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A B S T R A C T 

The machine learning-based authentication model for smart healthcare systems represents a crucial step 
in addressing the needs of an ever-evolving healthcare industry. The need to protect sensitive patient data, 
ensure regulatory compliance, and reduce medical errors, especially in the context of telemedicine and 
remote monitoring, underscores the importance of such systems. Traditional authentication methods 
frequently lack sufficient security, resulting in potential breaches. Relying solely on usernames and 
passwords, without supplementary authentication measures, exposes systems to advanced security 
attacks. As it involves patients’ health and human lives, it is important to provide additional 
authentication, fast machine learning-based authentication models and high accuracy at the same time. 
This study involves five participants with devices and performs various finger-based interactions (raising, 
lowering, moving the finger, applying pressure, adjusting orientation, and utilizing multiple hikes) while 
completing reading and image comparison tasks across multiple sessions. Each experiment lasted 
between 25 and 50 minutes for one participant, with reading tasks typically taking 10--15 minutes and 
image comparison tasks requiring 3--4 minutes, all measured in milliseconds. All these activities are 
recorded as a dataset for model training. A model was trained via the forest penalizing attributes 
(ForestPA) algorithm, which can classify profiles into real or fake profiles on the basis of their behavioral 
patterns. The results revealed a 99.99% accuracy rate in identifying fake profiles and avoiding them by 
accessing medical data even though they were able to bypass the username and password. 

 

 

 

 

1. INTRODUCTION 

Various factors drive the evolution of smart healthcare systems. Various elements, such as population aging, a rising 

prevalence of chronic disease, and increasing demand for personalized and accessible health care services, have contributed 

to the digital transformation of the health care industry [1], [2], [3]. There is a need to address security problems, as the 

healthcare sector is heading towards the digitization of services [3], [5]. Large amounts of sensitive patient data made 

securely electronic must be processed to be vulnerable to serious security threats. These risks can range from unauthorized 

data access to data breaches, which poses the risk of compromising patient privacy in healthcare establishment [6]. The 

demand for investment in the cybersecurity and healthcare sector, which amounts to more than 16 billion euros in 2023 [7], 

has more than doubled since 2019. The rapid digitization of healthcare, including the rise of electronic health records and 

telemedicine, has created many cybersecurity vulnerabilities. In addition to the subsequent explosion in highly publicized 

breaches, the protection of sensitive patient data requires additional investment in data protection. According to market 

analyses, global spending in this field will continue to increase and exceed 25 billion euros by 2026. This trend further 
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solidifies the consideration of cybersecurity within the wide infrastructure of health care. With cybercriminals taking 

increasingly keen interest in healthcare data, effective cybersecurity needs to be deployed earlier. Given this, the need to 

integrate and implement advanced cybersecurity capabilities in the healthcare domain is increasing significantly [8], [9]. A 

report from 2023 revealed that a detailed examination of the first six months of 2022 revealed 337 remarkable breaches, 

affecting 19,992,810 consumers [10]. The statistics underscore the continuing and growing issues facing the health care 

sector in securing sensitive data from unauthorized access and the increasingly complex threat landscape. These trends 

highlight the increasing demand for strong cybersecurity frameworks and interventions to reduce the growing prevalence 

and magnitude of data breaches, ensuring the protection and privacy of individuals' health information. Moreover, statistics 
from 2023 indicate an alarming trend, whereas more than 25% of Americans face exposure to health data as a result of 

security breaches affecting an astonishing 87 million patients [11]. However, this shocking discovery reflects a widespread 

weakness within the healthcare information ecosystem. This startling discovery sheds light on a deep-seated weakness in the 

healthcare data ecosystem, emphasizing the urgency of implementing effective access control measures. In health care 

systems, user authentication is critical for ensuring that only authorized personnel have access to sensitive patient information 

and are able to perform certain actions. Conventional approaches, including passwords, are typically inadequate, as they can 

be compromised or attacked. More advanced techniques include biometric verification and multifactor authentication, which 

provide greater security for sensitive data. By incorporating these robust methods, organizations can minimize any potential 

unauthorized access while still ensuring the integrity and confidentiality of health information. These two layers of security 

protect patients and reduce risk in an increasingly connected, digital healthcare experience. 

Currently, health devices (smart inhalers, mobile ECG devices, smart thermometers) that are worn by patients relay data to 

mobile devices, and these data are analysed by doctors and nurses or managers via smartphones or tablets. For various 

authentication smartphone users, which is a common security level, traditional factors, such as passwords and PIN, are 

unsecured and often tedious [12]. Usernames and passwords without secondary authentication are insufficient to secure a 

system. Hence, it is important to add one more layer of authentication to improve the overall security of the system [13], 

[14]. This prompts the development of machine learning-based authentication models that are based on the user profile to 

increase the security of smartphone devices that are used by doctors to monitor their patients. 
However, as it involves patient health and human life, fast machine learning-based authentication models and high accuracy 

are needed at the same time [15], [16], [17], [18]. For this purpose, forest-based machine learning classifiers are promising 

options. It is a type of classifier that averages the results of individual trees, thus providing more accurate predictions and 

providing insights into feature importance directly as part of the model output, which is useful for understanding the driving 

factors behind the predictions [19], [20], [34]. Furthermore, the trees in forest-based classifiers run in parallel during training, 

which can significantly speed up the training process, especially on multicore processors, requiring less preprocessing of 

data (which do not require feature scaling, normalization or standardization), which can be a time-saving advantage in the 

preprocessing stage and can handle missing values in the input data to some extent, reducing the need for complex imputation 

processes [21], [22]. 

