small duplicate portions, low-contrast regions, 

and noise in copy-move forgery and splicing forgeries? 
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RQ2: How can deep learning techniques, particularly convolutional neural networks (CNNs), improve the accuracy and 

reliability of detecting splicing, performing copy-move forgeries, and handling various types of noise and photometric 

attacks? 

RQ3: How do image forgeries (copy-movie, splicing) combined with various types of noise in training datasets impact the 

effectiveness of data poisoning detection mechanisms? 

 

 
Fig. 5. Systematic Literature Review Overview 

3.3 Research strategy 

To gather studies related to image forgery detection, splicing detection, noise handling, and data poisoning defense, we 

formulate specific search terms pertinent to this paper. The primary approach involved the use of Boolean expressions to 

combine search terms, including 'AND' and 'OR'. The search terms can be summarized as (("image forgery" OR "splicing" 

OR "noise") AND ("detection" OR "defence" OR "deep learning" OR "CNN") AND ("data poisoning"). The search was 

restricted to articles published between 2018 and 2024. The initial search yielded a total of 571 articles. After removing 

duplicates and nonrelevant studies on the basis of the title and abstract, 450 articles remained. The 450 articles were then 

subjected to a detailed screening process. A preliminary screening based on titles and abstracts reduced the number to 200 

articles. The full texts of these 200 articles were reviewed to assess their relevance and quality. This stage further reduced 

the number to 71 articles.  After these search terms were finalized, we selected relevant digital repositories. We searched 

the following electronic databases: 

• IEEE Xplore Digital Library. (https://ieee-collabratec.ieee.org). 

• ScienceDirect. (https://www.sciencedirect.com). 

• ACM Digital Library. (https://dl.acm.org). 

• Wiley Online Library. (https://onlinelibrary.wiley.com). 

• Google Scholar. (https://scholar.google.com). 

• SpringerLink. (https://link.springer.com). 

• ArXiv. (https://arxiv.org). 

The search process was conducted across these electronic databases, encompassing key journals and conferences. These 

sources primarily originate from fields such as computer vision, image processing, machine learning, and cybersecurity. 
3.4 Study Selection Criteria 

The study selection criteria constitute a critical component of the systematic literature review (SLR) process, ensuring that 

only relevant, high-quality studies are included in the review, as shown in Table 1. These criteria systematically filter the 

vast amount of available literature, focusing on studies that directly address the research questions and contribute 

meaningful empirical evidence. 

 
TABLE I. Inclusion and exclusion criteria for selecting studies 
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Criteria Description 

Inclusion 

 

• Studies published in peer-reviewed journals or conference proceedings. 

• Studies focusing on image forgery detection using deep learning techniques, particularly CNNs. 

• Studies addressing data poisoning attacks in image forensics. 

• Studies focusing key point-based CMFD. 

• Studies providing empirical evidence on the effectiveness of the techniques. 

Exclusion 

• Studies not available in English. 

• Studies without empirical results. 

• Studies not relevant to the formulated research questions. 

 

3.5 Quality Assessment Criteria 

To assess the quality of the selected studies, we followed the guidelines of the quality assessment criteria in Table 2 and 

screened these studies to ensure that they met our standards. To ensure the reliability of the results, we used a cross-

checking method to identify whether the selected studies met these criteria. After the quality assessment criteria are applied, 

the final studies are selected, which include a comprehensive set of articles related to image forgery detection and data 

poisoning defence. 

 
TABLE II. Quality assessment criteria 

Criteria Detailed explanation 

Relevance 
The study must address the research questions and objectives, focusing on image forgery detection and data poisoning 

defense. 

Empirical Evidence Studies must provide empirical results, such as experiments, simulations, or case studies. 

Study Design The methodology and study design must be clearly described and appropriate for addressing the research questions.  

Data Quality The quality and source of the data used in the study must be reliable and well-documented. 

Analysis and Results The analysis methods and results must be clearly presented and rigorously evaluated. 

 

3.6 Data Extraction and Data Synthesis 

The data extraction process involves designing forms to capture information accurately from primary studies. These 

forms help gather the necessary data to answer the research questions. The extracted information in the data extraction 

forms is included in Figure 6. 

Study details: Author, publication time, and publication source, covering both journals and conferences. Forgery and Data 

Poisoning Techniques: Focus on the copy-move forgery detection (CMFD), splicing forgery detection (SFD), and data 

poisoning detection (DPD) techniques used in the studies. These techniques are classified on the basis of feature extraction 

methods and models. 

Empirical Evidence: Summarized from six dimensions: experimental datasets, feature extraction techniques, data 

poisoning methods, forgery detection methods, models used, and performance measures. During data synthesis, similar 

and comparable results from the data extraction forms are summarized, providing supporting evidence to conclusively 

answer the research questions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Extracted data 
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The development of reliable detection algorithms is crucial for protecting visual data from the growing problem of digital 

image modification. Our literature review focuses on three key areas: CMFD algorithms using hand-crafted features, 

protecting machine learning models from data poisoning attacks, and detecting image forgeries, splicing, and noise. We 

explore the effectiveness and limitations of CMFD methods such as SIFT and SURF, review strategies against data 

poisoning such as anomaly detection and robust statistics, and compare conventional and deep learning techniques for 

forgery and noise detection. The purpose of this review is to evaluate proven strategies that improve image forgery 

inspections while maintaining model authenticity. 

 

4.1 IC-MFD Algorithm-Based Hand-Crafted Features 

The CMFD methods organize themselves into three groups that divide images through three different techniques: block-

based approaches [33], segmented region-based approaches [34], and local keypoint-based approaches [35]. Block-based 

methods divide an image into different subblocks where the arrangement can be either overlapping or nonoverlapping. A 

block-division method decreases the time needed to search for corresponding feature vectors within images when applied 

instead of performing a complete search. Under the segmented-based approach, the image is divided into sections that 

contain all the fake objects. The keypoint-based approach functions without segmentation by detecting distinctive local 

features that include corners and edges along with blobs. The keypoint-based approach adopts two fundamental methods, 

among others, scale-invariant feature transform (SIFT) [36]. Speeded Up Robust Features (SURF) [37]. Human designers 

create handmade features that include natural features, among other features. 

