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identification tasks mainly depend on the unique shape, structure, 
and geometry of the ear for accurate classification.  Moreover, 
realizing high classification accuracy is challenging for both security 
systems and forensic investigations since it boosts the robustness of 
security systems and favors law enforcement efforts. In this work, we 
develop a novel deep learning-based multi-class classification 
approach for ear images that uses a hybrid-dense CNN architecture 
combined with a self-attention mechanism and uniform manifold 
approximation and projection (UMAP) for dimensionality reduction. 
We conducted our experiments with ear images labeled for multi-
class classification, using a Dense CNN network built from Xception-
Net and Dense-Net architectures to capture intricate patterns. The 
self-attention mechanism enhances feature representation, while 
UMAP optimizes feature space by simplifying high-dimensional data. 
The model processes low-dimensional features through fully 
connected layers and softmax for classification.  
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1. Introduction 

In recent years, substantial developments in computer vision, and artificial intelligence 

(ai) have enabled automatic image interpretation and analysis for medical studies. Among 

these, realistic recreation of ear pictures shows considerable promise for biometrics and 

medical diagnosis. The internal architecture, shape, and structure of ear pictures include rich 
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information that modern imaging techniques can use. However, existing ear classification 

models depend upon handcrafted feature extraction approaches and conventional 

classification techniques. Most often, these models suffer from poor feature representation 

power and lower generalization ability. As a result, they struggle to maintain high 

classification accuracy, especially in real-world, large-scale datasets with significant 

variability and minor variances. This emphasizes the need for more robust deep learning 

algorithms that can improve feature extraction and discriminative capability and give more 

consistent results under a variety of situations.  

Recent advances in the field of convolutional neural networks (CNNs) highlight their 

powerful feature representation capabilities, which aid in the development of deeper models 

for ear identification [1]. Common classification methods of handling ear recognition 

problems usually deal with it as a binary classification. These deep CNNs can automatically 

learn and extract hierarchical features from raw ear pictures, detecting intricate patterns that 

older approaches frequently ignore. As a result, deep CNNs can detect small differences in ear 

forms, structures, and textures, considerably enhancing classification accuracy. Furthermore, 

including techniques such as self-attention and hybrid architectures improves the model's 

ability to focus on the most important features, hence increasing performance. These 

advancements pave the path for more accurate and dependable ear recognition systems, 

making them more relevant to real-world biometric and medical applications." 

Several approaches have been developed to explore ear classification problems using 

various deep learning (DL) methods [2-4]. For example, Korichi et al. [5] developed a fast CNN 

network for recognizing ear identifiers and used Principal Component Analysis (PCA) for 

geometrical normalization of scale and pose. In this study, Tied-Rank (TR) normalization [5] 

was employed to maximize the variance among the output patterns. Later, a soft-max average 

fusion scheme was implemented to incorporate deep networks to enhance recognition 

outcomes.  Sharkas [6] implemented a two-step model for ear image classification. In the first 

step, discrete curvelet transforms were employed for feature extraction and fed into various 

classifiers. In the second step, various end-to-end DL networks were used for ear image 

classification. Features were collected from each network and fed to a shallow classifier for 

ear pattern recognition. Here, PCA was used to reduce irrelevant visual patterns from the 

extracted feature set. Overall, the research concluded the supremacy of ensemble methods in 

the identification of true visual patterns in ear classification.  

Alshazly et al. [7] developed an ear recognition framework based on ensembles of deep 

CNN models similar to Visual Geometry Group (VGG) architectures for extracting 

discriminative deep ear imaging features. The outcomes showed that ensembles of models 

realized the best performance with significant enhancement over the state-of-the-art results. 

Tian et al. [8] implemented a CNN with three convolutional layers, a fully connected layer, and 

a soft-max classifier and computed competitive outcomes on the USTB ear database. Emerson 

et al. [9] designed a novel CNN for limited ear samples using ALEX-net-like architectures [10], 

VGG-net 16 [11], squeeze-net [12], and aggressive data augmentation techniques [13]. This 

framework enhanced the recognition rate by 25% compared to state-of-the-art models. 