Numerous studies have been conducted on user authentication employing machine learning techniques. For example, [23] 

explored continuous authentication through touchscreen interactions, whereas [24] examined a biometric authentication 

system. Furthermore, [25] investigated the utilization of soft keyboard typing behavior for ongoing user recognition, and [26] 

leveraged the physical layer attributes of the wireless channel to identify spoofing attacks. Despite the diverse methodologies 

proposed and implemented within the realm of machine learning-based authentication, the rapidly evolving landscape of 

security threats and the proliferation of smart devices underscore the critical need for innovative approaches [27]. 

Therefore, methods and techniques in the healthcare area need to be continuously updated as technology progresses, as it 

involves human lives. This study employs a less explored and utilized updated forest-based algorithm of the ForestPA [27], 
which generates a set of highly accurate and diverse decision trees by exploiting the strength of all nonclass attributes 

available in a dataset (unlike some existing algorithms that use a subset of the nonclass attributes), it can avoid building 

similar trees by imposing penalties to the attributes that participated in the previous trees by randomly selecting weights from 

the weight ranges associated with the levels of the attributes, and it is also capable of avoiding the hyperparameter problem 

that affects some algorithms, such as random forest and extremely randomized trees. 

Hence, the contributions of this research are as follows: 

1) Investigate a novel machine learning forest penalizing attribute (ForestPA) to authenticate users within the context 

of smartphone devices for monitoring smart healthcare devices. It identifies profiles as either real or fake doctor 

profiles on the basis of their behavior and further avoids any attack that bypasses traditional user authentication. 

2) Scrutinizes a dataset comprising 116,565 samples executed by five different users. 

3) Finally, this research assesses and compares the results with those of previous related studies to evaluate the 

effectiveness of ForestPA for authenticating users. 
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Section 2 delineates the related work, while Section 3 presents the methodology. Section 4 illustrates the results of the 

experiment, and Section 5 concludes the study. 

2. RELATED WORKS 

In recent years, the integration of machine learning in healthcare has revolutionized the way in which studies approach 

medical diagnosis, treatment, and patient care. Machine learning, a subset of artificial intelligence, has shown immense 

potential in enhancing the efficiency, accuracy, and effectiveness of healthcare systems, and the intersection of machine 

learning (ML) [28] and healthcare has garnered significant attention, promising transformative changes in the delivery and 

optimization of healthcare services [29], [30]. With respect to previous review studies related to machine learning-based 

authentication models for smart healthcare systems, Table I below compares previous studies with this research. 

TABLE I.   COMPARISON OF PREVIOUS STUDIES 

References Authentication method Benefits Limitations 

[23] 

Touchscreen input can 

authenticate users based on 

behavioral patterns. 

 

Provides insights on user 

behavior for authentication 

systems. 

Deep neural networks (DNNs) 

is resource-intensive and time-

consuming 

[24] 

Multimodal system 

combines fingerprint, face, 

age, and gender biometrics. 

Enhanced security through 

multimodal biometric 

authentication system. 

Multimodal systems are more 

expensive than unimodal 

systems due to the system itself, 

necessary computing power, 

and storage space for biometric 

data. 

[25] 

LSTM network improves 

security authentication 

performance for IoT 

network sinks. 

Offers continuous 

authentication for improved 

security on smartphones. 

 

Disadvantages include high 

computational cost and 

convergence problems. 

[26] 

Soft keyboard typing 

behavior used for 

continuous user 

recognition. 

Improved authentication 

accuracy rate compared to 

non-learning methods. 

LSTM method may require a 

lengthy input signal for high 

accuracy, making them less 

suitable for real-time systems. 

This 

research 

ForestPA is used to 

enhance authentication 

accuracy. 

Provides insights on user 

behavior for authentication 

systems and combined with 

ForestPA classifier (fast 

and accurate model). 

Our scope focuses on 

smartphone devices only. As 

doctors or medical assistants 

typically used it for easy access 

to monitor patients. 

For future work, this research 

may focus on other devices than 

smartphone (Electronic Health 

Record (EHR) Systems or 

Telemedicine Platforms). 