Keypoint-based CMFD techniques execute their feature extraction phase through the detection of features, which 

subsequently yields descriptions [38]. A set of image keypoints is detected in feature detection, as they possess stability 

properties under geometric transformations [39]. The feature description step uses these keypoints by developing encoding 

schemes for their surrounding areas. The SIFT and SURF algorithms serve as the main choices for executing both feature 

detection and feature description tasks in CMFD applications. Several CMFD (copy-move forgery detection) techniques 

based on keypoints are examined in Table 3. The summary presents several detection approaches that integrate a breakdown 

of their methods together with their benefits and constraints. The evaluation of detection and description techniques 

provides knowledge about the SIFT and SURF methods and how they address multiple aspects of image forgery detection. 

The extensive reference provides essential details about keypoint-based CMFD methods during their operation across 

different scenarios. 

 
TABLE III. Summary of keypoint-based CMFD techniques 

REF 

DESCRIPTION DATASET 

USED 

KEYPOINT-

BASED 

APPROACH 

PERFORMANCE LIMITATIONS 

[40] 

- A fast and accurate method using dense 

keypoints and invariant features, effective 

even in smooth or small regions. Achieved 

94.54% F-measure with low false 
detections and fast runtime. 

- FAU 

- GRIP 

- MICC-F600 

- CMH 

 

- Dense and uniform 

SIFT keypoints 

- Average pixel-level 

F-measure of 

94.54% and average 

CPU-time of 36.25. 

-High levels of 

blurring can still 
degrade the 

performance. 

-Brightness change. 

-Color reduction. 

 

[41] 

- A five-stage SVM-based method for copy-
move forgery detection using block 

features. Achieved 98.44% accuracy on 

MICC-F220, outperforming several 

existing methods. 

- MICC-F220 - Block-based -  98.44% detection 
accuracy 

- Struggle with high 

levels of blurring. 

- Fail to extract 

distinctive features. 

 

[42] 

- A hybrid deep learning and DCT-based 

method using LDR preprocessing and 

Patch Match. Shows improved robustness 
under compression and other attack 

scenarios. 

- GRIP - Deep CNN-based 

features and DCT 

based block 
features 

-  97.16% (pixel-

level) 

-  96.96% (image-

level) 

- JPEG compression 
and noise addition. 

-Blurring not 

mentioned. 

 

[43] 

- Proposes SMDAF with second-keypoint 

matching and adaptive filtering. Offers 

strong robustness under real-world and 

postprocessing attacks with improved 

detection accuracy. 

- CASIA, 

CMFD, 

- MICC-F220, 
- CoMoFoD, 

Coverage 

dataset. 

- Scale-Invariant 

Feature Transform 

(SIFT). 

- CASIA-CMFD: F1 

score: 0.714 

- MICC-F220:F1 score: 
0.904. 

- CoMoFoD: Pixel-level 

F1 score: 0.511. 

 

- Decline in 

performance under 

image blurring and 
noise addition. 

- Still struggle with 

false positives and 

false negatives. 

[44] 

- This paper presents a robust method for 

detecting and localizing multiple copy-

move forgeries using adaptive keypoint 
extraction and quaternion polar 

- FAU, GRIP. - Generic Features 
from Accelerated 

Segment Test 

(GFAST). 

- FAU Dataset: 
Achieved an F-

measure of 98.98% 

at the image level 

- Degrade under 
JPEG compression, 

Blurring, Contrast, 

and other significant 

noise addition. 
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transforms. By employing KD-tree 

matching and offset-based clustering, the 
method efficiently handles small, smooth, 

and multiple forgeries. The approach 

demonstrates superior performance 

compared to current state-of-the-art 

techniques. 

and 94.16% at the 

pixel level. 
- GRIP Dataset: 

Achieved an F-

measure of 99.87% 

at the image level 

and 97.47% at the 
pixel level. 

 

[45] 

- This paper proposes a pixel-based forgery 

detection framework for copy-move and 

splicing manipulations. The system 

enhances image textural features through 

preprocessing and utilizes enhanced SURF 
and template matching for forgery 

detection. Evaluations on the CASIA 

dataset show that the system achieves 

97.5% accuracy, outperforming existing 

methods. 

- CASIA. - Advanced SURF, 

Template 

Matching. 

- Advanced SURF: 

Achieved 98% 

detection accuracy. 

- Template Matching: 
Achieved 100% 

detection accuracy. 

-  Overall System: 

Achieved 97.5% 

detection accuracy 
when combining 

both methods. 

- Challenge in 

detecting small or 

smooth regions due 

to the difficulty in 
extracting sufficient 

keypoints. 

 

A summary of keypoint-based research methods and findings will answer RQ1 by revealing their accomplishments and 

disadvantages with recommended enhancements. The synthesis will provide both an understanding of modern research 

fluctuations and possible future progress points: 

 

- Many keypoint-based methods generally face difficulties in detecting noise-based forgeries, which include both JPEG 
image compression and blurring and modifications to image contrast levels. The model reported in [40] reaches 94.54% 
pixel-level accuracy yet displays failures with brightness changes and blurring artifacts, whereas [44] demonstrates high 
F-measure performance on GRIP data before degradation occurs when handling JPEG compression or blurring effects. 
Despite its high accuracy level of 97.16% [42], it demonstrates poor performance under JPEG compression as well as 
noise addition patterns, which indicates its sensitivity to typical real-world image alterations. Strong noise-handling 
mechanisms need to be integrated into CMFD models because they play a fundamental role in performance 
enhancement. 