Priyadharshini et al. [14] framed a six-layer deep CNN architecture for ear recognition. The 

proposed model was evaluated using the IITD-II [15] and AMI [16] ear datasets, achieving 

recognition rates of 97.36% and 96.99%, respectively. Ganapathy et al. [17] proposed an ear 
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recognition model using an ensemble of CNNs. The initial part of the model trains three 

models of CNN on a given dataset, whereas in the later part, the weighted average of the 

outputs of trained models is utilized to detect the ear regions. 

In a different work [18], an ear classification system for real-time scenarios was 

presented using the Haar feature and cascaded AdaBoost classifier. Cascade AdaBoost 

classifier organizes classifiers such that a segment is passed to the next classifier; once a 

strong classifier accepts it, it is passed to the next classifier. Their research noticed that the 

cascaded AdaBoost classifiers take less time than the simple AdaBoost version because most 

unimportant segments are discarded at an early stage. On the other hand, they have a unique 

way of helping them through noisy environments, different-sized crowds, and those that are 

obscured. In a different study [19], authors developed a technique for detecting ears using 

edge recognition and template matching. Initially, the focus was on segmenting the skin and 

identifying the tip of the nose. Once both steps are completed, the face region is isolated as it 

is likely to contain an ear. In the edge-based approach, the extracted region was run through a 

connected component labeling process, and a rectangle was drawn around the area with the 

highest number of connected edges. On the other hand, the template-based method involved 

creating an ear image template by averaging intensity levels. The normalized correlation 

coefficient (NCC) [20] was then calculated for each pixel. The effectiveness of this method was 

tested on the CVL database, revealing that the edge-based approach yielded more precise 

results compared to the template-based one. A major strength of their approach was its 

simplicity, making it user-friendly and easy to adapt.  

The authors proposed a promising alternative in [21] with a connected components 

graph-based approach for ear detection. This technique has been successfully tested on Indian 

Institute of Technology Kanpur Ear Dataset (IIT-K), University of Notre Dame Ear Dataset 

(UND-E), and University of Notre Dame Ear Dataset UND-J2. One notable advantage of this 

method is its ability to maximize the variations in the pose, scale, and shape of the ear. 

However, it may struggle to detect ears in images that are occluded by hair, noise, or other 

visual obstructions. In [22], ear detection was implemented through geometry, specifically 

using three parameters: elongation, compactness, and rounded boundary. The technique was 

tested on the UND-J2 database and proved to be efficient with promising results. However, it 

is important to mention that the UND-J2 database is a small dataset with a limited number of 

images. In an individual experiment [23], a novel entropy cum Hough transformation 

approach was employed. By utilizing both an ear localizer and an ellipsoid ear classifier, the 

presence of an ear in a facial image was successfully identified. The effectiveness of this 

technique was then tested on five prominent databases, namely FERET, Pointing Head Pose, 

UMIST, CMU-PIE, and FEI. To assess accurate ear region detection, the localization error rate 

was utilized and calculated by measuring the distance between the center of the detected ear 

region and the annotated ground truth. 

The above-mentioned state-of-the-art studies reflect the potential of DL techniques in ear 

classification. The success of these models mainly depends on the discriminative nature of 

extracted features and applied fusion techniques following the minimum redundancy and 

maximum relevance paradigm [24]. In practice, these considerations are difficult to retain 

throughout the classification because of the black-box nature of DL approaches and limited 

technical expertise.  
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In this study, we worked on two key steps: (1) In the first step, we extracted normal and 

scaled deep features by designing Cross-Axial attention [25] enabled two individual CNNs and 

merged them using Feature Pyramid Network (FPN) [26], and (2) A UMAP approach [27] is 

used for reducing high-dimensionality of the fused features with three fully-connected and 

one SoftMax layer for recognizing true class labels. Our choice of XceptionNet [28], DenseNet 

[29], and UMAP is driven by the requirement for a fast, high-performance feature extraction 

and dimensionality reduction pipeline for the classification of ear images. XceptionNet, using 

its depthwise separable convolution, effectively separates spatial and channel-wise feature 

learning, significantly alleviating computational overhead at the cost of retaining high-fidelity 

spatial representations essential for the analysis of ear structure. DenseNet, by contrast, 

exploits dense connectivity to promote feature reuse, reduce vanishing gradients, and 

improve the learning of fine-grained discriminative patterns. In order to further refine and 

combine the obtained deep and scaled features, we use Cross-Axial Attention and Feature 

Pyramid Network (FPN) in a way that provides strong multi-scale representation. Lastly, 

UMAP is selected for its local and global structure preservation in high-dimensional data and 

superior class separation compared to other conventional methods such as PCA and t-SNE. 