 

In the comparison of the studies (Table I), each research work explores different aspects of user authentication methods, 

focusing on various biometric and behavioral patterns for enhancing security measures. The study [23] delves into the 

utilization of touchscreen input to authenticate users on the basis of their behavioral patterns. This approach provides valuable 

insights into user behavior for authentication systems. However, the results from the experiment yielded an accuracy of 100% 

for the deep neural network (DNN) for 30 features. Hence, the results are still open for improvement for fewer features. 

Additionally, DNNs need to be trained on very large datasets and computational resources. On the other hand, the ForestPA 

resides in our experiment, which is a forest-based algorithm that usually demands less computational power and can achieve 

decent performance with smaller datasets. Another challenge is that DNNs are often seen as “black boxes” because their 

decision-making processes are extremely intricate and opaque, which can make their predictions difficult to interpret and 

understand. In contrast, ForestPA algorithms are relatively interpretable, which makes it easier for the user to analyse and 

validate the decisions made by the model. Another common pitfall of DNNs occurs when the training data lack diversity, so 

they overfit, whereas forest-based algorithms such as the ForestPA are much more robust for this type of scenario, as they 

are designed as ensembles. In addition to these characteristics, ForestPA stands out as a practical and accessible method for 

medical applications, especially when interpretability and computational feasibility are needed. On the other hand, similar 

DNN types, which are gated recurrent units (GRUs) and vanilla recurrent neural networks (RNNs), both algorithms require 

significant computational resources and time for training, making them less efficient in resource-constrained environments. 

They also face interpretability challenges due to their complex architectures, which makes it difficult to follow how decisions 
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are made. Vanilla RNNs also include the limitations of vanishing and exploding gradients; hence, they are short-lived in 

learning long-term dependencies. However, the ForestPA algorithm appears to be more computationally efficient, easier to 

interpret, has low overfitting characteristics and makes it more suitable for several applications. 

The research presented in [17], however, has a slightly different focus, as it describes its end users combining multiple 

biometric characteristics instead of just one and integrating them into what can be called a multimodal system consisting of 

the fingerprint, face, age, and gender, among others. While the idea focuses on using biological features to authorize users, 

this system is more costly than the former, as it involves more intricate systems and computational and storage requirements 

for biometric information. In this respect, since computational speed is vital for smart healthcare authentication, the system 

needs to deploy a fast and relevant machine learning model. 

Next, the study in [25] aims to design a secure mechanism using machine learning-based biometrics to extend the Internet 

of Things networks against different types of spoofing attacks. This study delves into the soft keyboard typing style as one 

way of establishing sustained user recognition. It makes use of the physical layer aspects of wireless channels while 

employing neural networks in gathering channel fingerprints as a means of authentication. Qiu X et al. also developed an 

LSTM architecture-based detection technique to increase the number of device authentication procedures supporting 

intelligent algorithms, and a machine learning-based security authentication scheme focused on spoofing attacks in IoT 

networks. This method achieves higher degrees of accuracy in authentication and is claimed to have better results than no 

supervised learning methods. However, the long short–term memory (LSTM) model used in this study may require long 

input signals to be accurate, and this may not be suitable for real-time applications. 

Another study[26] is also based on a feature selection technique called correlation and involves rapid user identification via 

logistic regression. The proposed method yields good classification ratios (as much as 93%) and speeds of processing as low 

as 0.03 ms. Continuous authentication provides a better security level than does the one-time system, which addresses 

problems such as password theft or forgetfulness. However, it has advantages as well as demerits such as expensive 

computations and difficulty in convergence. 

In contrast, this study uses the ForestPA machine learning algorithm, which is known for its strong performance and is 

capable of addressing the complexities of datasets with high levels of accuracy and proficiency. Its construction enhances 

accurate predictions and analysis of the authentication of users via pattern or behavior modelling. Moreover, one of the most 

remarkable aspects of ForestPA is the speed at which it is able to process information. This algorithm is able to efficiently 

and quickly scan a greater amount of information, which makes it suitable for real-time user authentication systems where 

time is an essential factor. Therefore, the present study investigates the potential of this algorithm for user authentication in 

healthcare systems. 

                                                                          TABLE II.   PREVIOUS STUDIES THAT INVOLVED THE FORESTPA ALGORITHM 

References Year Domain area that utilized ForestPA algorithm 

[31] 2020 Security detection 

[32] 2020 Healthcare 

This experiment Ongoing Security and healthcare 

 

In Table II, a study [31] developed a method to predict associations between circular RNAs (circRNAs) and diseases, aiding 

in understanding disease pathogenesis and improving diagnosis and treatment. The graph convolutional network for 

circRNA‒disease association (GCNCDA) combines disease semantic similarity, Gaussian interaction profile kernel 

similarity, and known circRNA‒disease associations to predict potential associations. Wang L et al. achieved 91.2% 

accuracy with an AUC of 90.90% on the circR2Disease benchmark dataset, outperforming other methods. In the validation 

part, case studies on breast cancer, glioma, and colorectal cancer confirmed the effectiveness of GCNCDA, with most of the 

top predicted circRNAs validated in the literature and databases. This study proposes a computational method called 

GCNCDA, which is based on the deep learning fast learning with graph convolutional networks (FastGCN) algorithm, to 

predict potential disease-associated circRNAs. The new circRNA‒disease associations are accurately predicted by the 

ForestPA classifier, which presents a computational method called GCNCDA for predicting circRNA‒disease associations 

via a graph convolutional network algorithm. 