-  Despite high accuracy in controlled settings, keypoint-based CMFD methods face challenges with false positives and 

false negatives, particularly in small or smooth regions. For example, [45], who used SURF and template matching, 

achieved 97.5% detection accuracy but struggled with detecting small or smooth regions because of the difficulty of 

extracting enough keypoints. The author of [43] reported that SIFT performs well on CASIA-CMFD but still struggles 

with false positives and false negatives, especially under image blurring and noise addition. This highlights the need for 

improved feature extraction techniques to minimize false detections and enhance the accuracy of the models. 

To detect image tampering, features extracted via key point methods and region matching via block-based methods are 

combined. However, if the features are sparse, then again, the fusion methods cannot address the smoothing effect [46]. 

One way to extract more keypoints is to utilize hybrid/multiple detectors, such as those in [47]. Other works, such as [48], 

applied keypoint detectors on the opponent colour space rather than the intensity channel to obtain an adequate number of 

keypoints. 

 

4.2 Image Forgery, Splicing, and Noise Detection Methods 

Image forgery, splicing, and noise detection techniques are reviewed in this section, along with their strengths and 

weaknesses. To keep digital images genuine and undamaged, it is essential to understand these strategies. Table 4 shows 
a summary of image forgery detection techniques and their performance. 

In [49], the authors simulated and examined a convolutional neural network (CNN) model to recognize any forged picture. 

Three stages are included in the model: classification, feature extraction, and data preprocessing. The fully connected layer 

is used by the model to determine if an image is authentic or fake after it has learned to extract features from the 

convolutional, pooling, and rectified linear unit layers. Three datasets (MCC-F2000 (2000 images), CASIA 1 (1721 

images), and CASIA 2 (12615 images)) are used in the experimental studies, and their performance is evaluated and 

contrasted with that of current deep learning-based techniques. According to their findings, the CNN model performed 

best, achieving an accuracy of 76% on the MICC-F2000, 79% for CASIA 1, and 89% for CASIA 2. 

Qazi et al. [50] suggested a method based on ResNet50v2, a modern deep learning architecture. The suggested model uses 

the ResNet50v2 architecture to use the weights of a YOLO convolutional neural network (CNN) on batches of images as 

input. The author of this work detected image splicing via the CASIA_v1 and CASIA_v2 benchmark datasets, which 

comprise two unique categories: original and forgery. also compared the suggested method with those that are already in 

use. The authors examined method performance using the CASIA_v1 and CASIA_v2 datasets. Because the CASIA_v2 
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dataset is larger than the CASIA_v1 dataset is, they were able to achieve 99.3% accuracy with the fine-tuned model via 

transfer learning. Hosny et al. [51] suggested a convolutional neural network (CNN) model with fewer parameters than 

the previously disclosed methods for accurately and quickly identifying splicing forged images. With only four 

convolutional layers and four max pooling layers, the model that is being described is lightweight and appropriate for most 

situations with resource constraints. A thorough analysis was performed to compare the suggested model with the other 

models. The suggested model's sensitivity and specificity are assessed via the CASIA 1.0, CASIA 2.0, and CUISDE 

datasets. With respect to identifying forgeries on the CASIA 1.0, CASIA 2.0, and CUISDE datasets, the suggested model 

had accuracy rates of 99.1%, 99.3%, and 100%, respectively. 

Islam et al. [52] proposed an effective model that uses discrete cosine transformation (DCT) and local binary pattern (LBP) 

operators for splicing and copy-move attack detection in colour images. These attacks have a greater effect on chromaticity 

components than on brightness components. Initially, the Chroma components of an image are separated into 

nonoverlapping, fixed-sized blocks. Then, 2D block DCT is used to detect any changes resulting from image forgery in 

the local frequency distribution. Then, to accentuate the artifacts caused by the tampering procedure, a texture descriptor 

called LBP is added to the magnitude component of the 2D-DCT array. Blocks that do not overlap are once again separated 

into the resultant LBP image. The appropriate intercell values of each LBP block are finally added together, and the results 

are organized into a feature vector. The proposed method leverages a support vector machine (SVM) with a radial basis 

function (RBF) kernel to differentiate between authentic and forged images. Through rigorous experimentation on 

renowned datasets for image splicing and copy-move detection, this approach shows its superiority over recent state-of-

art methods. The accuracies are 97.52, 97.79 and 99.82 when using Columbia Color, CASIA 1, and CASIA 2, respectively. 

Ali et al. [53] provide a novel neural network and deep learning-based image forgery detection solution that emphasizes 

the CNN architecture. The method that is suggested makes use of a CNN architecture that takes into account variances in 

image compression to achieve good results. The model is trained by leveraging the differences between the original and 

recompressed images. The suggested method is effective in identifying image forgeries, which include copy-move and 

image splicing. The total validation accuracy of the experiment, with a specified iteration limit, is 92.23%, which is 

promising. 

Hussien et al. [54] provide an automated technique for detecting image splicing forgeries, which is based on extracting 

image features via colour filter array (CFA) analysis. PCA is used to reduce the dimensionality of features. To distinguish 

between genuine and spliced images, a classifier built on deep belief networks is developed. The robustness of the approach 

is evaluated via the Columbia Image Splicing Detection Evaluation Dataset (CISDED), which includes several 

circumstances, such as Gaussian noise and JPEG compression. With 95.05% precision, 94.05% recall, a 94.05% true 

positive rate, and 98.197% accuracy, the results demonstrate good performance, confirming its superiority over 

contemporary splicing detection approaches. In mallick et al. [55], a CNN-based technique for detecting copy-move image 

forgeries was proposed and presented. The proposed technique extract features from two datasets, CASIA v2.0 and 

NC2016, with different levels of complexity via the CNN. A model that is built on three distinct models, i.e., ELA, VGG16, 

and VGG19, is able to provide excellent results on a collection of images from the CASIA2.0 and NC2016 datasets, with 

accuracies of 70.6%, 71.6%, and 72.9%, respectively. In Kuznetsov [56], the author utilized the VGG-16 convolutional 

neural network (CNN) for feature extraction and classification, leveraging its deep hierarchical structure to improve image 

analysis and detection performance. The suggested network architecture classifies image patches as original or fake on the 

basis of the input image patches. The author selected patches from the original image areas and the edges of the embedded 

splicing during the training phase. Compared with previous solutions, the acquired results show excellent classification 

accuracy (97.8% accuracy with the fine-tuned model and 96.4% accuracy for zero-stage training) for a collection of images 

with artificially introduced distortions. The CASIA dataset was used for the experimental studies. 