This fusion not only results in improved classification accuracy but also guarantees a 

computationally efficient and scalable solution that makes it perfectly applicable to real-world 

ear imaging problems. 

The reduced features were further discriminated using three fully connected and one softmax 

layer for the detection of accurate ear labels. The proposed classification framework is 

visualized in Fig. 1.   We validated the performance of our model using a five-fold cross-

validation technique over two publically available datasets: (1) EarVN1.0 and (2) IIT DELHI 

Dataset and compared our various state-of-the-art CNN models. 

The overall contribution of the proposed research work can be summarized into the 

following points: 

1. Deep features extraction from two Cross-Axial Attention enabled individual CNNs: (1) 

Xception-net and (2) DENSE-net and merged using a customized Feature Pyramid Network.  

2. The UMAP technique is used for dimensionality reduction of the fused features and 

reducing redundancies.  

3. The classification pipeline constitutes three fully connected layers and one softmax layer 

and applies feature unification, resulting in a comprehensive representation of multi-scale 

information using CAFPN. 

4. Performance validation on two popular open-source datasets and comparing the global 

performance with baseline CNN architectures (VGG Net [11], Inception-net [30], and 

Resnet-50 [31]).   

The remaining structure of the paper can be summarized as: Section 2 recapitulates the 

dataset details and state-of-the-art CNN models used for comparing the global results. A brief 

discussion of the proposed methodology is covered in Section 3. The results comparison and 

relevance of the study are given in Section 4. Finally, the conclusion and future scope of the 

proposed study are summarized in Section 5.   
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Fig. 1. Proposed hybrid classification framework for Ear Recognition. 

 

2. Dataset Details  
 

2.1 Dataset Description 
 

This study evaluates the proposed classification framework using two publicly available 

benchmark datasets: EarVN1.0 and the IIT Delhi Ear Dataset. These datasets were selected for 

their diversity in ear image characteristics, scale, and acquisition conditions, ensuring a 

robust assessment of model generalizability. 
 

2.1.1 Dataset 1 (DS1) 
 

 In our experiment, EarVN1.0 [16] was used as the first demonstration dataset. The EarVN1.0 

dataset holds ear photographs of one hundred and sixty-four (164) Asian individuals who 

were sampled in the year 2018, making it one of the largest publicly available datasets. This 

dataset comprises 28,412 color ear images captured from 98 males and 66 females. This is 

unique from previous studies as it shows both ears of people under normal conditions. For 

example, uncontrolled environmental conditions, such as camera movements, lighting.  These 

were captured in native facial photos. As a result, ear pictures are cropped out of face images 

to handle numerous kinds of changes like pose change, illumination, and scale variations that 

may be possible. Some machine learning tasks include ear recognition, among others, which 

are image classification or clustering, gender recognition right/left detection, and improved 

super-resolution. Sample images from EarVN1.0 are shown in Fig. 2(A).   
 

2.1.2 Dataset 2 (DS2) 
 

The IIT Delhi ear dataset is another popular repository, consisting of the ear image 

database gathered from the students and staff members at IIT Delhi, New Delhi, India [15]. It 

is a simple imaging setup that has allowed this to take place within the IIT Delhi campus 

during the period between October 2006 and June 2007 (still in progress). These images have 

been taken at a distance using a touchless method available through a simple imaging setup in 

an indoor environment. The currently available database is acquired from the 121 different 

subjects and each subject has at least three ear images. All the subjects in the database are 

aged between 14-58 years. The images consisting of these are numbered sequentially for 

every user with an integer identification/number with the total number of images being 471 

on a resolution which is given as 272 × 204 pixels and all these images are available in jpeg 

format. In addition to original pictures, there are also automatically normalized and cropped 
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ear images, which measure about 50x180 pixels in size. Sample images from IIT Delhi are 

shown in Fig. 2(B).  