Another study [32] proposed 3 meta-learner models based on the forest penalizing attributes (ForestPA) algorithm. The 

ForestPA uses a weight assignment and weight increment strategy to build highly efficient decision trees by exploiting the 
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process of all attributes (nonclass inclusive) in each dataset. The proposed meta-learners (ForestPA-PWDM, Bagged-

ForestPA-PWDM, and Adab-ForestPA-PWDM) demonstrated high efficiency, with the lowest accuracy of 96.26%, a false 

alarm rate (FAR) of 0.004, and an ROC value of 0.994. The authors recommend the development and adoption of meta-

learners based on the ForestPA for phishing website detection and other cybersecurity attacks. 

Given the esteemed reputation of the ForestPA algorithm within both security and healthcare domain applications, this 

research endeavors to investigate its potential for user authentication within the smart healthcare domain. 

This experiment significantly contributes to the ongoing research in machine learning-based authentication systems by 

investigating the application of an updated forest-based algorithm, ForestPA, for identifying user profiles as either real or 

fake on the basis of behavioral patterns. This approach enhances the security framework by adding an additional layer of 

authentication. Consequently, even if an attacker manages to bypass conventional authentication mechanisms, the user 

profile authentication system will reject access if it determines that the attacker is not an authenticated doctor authorized to 

use the mobile device. Implementing a dual-layer authentication process is extremely important when it consists of sensitive 

medical data and needs to control who actually accesses the system. This authentication could improve the effectiveness, 

efficiency, and user experience of mechanisms for continuous authentication and be a valuable contribution to the body of 

knowledge in the domain. 

2.1 Forest penalizing Attribute (ForestPA) algorithm 

The Forest PA algorithm [27] is a mathematical algorithm that assigns weights to nonoverlapping attributes (pieces of 

information) in the process of building decision trees: 

a) Attributes and Weights: Within Forest PAs, each attribute has a weight that indicates its value in making predictions. 

A greater weight indicates the importance of the attribute, whereas a smaller weight indicates less importance. 

b) Penalizing Attributed Already Featured By Trees: An attribute is punished when it is used in a decision tree; its 

weight decreases for coming trees. This helps return trees and encourages the algorithm to use different attributes 

for subsequent trees. This penalty can be understood as saying, “Let’s not depend on this attribute too much.” 

c) Boosting Unused Attributes: Conversely, the weights of features that were not used in the previous tree are increased. 

This indicates that they assume greater weight for the coming tree. 

d) Weight assignment equation: Although the precise mathematical notation might be complicated, the essential 

premise is that the weight of an attribute is changed in the appropriate direction if it is included in the preceding 

tree. For instance: 

If attribute A was used in the previous tree, its new weight could be calculated as: 

New Weight (A) = Old Weight (A) − Penalty 

If it was not used, its new weight could be as follows: 

New weight (A) = Old weight (A) + Boost 

e) Random Selection: This method also randomly selects weights from a range for attributes at the same level. This 

randomness is critical because it ensures that the trees are different from one another and do not look too similar. 

Overall Objective: The overall objective of this process of weighting is to develop a collection of models that are so 

different from each other that when aggregated together, they produce a stronger prediction than any of the individual 

trees making up the set. This is accomplished through two strategies: penalizing certain attributes and boosting them so 

that attributes of diverse types can be considered. 

3. METHODOLOGY 

The methodology used in this research to create an authentication model based on user behaviors and machine learning 

methods is described in Figure 1 below. This framework is segmented into three distinct phases. These steps outline the key 

of the framework, which represents a holistic perspective for implementing the authentication activity on the basis of 

sophisticated machine learning algorithms. This approach reflects the approach to authenticity as a rigorous exercise in 

designing machine learning solutions. 
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Fig. 1.  Methodology 

3.1    Phase 1: User behavior analysis 

The methodology depicted in the figure delineates the initial phase, which encompasses the conduct of medical professionals 

(including doctors, nurses, or medical assistants) who are authorized to access patients' records. These healthcare personnel 

utilize smartphones or tablets for convenient access and mobility within the hospital premises, facilitating patient monitoring 

and examination. Comprehensive records of each medical personnel's activities and interventions are meticulously 

documented to maintain a comprehensive log of their actions. 