In [57], the authors propose applying deep learning to identify image splicing in images. Initially, the input images are pre-

processed via the 'Noiseprint' approach, which suppresses the image content to obtain the noise residual. Second, a feature 

extractor is used, which is the well-known ResNet-50 network. Finally, the SVM classifier is used to classify the acquired 

features as legitimate or spliced. The suggested strategy performs better than other current methods do, according to 

experiments performed on the CUISDE dataset. The average categorization accuracy achieved by the proposed method is 

97.24%. 

The authors of [41] proposed a unique approach to image forgery detection that can concurrently detect copy-move and 

splicing forgeries on the CASIA v1.0 and CASIA v2.0 datasets. To retain splicing artifacts, the image is first transformed 

into YCbCr channels, with chrominance channels being given priority for feature extraction. Among the preprocessing 

procedures are picture decorrelation and BDCT. The system is trained on real and fake images once all the features have 

been combined, and an SVM is used for classification. To find forged areas, a copy-move detection approach maps 

replicated regions. The method's resilience is shown by the experimental findings, which demonstrate high effectiveness, 

achieving a 99.50% accuracy rate for splicing identification at threshold T=8 and an 87.50% accuracy rate for copy-move 

detection. 
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In Elaskily et al. [58], a convolutional neural network (CNN) specifically designed for copy-move forgery detection 

(CMFD) was presented. The CNN successfully differentiates manipulated images from original ones by learning 

hierarchical features from the input images. Comprehensive tests show that the method performs better than conventional 

CMFD systems do on three publicly available datasets: MICC-F220, MICCF2000, and MICC-F600. Furthermore, the 

method achieves an accuracy of 100% across all four datasets when these datasets are combined with SATs-130, 

demonstrating its resilience against a variety of known distortions. The results are comparable and provide a 

comprehensive evaluation, demonstrating the model's performance across various benchmarks. 

In [59], a novel method that combines colour illumination, deep CNNs, and semantic segmentation for the detection and 

localization of image forgeries was described. Pixel-level classification reliably differentiates between forged and 

legitimate regions by fine-tuning VGG-16 via transfer learning. This categorization is refined by semantic segmentation to 

accurately define the fabricated areas. Outstanding results are obtained from testing on benchmark datasets: an average 

border F1 score of 86.404%, an average accuracy of 98.581%, an average IOU of 91.148%, a weighted IOU of 97.193%, 

and an overall accuracy of 98.482%. In particular, the average border F1 score is 79.709%, the IOU is 83.945%, and the 

forged pixel accuracy is 98.698%. With an average border F1 score of 93.055% and an IOU of 98.351%, the model attains 

an accuracy of 98.463% for non-forged pixels. These results outperform those of cutting-edge techniques, demonstrating 

the method's efficacy in producing precise forgery detection. 

The authors of [60] proposed a hybrid network to identify duplicated regions in digital images by merging a CNN and 

LSTM. The suggested model successfully localizes copied and pasted areas by combining SRM filters, LSTM, CNN, and 

SVM classification. Patch extraction and rotation algorithms are used to solve resampling artifacts, such as up sampling 

or down sampling, rotation, and shearing. An LSTM-CNN network is used to extract features and patches from both 

compromised and clean images. To differentiate between altered areas, the SVM classifier examines many properties. The 

technique's usefulness is shown by experimental findings on the CASIA and CoMoFoD datasets, which yielded 94.7% 

accuracy with patch rotation and 82.8% accuracy without rotation for CASIA and 84.8% accuracy with rotation and 73.5% 

accuracy without rotation for CoMoFoD. 

In [61], the proposed approach, multiple structures of stacked autoencoders (SAEs), was implemented for detecting 

forgeries across various image compression techniques, using pretrained AlexNet and VGG16 models for feature 

extraction. The Ensemble Subspace Discriminant classifier is employed to classify images as authentic or forged. 

Extensive ablation studies were conducted on two CASIA datasets, which revealed that the combination of two 

autoencoders and AlexNet features outperforms several other architectures and state-of-the-art methods, achieving 95.9% 

accuracy for JPEG images and 93.3% accuracy for TIFF images. The research in [62] introduces an effective convolutional 

neural network (CNN) that detects copy-move image forgery in an efficient manner. This model executes three 

convolutional layers alongside three max pooling layers followed by one fully connected layer through ReLU activation 

coupled with the RMSprop optimizer. The testing time for this model remains fast because it completes each image analysis 

in approximately 0.83 seconds. The proposed system achieved 100% accuracy on all tests in the MICC-F2000, MICC-

F600, and MICC-F220 datasets, demonstrating exceptional performance and speed for image forgery detection. 

 

 
TABLE IV. Summary of image forgery detection techniques and their performance 

 

Ref. Dataset Used Method Used Pros Cons Limitations Accuracy 

[49] 

- MCC-F2000. 

- CASIA v1. 

- CASIA v2. 

- CNN model with 

classification. 

- Feature 

extraction. 

-  Data 

preprocessing 

stages. 

- Autonomously 

learns and 

extracts 

features from 

images. 
without prior 

knowledge of 

forgery types. 

- CNN models may require 

substantial computational 

resources and training time, 

especially when dealing with 

large datasets like CASIA 2 
with 12,615 images. 

- Limited 

accuracy, 

especially on 

smaller 

datasets like 
MCC-F2000. 

- 76% (MCC-F2000). 

-  79% (CASIA v1). 

-  89% (CASIA v2). 

[50] 

- CASIA v1. 

- CASIA v2. 

- ResNet50v2 with 

transfer learning 

from YOLO. 

- Achieved 

99.3% 

accuracy on 
larger CASIA 

v2 dataset. 