3.2    Phase 2: Dataset collection 

During this phase, the smartphones captured the users’ interactions through various touch-related activities. These 

processes included motions such as raising the finger, lowering the finger, moving the finger, applying pressure on the 

screen, the area of the screen covered by the finger, the orientation of the finger, and occurrences of multitouch. Each 

experiment in the reading or image comparison test took a set amount of time for each one, measured in milliseconds. The 

time to conduct each experiment for each participant was between 25 and 50 minutes. On average, an experiment involving 

reading was conducted within a period ranging from 10--15 minutes, and the amount of time it took to conduct every 

experiment in image comparison amounted to approximately 3--4 minutes. In this period, the ForestPA machine learning 

classification was conducted by researchers with five different users' profiles with several features in this dataset. 
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3.2.1   Features in the dataset 

For this purpose, the validation of diverse user profiles with machine learning techniques involved a different group of five 
people, and all of them used different devices, each doing a series of activities in diverse sessions. The features used in the 

experiment are presented in Table III. An extensive theoretical foundation of this research was a dataset of actions performed 

by these participants, amounting to 116,565 actions. 

TABLE III.   FEATURES USED IN THE EXPERIMENT 

Features More information 

phoneID 
Indicates the phone: Nexus 1, Nexus S, Samsung 

Galaxy S and Droid Incredible. 

docID Indicates the activities of the user. 

time [ms] Absolute time of recorded action. 

action Touch down, touch up, or move finger on screen. 

phone_orientation 

Values returned from the Android API at the current 

actions. 

 

x_coordinate 

y_coordinate 

pressure 

area_covered 

finger_orientation 

 

PhoneID: The phoneID feature refers to specific phone models, which include Nexus 1, Nexus S, Samsung Galaxy S and 

Droid Incredible. Each device has its own properties, such as screen size, resolution, and touch sensitivity, which may affect 

the natural behavior of a user. This implementation is crucial, as it considers the different versions of application runtimes 

across various device types, yielding the most accurate and fine-tuned data on the basis of the analysis performed upon data 

collection from a variety of device models. 

docID: The docID feature is an exclusive identity for every user session or activity, which allows researchers to monitor user 

activities over time. This enables a better understanding of user‒device interactions in different contexts. The docID feature, 

for example, recognizes whether the person is browsing, gaming, or typing and analyses the patterns for each. This helps 

provide context for user interactions and detect trends or anomalies. 

time [ms]: The time [ms] field records the accurate time of each user action in milliseconds, providing the temporal data 

needed to analyse the timing and sequence of events. Such data are crucial for extracting insights about user behavior (how 
long they take to respond to a stimulus or how long they engage in a particular task). Thus, temporal analysis helps in 

understanding the dynamics of user interactions and ultimately helps in interface design. 

Action: The action feature describes the type of user interaction with the screen (touch down, touch up or move). This 

classification helps in understanding user navigation behavior. For example, touch down and touch up actions can represent 

typing or tapping, whereas move actions can signify scrolling or dragging. This examination of these activities allows 

researchers insights into the way in which users behave, ultimately contributing to the creation of better intuitive, user-

friendly interfaces. 

phone_orientation: The phone_orientation value, obtained from the Android API, indicates the orientation of the device at 

the time of user interaction. These data indicate whether users prefer portraits or landscape modes or change orientations 

often. These insights can be leveraged to make application layouts and functionalities more in line with user interests. 

x_coordinate and y_coordinate: The x_coordinate and y_coordinate features correspond to the horizontal and vertical 

positions of a touch event, respectively, indicating their positions in pixels from the left edge and top edge of the screen. This 

spatial information, however, is essential for identifying touch behavior patterns, for example, which areas of screen users 

commonly interact. Popular touch zones may indicate commonly used features or navigation paths. 

Pressure: The pressure value represents how much pressure the user’s finger is putting on the screen, which is useful for 

differentiating between a light touch and a strong touch. These data can be helpful in monitoring interaction strength and 

discovering touch pressure differences. Higher pressure might signal deliberate actions, for example, while lighter touches 
could suggest casual browsing. Touch pressure aids in predicting user intent and consequently makes the touch interface 

more responsive. 

area_covered: The area_covered value represents the area of the screen covered by the finger of the user during the touch. 

This indicates the size of the touch area, which can differ depending on the finger's contact surface. For example, larger 

touch areas could mean multiple fingers at once or a wider touch, whereas smaller areas might suggest more precise 

interactions. The data from touch are a great way to understand user interactions and accordingly improve or fine-tune the 

touch response, sensitivity or accuracy. 

finger_orientation: This is an indication of the angle at which a user’s finger touches the screen, therefore also providing 

insight into the manner in which a device is used. By collecting and analysing the data, which are information on how users 

grip or move their device, designers can create more usable products with respect to ergonomics. Certain types of finger 
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movements can be more common in certain tasks, such as typing or swiping, and identifying how those types of movements 

appear in real-world datasets could be used to assist in future processing and overall human‒computer interactions. 

Together, these features provide a sturdy dataset for investigating user interactions with touchscreens, laying the groundwork 

for this work. 

3.3    Phase 3: Machine learning classification 

In this study, the recently well-established advanced form of the ForestPA, a type of efficient machine learning algorithm, 

analyses the characteristic touch input patterns of classes for classification and good separation within the available 

performance. The model needs to learn very specific nuances of each person's interaction patterns and context to correctly 

classify them. This method guarantees clarification to be both speedy and precise, taking advantage of trivial differences 

within user interactions to attain superior outcomes. 

The ForestPA algorithm is an approach for building a decision forest. It is an ensemble of decision trees. Since the algorithm 

seeks to find the best splitting attribute in the tree at each node of the tree, it first assigns the properties of the dataset, or 

rather features, into weights and then uses those weights to pick the best attribute for splitting. Additionally, this approach 

modifies the weights of the attributes upon constructing each of the trees. This approach aims to prevent excessive fitting 

and to stimulate variance among the trees. 

The performance of the training model on a wide range of performance measures was evaluated comprehensively during the 

final phase of the project. The ForestPA training model was developed to differentiate among users. This comprehensive 
evaluation approach was implemented to assess the efficiency and robustness of the model. 

3.4    Authentication part of the methodology 

Once the ForestPA machine learning model has been completed, it is deployed for server authentication. Initially, 

authentication is performed through standard procedures, where users must provide valid credentials, such as usernames, 

passwords, PINs, and pass antivirus checks on their mobile devices. Successful initial authentication grants medical staff 

the ability to access patient data via smart healthcare devices, such as smart thermometers and wearable biosensors worn 

by patients. 

Following initial authentication, the ForestPA operates by continuously monitoring the authenticated user's behavior 

through various indicators, including typing patterns, device handling, application usage, and access patterns to healthcare 
data. This behavioral analysis is compared against previously established legitimate user profiles constructed through an 

initial training phase. If an attacker successfully bypasses the mobile device’s primary security measures, the ForestPA 

model continues to analyse the ongoing behavior patterns. 

If any observed behavior deviates from these legitimate user profiles, the ForestPA classifies the activity as fraudulent, 

automatically logs out the attacker, and triggers an alarm to notify security personnel. By continuously monitoring user 

behavior post authentication, the ForestPA model provides an enhanced, persistent layer of security that remains effective 

even when primary credentials, such as passwords or PINs, have been compromised. This real-time detection mechanism 

helps swiftly identify and respond to suspicious activities, automatically logging out intruders and triggering alerts to 

minimize potential damage or data loss. Furthermore, the proactive and continuous nature of this system fosters greater 

user trust, as it offers an advanced security measure that extends beyond traditional static authentication protocols. 

4. RESULTS 

A detailed experimental study of the proposed method is included in this section of the paper. It includes details of the 

experimental setup, performance metrics, and performance review. 

4.1 Experimental setup 

The performance of the ForestPA algorithm was rigorously analysed through a comprehensive set of experiments, each 

tailored to explore various aspects of its operation: 

a) For the first time, a split of 80/20 data points was determined using only 80% of the data for training and 20% of the 

data for testing. This was a more realistic definition of algorithm performance. 
b) A 70/30 division of data followed, where 70% was used for training and the other 30 for testing. This setup enabled 

an assessment of the performance of the algorithm while considering a larger portion of the dataset aside for evaluation. 

c) A fivefold cross-validation process was used to estimate the generalization ability of the algorithm. In this approach, 

every fivefold subset is selected as a test set in which the specific subset and the other four remaining subsets are 

trained. 

d) Finally, the cross-validation method for training was more intrusive when the dataset was split into seven folds. This 

approach, which increases the number of folds, aims to increase the accuracy and robustness of the algorithm. 
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4.2 Performance metrics 

Several performance measures are used in delivering machine learning categorization, with an estimate of the accuracy and 

efficacy of single models. These measures provide a brief overview of how the ForestPA model performs in accurately 

predicting outputs. The explanations of the most important performance measures for this experiment are detailed in the 

section below. These main measures are accuracy, the root mean square error (RMSE), the mean absolute error (MAE), 

and the relative absolute error (RAE). 
a) Accuracy: accuracy is the measure of how accurate the model is in predicting outcomes. It counts correctly predicted 

according to all sample instances. This is a very straightforward and direct measure of the accuracy of a model in 

making correct predictions. 

b) Root mean square error (RMSE): the square root of the mean of the squared differences between the expected and 

observed values. In this way, the test is fair in estimating the model's performance because it does not suffer from 

sensitivity by means of extreme values. 

c) Mean absolute error (MAE): The mean average of the absolute errors in every set of forecasts, irrespective of the 

direction, is a measure of the mean absolute error (MAE). The results are represented by a very simple judgment of 

the accuracy of the forecasts. 

d) Relative absolute error (RAE): The RAE provides a measure in which the MAE stands against a baseline predictor 

that predicts the mean of the real values every time. It provides a normalized method of calculating the model's 

inaccuracy in relation to an elementary estimate. 