- Blurring and contrasting not 

mentioned. 

- Performance 

may degrade 

on smaller 
datasets. 

- Generalization 

may accrue 

using different 

datasets. 

- 99.3% (CASIA v2). 

[51] 

- CASIA 1.0. 

- CASIA 2.0. 

- CUISDE. 

- Lightweight 

CNN with 4 

convolutional 

- High 

accuracy, 

resource-

efficient. 

- Because of resource-limited 

environments, more complex 

forgery detection tasks require 

deeper networks. 

- Limited model 

capacity due 

to lightweight 

architecture. 

- 99.1% (CASIA 1.0). 

- 99.3% (CASIA 2.0). 

- 100% (CUISDE). 
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and 4 max-

pooling layers. 

[52] 

- Columbia 

Color. 

- CASIA V1. 

-  CASIA V2. 

- DCT, LBP, and 

SVM with RBF 
kernel. 

- Effective for 

splicing and 
copy-move 

attacks. 

- Not covered diverse image 

characteristics it might result 
generalization problem. 

- Handcrafted 

features may 
not generalize 

well. 

- 97.52% (Columbia 

Color). 

- 97.79% (CASIA V1). 

-  99.82% (CASIA 

V2). 

[53] 

- Retrained on 

CASIA 2.0. 

- CNN architecture 

considering 
image 

compression. 

- Effective for 

copy-move 
and splicing 

forgeries. 

- Blurring and contrasting not 

mentioned. 

- Limited 

information 
on datasets 

and potential 

overfitting. 

- 92.23% validation 

accuracy. 

[54] 

- CISDED. - CFA analysis, 

PCA, and deep 

belief network 
classifier. 

- Robust to limit 

noise and 

JPEG 
compression 

quality factor. 

- High compression quality 

factor could decrease accuracy. 

- Blurring, contrasting, salt and 

pepper not mentioned. 

- Handcrafted 

CFA features 

may not 
generalize 

well. 

- 95.05% precision. 

- 94.05% recall. 

- 98.19% accuracy 

[55] 

- CASIA v2.0. 

- NC2016. 

- CNN-based with 

ELA. 

- VGG16. 

- VGG19. 

- Handles 

complex 

datasets. 

- Difficult to generalize different 

distributions. 

- Limited 

generalization 

ability across 

datasets. 

- 70.6% (ELA). 

- 71.6% (VGG16). 

- 72.9% (VGG19). 

[56] 

- CASIA. - VGG-16 CNN. - High 

accuracy. 

- - Limited 

information 

on potential 

limitations. 

- 97.8% (fine-tuned). 

- 96.4% (zero-stage 
training). 

[57] 

- CUISDE. - Noiseprint, 

ResNet-50, and 

SVM. 

- Outperforms 

current 

methods. 

- - Limited 

information 

on potential 
limitations 

and 

generalization 

ability. 

- 97.24% classification 

accuracy. 

[59] 

- CASIA v1.0. 

- CASIA v2.0. 

- YCbCr channels, 

decorrelation. 

- BDCT. 

- SVM. 

- Detects copy-

move and 

splicing 
forgeries. 

- Blurring and contrasting note 

mentioned. 

- None effective on copy movie 

forgery detection. 

- Handcrafted 

features may 

not generalize 
well. 

- 99.50% (splicing). 

- 87.50% (copy-

move). 

[58] 

- MICC-F220. 

- MICC-F2000. 

- MICC-F600. 

- SATs-130. 

- CNN for copy-

move forgery 

detection. 

- High 

accuracy, 

robust against 

various 
attacks. 

- - Limited 

information 

on potential 

limitations 
and 

generalization 

ability. 

- 100% accuracy 

(combined datasets). 

[4] 

- Benchmark 

datasets. 

- Color 

illumination. 

- Deep CNNs. 

- Semantic 

segmentation. 

- High 

accuracy. 

-  precise 

forgery 

localization. 

- - Limited 

information 

on potential 
limitations 

and 

generalization 

ability. 

- 98.581% average 

accuracy. 

- 91.148% average 

IOU. 

[60] 

- CoMoFoD. 

- CASIA. 

- Combining SRM 

filters. 

- LSTM. 

- CNN. 

-  SVM 

classification. 

- Effective with 

splicing forget 

images 
detection 

without patch 

rotation. 

- Difficult to generalize to 

different distributions. 

- Limited 

accuracy with 

comofod 
dataset. 

- Limited 

accuracy with 

patch rotation 

in both 

datasets. 

- 94.7% (CASIA). 

- 84.8% 

(COMOFOD). 
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[61] 

- CASIA v1.0. 

- CASIA v2.0. 

- SAE. 

- VGG16. 

-  Pretrained 

AlexNet. 

- Handle 

various image 

compression 

techniques. 

- AlexNet and 
VGG16 well-

regarded in the 

field of 

computer 

vision. 

- CASIA datasets may not fully 

represent the diversity of real-

world scenarios and other 

image formats beyond JPEG 
and TIFF. 

- Deep 

autoencoder 

and CNN 

models could 
still be prone 

to overfitting. 

- Does not 

provide 

detailed on 

various 
degrees of 

compression. 

- 95.9% accuracy for 

JPEG images. 

- 93.3% for TIFF 

images. 

[62] 

- MICC-F2000. 

- MICC-F600. 

- MICC-F220. 

- Convolutional 

Neural Network 

(CNN). 

- Efficient at 35 

epochs. 

- Fast, taking 

approximately 

0.83 seconds 

per test. 

- Only detecting copy-move 

forgery. 

- Splicing, contrast, blurring, 

compression not mentioned. 

- This may lead 

to overfitting. 

- May not 

generalize 

well to unseen 

data. 

- 100%. 