4.3 Performance review 

The evaluation of performance metrics is the most critical part of the development and checking of machine learning models. 

This helps in determining whether the model has learned the underlying patterns and can generalize well to new data, which 

is particularly important in smart healthcare applications. Table IV below tabulates the results of the ForestPA algorithm. 

   TABLE IV.   PERFORMANCE EVALUATION 

Performance metrics 

 

Training and testing Cross validation 

80% train, 20% test 70% train, 30% test 5 folds 7 folds 

Accuracy 99.9957% 99.9990% 99.9991 99.9983 

Mean absolute error 0.0005 0.0002 0.0005 0.0005 

Root mean squared error 0.0075 0.0049 0.0076 0.0069 

Relative absolute error 0.1592 0.0629 0.1714 0.1656 

 

Accuracy is the most intuitive performance measure, and it provides a general idea of how often the model makes the correct 

prediction. It is the ratio of the number of correct predictions to the total number of input samples. The accuracy values 

provided (ranging from 99.9957% to 99.9991%) are exceptionally high, which generally indicates that the ForestPA 

algorithm performs excellently on the dataset used. 

The MAE measures the average magnitude of the errors in a set of predictions without considering their direction. It is the 

average over the test sample of the absolute differences between the prediction and actual observations where all individual 

differences have equal weights. The MAEs reported are very low (0.0002--0.0005), suggesting that the predictions made by 

the model are, on average, very close to the actual values. This demonstrates a positive sign, especially in healthcare 

applications within the IoMT, where precise predictions can be critical. 
The RMSE is a quadratic scoring rule that also measures the average magnitude of the error. It is the square root of the 

average of the squared differences between the prediction and actual observations. The RMSE values are slightly higher than 

the MAE values are, which is expected since the RMSE gives more weight to larger errors. This means that the RMSE is 

sensitive to outliers. A low RMSE (0.0049 to 0.0076) indicates good predictive performance, with the model’s predictions 

deviating little from the true values. 

The RAE, also known as the mean absolute percentage error (MAPE), is a measure of the prediction accuracy of a forecasting 

method in statistics. It compares the absolute error between the predicted value and the actual value over the sum of the 

absolute differences between the actual values and the mean of all the actual values. The lower values of the RAE (0.0629-

-0.1714) indicate that the model has a lower prediction error relative to the simple baseline model for predicting the mean, 

hence demonstrating the effectiveness of the ForestPA algorithm. 

The ForestPA algorithm appears to perform exceptionally well across all the metrics. The consistency of the high accuracy 

and low error rates across different data splits and cross-validation folds suggests that the model is robust and generalizable 

well to unseen data. The results are indicative of a well-fitting model that could be highly suitable for IoMT environments 

where predictive accuracy is crucial for decision-making, such as in patient monitoring systems or diagnostic tools. 
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In the context of smart healthcare systems, where models may be used for critical health-related predictions, the ability to 

accurately predict new samples is crucial. In regard to patient monitoring, personalized healthcare, and other medical 

applications, this reliability is absolutely necessary because inaccurate forecasts could have major implications. The 

efficiency of the ForestPA model was evaluated through the use of fresh samples, which were assessed as part of this research. 

     TABLE V.   TESTING NEW SAMPLES 

New test samples (excluded 

from training set) 
Number of samples 

 

Results 

user1 Ten  

 

Correctly predicted 
user2 Ten 

user3 Ten 

user4 Ten 

user5 Ten 

 

From Table V, the model was given ten new samples (for each user) for prediction. It is clear that the model has learned the 

underlying patterns in the data rather than simply memorizing the training set, as evidenced by the fact that all of the 

predictions were accurate for each individual user. A well-generalized model is distinguished by its ability to apply 

previously learned principles to new contexts. 

Further analysis of these results indicates that the model has a strong ability to generalize user-specific behavioral traits 
effectively. The perfect prediction accuracy demonstrates that ForestPA not only accurately captures individual user 

patterns but also robustly identifies deviations, validating its potential efficacy in real-world deployment scenarios. 

Additionally, the consistency of correct predictions across diverse user samples underscores the model’s reliability in 

identifying authentic user behaviors and proactively detecting unauthorized activities. 

Moreover, these findings suggest that the ForestPA model can be effectively scaled to larger user populations without 

significant loss in accuracy. The robustness observed in the test predictions implies that the model can reliably adapt to 

varying user behaviors and patterns, even under conditions involving dynamic or evolving usage scenarios. Consequently, 

this adaptability ensures sustained effectiveness in practical deployments, reinforcing ForestPA’s ability as a valuable 

security enhancement tool within smart healthcare systems. 

                     TABLE VI.   THE RESULTS COMPARISON WITH SIMILAR DATASETS 

References Number of features 
  

Accuracy (%) 

[33] 34 100.00 (Deep Neural Net) 

This experiment 10 99.999 (ForestPA) 

 

Moreover, for results comparison, to conduct a meaningful performance comparison, it is essential to compare the results 

with those of other studies that use the same dataset because consistency in the data conditions is ensured, thus enabling a 

fair and reliable assessment of different methods or models and facilitating a clearer evaluation of their relative strengths and 

weaknesses. 

When different datasets are used, the results may not be directly comparable because variations in factors such as data 

distribution, labelling standards, or complexity can lead to inconsistent performance assessments, thereby undermining the 

reliability and fairness of the comparison. Specifically, data distribution differences might reflect varying user 

demographics, behavioral diversity, or environmental contexts, causing models to perform differently even with similar 

methodologies. Labelling standard discrepancies can result from inconsistent criteria for identifying or classifying 
behaviors, leading to varying interpretations of what constitutes legitimate or fraudulent activities. Additionally, dataset 

complexity, which includes variations in the volume of data, the level of behavioral granularity, and noise levels, can 

significantly impact model performance and its ability to generalize effectively. Therefore, careful consideration and 

standardization of these factors are crucial when interpreting results across different datasets. 

Since no other studies have used this specific dataset, our results can only be compared with those of that study [33], which  

we used for datasets in our experiment as well. They implemented a deep neural network to achieve 92% accuracy. They 

used 34 features and applied a deep neural network to achieve 100% accuracy. Compared with the research presented in [33], 

where 34 features were used to achieve 100% success by a deep neural network, the current experiment provides a highly 

competitive success of 99.999% while using only 10 features via the ForestPA model. The new method drastically decreases 

the number of features from a total of 34 to only 10, reducing the associated computational overhead and making it more 

feasible for constrained mobile devices where processing power and battery life are at a premium. This efficient but near-

perfect identification of fakes is crucial in the real-time detection of fake user profiles since it decreases energy consumption 

and minimizes the pressure of hardware on devices. Furthermore, there is often a faster inference time with fewer features, 
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leading to more rapid detection and response to potential security threats. Therefore, this experiment demonstrates a possible 

approach to provide strong security in mobile devices without degrading performance or exhausting system resources. 

Alternatively, the experiment using the ForestPA algorithm attained an extraordinary accuracy rate of 99.999% with only 

ten features, indicating its remarkable performance in the experimental framework. Through the utilization of this technique, 

which most likely places an emphasis on decision tree-based ensemble learning, this experiment demonstrates the potential 

for reaching near-perfect accuracy rates in classification tasks. This is accomplished by concentrating on a very limited 

number of features. In addition, the reduction in the number of features of the ForestPA model makes it easier to read and 

makes it less likely to be overfit. 
Additionally, the exceptionally high detection rate shows that ForestPA can retain its strong defense against fraudulent user 

activities with a significantly smaller number of input parameters. In practical terms, this illustrates a firmer security position, 

whereas devices can monitor for potential intrusions continuously without sacrificing performance or draining system 

resources. These results demonstrate an optimal trade-off between security strength, power efficiency, and operational speed, 

which is essential for protecting mobile devices from unauthorized access. 

Furthermore, the model has potential for use in real time within smart healthcare devices. In that way, it can process data 

streams and analyse them in real time to provide timely insights or alarms since the model can predict all the new test samples 

accurately. The performance capacity of the model to exactly predict all new test samples in the context of the smart 

healthcare framework defines an earnest logic for the assured functioning of its operational deployment. 

5. CONCLUSIONS AND FUTURE WORK 

The current work was able to demonstrate the fine capability of the forest penalizing attributes (ForestPA) algorithm for 

classifying novel, previously unseen data. In applying such models, especially those aimed at reliably recognizing the 

genuine user from the authentication samples, excellent performance has been consistently observed, even under very 

rigorous testing using different users. The quick processing capability and high accuracy of the algorithm turn out to be a 

reliable and efficient choice, considering smart healthcare systems, when health information is to be handled very 

sensitively, and resources need to be authenticated both quickly and precisely. 

In addition, the high level of accuracy and speed that the algorithm offers makes it a very good candidate for implementation 

in intelligent healthcare devices, where processing power is usually very constrained. The results indicate that the ForestPA 

algorithm can be implemented in intelligent healthcare systems for the purpose of quick and secure user authentication. 

This is crucial in the process of maintaining confidential patient information and privacy. 

The  proposed approach was evaluated in a simulation environment in this study to ensure that its performance is in line 

with expectations in a controlled environment. Simulation-based experimentation serves as a proof of concept and support 

for optimizations. Therefore, the next step in the research will be to build and test a physical hardware prototype, validating 

the robustness, reliability, and scalability of the system in actual operation. 

Furthermore, the current study examined only five profiles, which limits the generalizability of the findings. Nonetheless, 

it is essential to mention that in future work, there is an opportunity to increase the number of profiles to better encompass 
more diverse user personalities and hence increase the strength of our experiments. More generally, this strategy can 

increase the generalizability of our findings and support practical implementation. 
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