 

The analysis of RQ2 requires examining vital findings from the literature review, which concentrates on detection methods 

for image forgery along with splicing and their responses to different noise types. The existing methods are analysed 

according to their strengths and drawbacks while showing how they address various manipulation techniques combined 

with noise conditions: 

- Many studies, such as [49], [50], [55], and [60], employ CNN-based models for detecting copy-move and splicing 

manipulations. CNNs are effective in learning and detecting complex patterns, but their performance can be limited when 

dealing with issues such as edge detection, noise, and low-contrast regions. For example, methods relying on feature 

extraction, such as those in [49] and [52], do not explicitly address noise or edge distortions, which are key challenges 

in forgery detection. These methods struggle when images have fine-grained manipulations or noise that obscures 

duplicate portions. The use of handcrafted features (DCT, LBP, SVM, etc.) in [52] and [59] may fail to generalize well 

in noisy environments, missing subtle manipulations or offering inaccurate predictions in the presence of noise. 

Therefore, more advanced feature extraction techniques, such as hybrid methods and noise-adaptive preprocessing, could 

improve performance in detecting complex forgeries and handling noise effectively. 
 

- Most studies rely on popular datasets such as CASIA and MICC-F2000, as shown in [49], [55], and [58]. While these 
datasets are widely used, they do not fully account for the variety and complexity of real-world scenarios, including 
diverse image types and manipulation techniques. For example, the CASIA dataset may not capture the full range of 
noise-induced manipulations and edge distortions that your problem statement addresses. The MCC-F2000 dataset 
produces restricted performance when analysed via the methods described in [49] because limited data are available 
specifically for complex forgery detection. The detection models need additional data representing various noise patterns 
and splicing techniques to improve their accuracy and generalizability. 

 

- A recurring issue in the table is the challenge of generalizing across different datasets. Studies such as [50] and [55] 
demonstrate that models may perform well on specific datasets (e.g., CASIA v2.0) but struggle with other datasets or 
new unseen data. For example, transfer learning techniques such as those used in [50] (ResNet50v2 with YOLO) help 
improve generalization, but performance can degrade on smaller datasets or datasets with complex manipulations. This 
aligns with your concern that current methods may overfit specific datasets, reducing their effectiveness in real-world 
scenarios. 

 

- Many methods in the table either do not address specific noise attacks or have limited handling capabilities, which poses 

a significant challenge in real-world forgery detection. For example, [54] and [55] attempt to handle JPEG compression 

and certain noise types but do not explicitly cover other common photometric attacks, such as salt-and-pepper noise, 

blurring, or contrast changes. These attacks can severely complicate the detection of manipulated regions, as noise can 

hide or distort forgeries. Techniques based on handcrafted features (e.g., [52], [59]) may fail to detect forgery regions 

effectively when such noise or photometric manipulations are present, as seen in your problem statement. To overcome 

this, your focus on developing an adaptive noise-handling pipeline, along with hybrid feature extraction, could 

significantly enhance the robustness of forgery detection systems against such attacks, making them more reliable in 

challenging environments. 
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- Accuracy metrics across different studies vary significantly, with some methods achieving high performance (e.g., 100% 

accuracy in [58] on combined datasets), whereas others perform more modestly (e.g., 76% on MCC-F2000 in [49]). 

While high accuracy on specific datasets is promising, it often reflects overfitting and may not translate well to other, 

more complex datasets. The accuracy differences between methods such as [50] (99.3% on CASIA v2) and [59] (99.50% 

on splicing detection) indicate that while certain methods may perform well on specific manipulation types (such as 

splicing), they may not generalize effectively to all types of forgeries, especially in the presence of noise or when applied 

to more complex datasets. This aligns with your concern that models need to be tested on challenging, real-world 

conditions, not just ideal or controlled datasets. By focusing on improving accuracy across diverse conditions with noise 

and manipulation variability, your work aims to bridge this gap, making detection methods more robust and applicable 

in practice. 

Because the model does not explicitly handle blurring, contrast adjustments, or compression, it may struggle to detect 

forgeries involving these techniques. Additionally, the model's effectiveness in detecting combined manipulations remains 

uncertain, and it has not been extensively tested under diverse and uncontrolled conditions. Additional improvements in 

the system will be necessary to increase model robustness while expanding its ability to detect various types of 

manipulations. 

 

4.3 Data Poisoning Detection Methods 

By injecting malicious training set inputs, machine learning models face substantial threats to their operational quality 

along with their information accuracy. A review of attack detection and mitigation strategies for data poisoning attacks 

involves a breakdown of their benefits and drawbacks. The performance outcomes of the data poisoning detection methods 

can be found in Table 5. 

[21] presented 'De-Pois' as a defense system that functions independently from specific attacks to combat data poisoning 

attacks. The training process for De-Pois creates a model that duplicates the behavior of the target model during clean 

sample training. GAN networks assist in both improving training data and building the mimic model. The core strategy of 

De-Pois is to detect poisoned samples by comparing the predictions of the mimic model with those of the target model. 

Since divergences in predictions can indicate the presence of poisoned data, De-Pois can identify these samples without 

specific knowledge of the machine learning algorithms or the nature of the poisoning attacks. The authors of [63] proposed 

the MOVCE model, which performs verification via CNNs and word embedding. This model is designed as a 

countermeasure to maintain the reliability of deep learning vision systems in the face of data poisoning attacks. 

Authors in [64] analysed how adversarial attacks on training data affect model parameters, using a CNN model and the 

MNIST dataset as a test. The increase in poisoned data within the training set is caused by the addition of more manipulated 

samples. Approaching the issue from the network's feature space reveals a correlation with the model's training parameters. 

A proposed method detects whether the network was attacked during training by comparing the distributions of parameters 

in intermediate layers, which are calculated via the maximum entropy principle and the variational inference approach. An 

enhanced version of the k-nearest neighbors (k-NN) algorithm is designed to defend against data poisoning attacks during 

the training of machine learning models. The typical k-NN algorithm is a basic machine learning technique used for 

classification, where an object is assigned to the class most common among its k nearest neighbors. According to [65], the 

'Deep k-NN' modification integrates the algorithm into a deep learning framework, leveraging representations learned by 

deep neural networks to determine neighbors and enhance defense against complex data poisoning strategies. 

The model proposed in [66] uses a VGG16-based convolutional neural network (CNN) within a federated learning 

framework to detect and classify skin cancer while addressing data poisoning attacks. The study employs the Skin Cancer 

MNIST: HAM10000 dataset, sourced from Kaggle, which includes images of melanoma, nevi, and seborrheic keratoses. 

The model achieves an overall accuracy of 94.5% and an AUC-ROC value of 0.974, demonstrating high discriminatory 

ability and robustness in classifying skin lesions while ensuring data privacy and security. 

The model proposed in [67] employs Projected Gradient Descent (PGD) adversarial training to improve the robustness of 

the model against poison attacks, a boundary augmentation algorithm using DeepFool, and ensemble training with 

preprocessing methods such as the ShrinkPad, feature squeezing, and PatchShuffle to increase robustness against data 

poisoning. The model demonstrated outstanding performance on benign data from MNIST, CIFAR-10, GTSRB and 

ImageNet while minimizing BadNets attacks to 0.3% on MNIST. The method enhances model detection capabilities for 

poisoning attacks to become more effective against such intrusions. 

In [68], the author proposed a support vector machine (SVM) as the detection model. The SVM is used to detect data 

poisoning attacks in federated learning by classifying malicious clients on the basis of SHAP values derived from the model 

parameters. The detection model is evaluated on the MNIST and Fashion MNIST datasets. The highest accuracy achieved 

was 100% for the MNIST model with a linear kernel, whereas the Fashion MNIST model achieved an average accuracy of 

94.2% when a linear kernel was used. 
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TABLE V: SUMMARY OF DATA POISONING DETECTION METHODS AND THEIR PERFORMANCE 

Ref Dataset used Method used Pros Cons Limitations Accuracy 

[21] 

- CIFAR-10. 

- Fourclass 

dataset. 

- House 

pricing 
dataset. 

- De-Pois. 

 

- Effectiveness on 

different datasets. 
 

- Dependency on Clean 

Data. 

- specific noise such as 
triggers. 

- Copy-move and splicing 

not mentioned (still a 

challenge). 

- Small portion of trusted clean data 

may not always available in real 
world scenarios. 

- Performance degrades on more 

complex data and when poisoning 

data is more than 20%. 

- Generalization problem. 

- Over 90% 

in average. 

[63] 

- CIFAR-10. 

 

- MOVCE 

model. 

- Verification. 

- CNN. 

- Word 

Embeddings. 

 

- Can adapt as the 

volume of data 

grows. 

 

-  Balanced datasets for 

training in real-world 

scenarios can be 

difficult. 

- Different lighting or 

filters in images that 
could ensemble data 

drift. 

 

- Limitation in 

Generalizability. 

- Limitations in lighting and filters 

(need preprocessing). 

- Copy-move and splicing not 

mentioned (still a challenge). 

- Extra noise still a challenge such as 

contrasting and blurring. 

 

- 70%. 

 

[64] 

- APTOS 

2019 

 

- CNN. 

- Max pooling. 

- Dense. 

- Dropout. 

- Flaten. 

-  

- The model addresses a 

critical issue in the 

medical field. 

- evaluates the impact 

of various data 
poisoning 

perturbations (such as 

brightness, noise, 

zoom, etc.) 

-  

- Performance against a 

limited set of 

perturbations 

(brightness, zoom, 

noise, etc.). 
- Not effected to other 

attacks such as copy-

move, splicing, contrast 

adjustments. 

-  

- Single Dataset Focus, the model 

might be affected using 

different type of datasets. 

 

- 95%. 

 

[65] 

- CIFAR-10 

 

- Deep k-NN 

 

- Number of poisoning 

samples doesn’t 
matter. 

- Risk  of discarding 

clean data along with the 
poisoned samples, 

especially if k is set too 

high. 

- Limitations in 

Generalization. 

- Copy-move and splicing not 
mentioned (still a challenge). 

- Extra noise still a challenge such as 

contrasting and blurring. 

- 99%. 

[66] 

- Skin 

Cancer 

MNIST: 

HAM1000

0. 

- VGG16. - Enhancing the model's 

ability to identify 

intricate patterns in 

skin lesion images by 

using VGG16. 

- Model remains 

vulnerable to 

sophisticated adversarial 

attacks that may not be 

easily detectable. 

- Model could be affected on other 

datasets. 

- copy-move and splicing not 

mentioned (still a challenge). 

- Extra noise still a challenge such as 

contrasting and blurring. 

 

- 94.5%. 

[67] 

- MNIST. 

- CIFAR-10. 

- GTSRB. 

- ImageNet. 

- Projected 

gradient 

descent 
(PGD). 

- DeepFool. 

-  ShrinkPad. 

- Feature 

Squeezing. 

- PatchShuffle. 

- High accuracy. 

- Model's applicability 

across different types 

of data. 

- Effective on smaller 

datasets. 

- Adversarial training 

could lead to overfitting 
to specific attack 

patterns. 

- Limited Generalizability. 

- Copy-move and splicing not 

mentioned (still a challenge). 

- Extra noise still a challenge such as 

contrasting and blurring. 

- 99.2% on 

MNIST, 

91.5% on 
CIFAR-

10, 97.8% 

on 

GTSRB, 
75.1% on 

ImageNet. 
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[68] 

- Open-

source 

MNIST. 

- Fashion 

MNIST. 

- Support 

Vector 

Machine 

(SVM). 

- Shapley 
Additive 

Explanation 

(SHAP) 

- High accuracy with 

MINIST Dataset. 

-  

- Evaluated on only two 

datasets. 

 

- May not generalize well to other 

types of data. 

- Copy-move and splicing not 

mentioned (still a challenge). 

- Extra noise still a challenge such as 

contrasting and blurring. 

 

- 100% on 

MNIST. 

- 94.2% on 

Fashion 

MNIST. 

 

To address RQ3, we can summarize key insights and findings from studies related to data poisoning detection methods. 

By examining these studies, we can identify effective strategies, common challenges, and areas for improvement in 

enhancing the robustness of data poisoning detection mechanisms in the context of image forensics, particularly for forgery 

and splicing detection. 

- Many studies (e.g., [21], [63], [66]) rely on relatively simple datasets such as CIFAR-10 and MNIST, which do not fully 

represent the complexity of real-world forgery detection, particularly for tasks involving splicing or copy-move 

forgeries. These datasets also do not address the variety of challenges posed by noise, edge distortions, and photometric 

attacks. Moreover, generalization across datasets remains a significant issue, as noted in [63], where models fail to adapt 

to data variations such as lighting or filters. In particular, models that perform well on smaller datasets or more controlled 

conditions (e.g., [68] achieving 100% accuracy on MNIST) often struggle to generalize to larger, more complex datasets 

such as CIFAR-10 or ImageNet, where noise and complex manipulations (such as splicing) are more prevalent. The 

current approach for detecting forged manipulations needs to be developed because it shows inadequacy for handling 

multiple datasets and changing adversarial techniques. 

- Most studies bypass the problem of noise and photometric attacks such as blurring and contrast by omitting specific 

solutions for these detection challenges. Research papers [63] and [67] identify noise as a challenge, but their proposed 

methods lack proper methods to address complete distortion resiliency effectively. Noise creates successful concealed 

areas that present difficulties for forensic analysis of manipulations. These models lack explicit noise management 

features, although they achieve high performance under controlled conditions, which indicates their insufficient ability 

to process complex situations. 

- All studies examined, including [21], [63] and [64], failed to address specifically the identification needs for both copy-
move and splicing forgeries, even though these manipulations form the focus of this research investigation. Research 
has focused mostly on overall image classes or data tamper identification, yet it has not explored or addressed the 
particular difficulties generated by splicing and copy-move modifications. Studies demonstrating 99% accuracy in 
specific tasks (e.g., [65]) struggle to spot very delicate forgeries, especially when they contain noise contamination. This 
research becomes essential for developing specialized detection methods for splicing and copy-move forgeries since 
academic works have not explicitly concentrated on these forms of manipulation thus far. 

- The research in [67] shows that adversarial training together with specific techniques produces overfitting results 
because the method trains against a particular attack pattern. A model that precisely fits its training data becomes prone 
to overfitting, thus creating performance success on known examples but manifestation of failure for new observations. 
The inability to handle unseen data presentation variations and multiple noise patterns becomes a crucial challenge that 
can be overcome through the utilization of adaptive preprocessing and generalized feature extraction methods. 

- The accuracy metrics among different research studies are widely divergent since some methodologies demonstrate full 
accuracy on MNIST [68] data, whereas others exhibit diminished performance on the CIFAR-10 and ImageNet datasets. 
The detection of real-world forgery remains challenging since the varying accuracy rates reflect the analysis difficulties 
encountered when inspecting images with noise together with both splicing and copy-move manipulations. According 
to [67], the described models achieve exceptional performance on simple datasets, yet their detection accuracy decreases 
notably when they handle sophisticated datasets that require training. When moving from CIFAR-10 to ImageNet, the 
percentage performance of the data changes from 91.5% to 75.1%, making this transition process more challenging. 
Research into reliable systems requires advanced features combined with preprocessing to achieve better robustness 
across different types of forgeries alongside unpredictable real-world conditions. 
 

5. CHALLENGES 

The current detection models face two major obstacles: precise detection of small duplicated areas and low contrast areas 

in copy-move forgeries and the ability to handle various types of noise and photometric attacks, such as JPEG compression 

and image blurring and salt and pepper noise effectively. The detection process faces additional difficulty because current 

methods struggle to identify high-quality splicing forgeries along with their natural variations and small section differences. 
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The current techniques for detecting data poisoning in training datasets fail to show enough resilience to observe 

sophisticated patterns of contamination, which degrades machine learning model integrity. 

 

6. FUTURE DIRECTIONS 

Future investigations should focus on specific technical advancements to increase the accuracy and robustness of forgery 

detection models. One promising direction is the enhancement of feature extraction methods by exploring hybrid models, 

such as combining convolutional neural networks (CNNs) with generative adversarial networks (GANs) or other techniques 

such as autoencoders. This hybrid approach could improve the detection of small duplicate areas, especially in challenging 

scenarios with low contrast. Furthermore, developing advanced preprocessing techniques, such as adaptive contrast 

adjustment or domain-specific filtering methods, will strengthen models against photometric attacks and noise 

disturbances. Additionally, integrating forgery detection platforms with data poisoning detection techniques can provide a 

multi-layered defense, ensuring that models are more resilient to adversarial attacks. Another key area of exploration is 

improving model generalizability by leveraging unsupervised learning methods to adapt to evolving data manipulations. 

Finally, leveraging transfer learning for training on diverse datasets could improve the model’s robustness across different 

image domains. 

 

7. CONCLUSION 

A systematic literature review has analysed existing studies and evaluated convolutional neural networks and image forgery 

detection techniques with an emphasis on copy-move forgery, splice and noise manipulations. Even though forensic images 

undergo complex distortion processes, CNNs are capable of detecting many forms of forgeries with relative ease. However, 

difficulties can arise when trying to identify small duplication regions that are surrounded by boundless noise, low-contrast 

regions, or are under noise/photometric attack. 

This systematic literature review looks at the remaining approaches dealing with deep learning technology and analyses 

their strengths as well as their weaknesses, such as the ability to generalize, crossover multiple datasets, and the presence 

of varying types of noise within the dataset. Additionally, the probing question regarding information poisoning image 

forensic systems suggests that these models are vulnerable to modern unfriendly actions and deep forgery techniques that 

require strong counteraction mechanisms. 

The image forensics studies analysed in this review provided ample understanding of the strengths and weaknesses of 

CNNs. This information will be highly valuable for future work. This review also highlights a number of important areas 

that require research, including how to effectively combine forgery detection with data poisoning countermeasures. More 

effort is needed to improve the strength and generalizability of detection models. 
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