 

Fig. 2. Sample ear images from EarVN1.0 (A) and IIT Delhi dataset (B). 

 
 

3. Proposed Methodology  

 

The proposed deep learning-based ear classification procedure is implemented in two 

phases. In the initial phase, a training process is employed to detect spatial and cross-channel 

relationships and understand hierarchical feature representations of input images. The 

second step is the evaluation stage, where the trained ear classification framework is used to 

detect true class labels of unknown instances that were not used earlier during the training 

process. In this step, several performance measures, such as classification accuracy, precision, 

recall, and Receiver Operating Curve (ROC), were used to evaluate the performance of the 

proposed model and compare it with baseline studies. In both steps, the proposed approach 

involves data pre-processing, feature extraction, and classification. The primary goal of data 

pre-processing is to enhance the input data quality by minimizing noise and outliers from 

original ear samples. In the feature extraction phase, two well-known pre-trained DL 

classification frameworks, (1) XceptionNet and (2) DenseNet, were used to extract deep 

features from the input images. Here, we added a novel ear scan-specific cross-channel 

attention mechanism with both DL models to focus on relevant parts of the input information 

while ignoring irrelevant information. This cross-channel attention helped to enhance the 

model's ability to extract meaningful patterns from the input, particularly in scenarios where 

the input data is complex. The extracted features from both DL architectures were merged 

using a customized FPN, and the size of the hybridized feature set was further reduced by the 

UMAP technique. Finally, a set of pre-processing methods such as batch normalization, 

flattening, and softmax layer were applied to discriminate subject-specific ear imaging 

patterns. The flowchart of the proposed methodology is visualized in the Fig. 3. A detailed 

work of the proposed architecture and its performance are discussed in subsequent sections.  
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Fig. 3. Flowchart of the proposed methodology for ear classification. 

 

3.1 Image pre-processing 
 

Image pre-processing is an important step of the proposed classification framework. 

BM3D (Block-Matching 3D) filtering is an image-denoising technique proposed by Dabov et al. 

in 2007 and used to enhance the quality of input scans [32] by identifying and collaboratively 

filtering pixel blocks within an active window to yield a denoised image version. BM3D is 

essentially a coherent noise elimination device operating in the transform domain, for 

example, the discrete cosine transform (DCT), which utilizes the sparsity of natural images, 

leading to higher visual denoising quality. BM3D outperforms in preserving vital image 

structures and details and in noise canceling at the same time, so it is best used in situations 

where image quality and detail preservation are necessary. The working of the applied BM3D 

algorithm is given in Algorithm 1.  

 

Algorithm 1: Pseudocode of customized BM3D algorithm 

 

Input: Patches of size 224×224 pixels of original ear images  

Output:         (   )  
 

        (   )
 ∑  (   )                    where         (   ) is the 

number of overlapping blocks at pixel (   ) 

Step 1 The input patch I is partitioned into overlapping blocks    of size N×N where i 

represent the ith block. 

Step 2 # Patch matching using Eq. 1 

  for each noisy patch: 

       denoised_patch = noisy_patch 

       for iteration in range(num_iterations): 

        # Search for similar patches 

        similar_patches=find_similar_patches(noisy_patch)   

        # Collaborative Filtering 

        denoised_patch = collaborative_filtering(similar_patches) 
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Step 3 Function for Collaborative Filtering using Eq. 2 and 3 

  for each selected similar patch: 

      clean_patch=estimate_clean_patch(similar_patch)    

      clean_patch=wiener_filter(clean_patch)          

Step 4 Function for Aggregation (Iterative) using Eq. 4 

   for each denoised patch: 

         aggregated_denoised_image+=denoised_patch 

Step 5 Display denoised image 

     final_denoised_image = aggregate_patches(aggregated_denoised_image) 

    display(final_denoised_image) 

 

         Step 1: Patch matching 

            (     )   √∑ (  ( )     ( ))  
                                                                                                 (1) 

        where           are two different patches and   (     ) refers Euceadian distance 

between patches. 

        Step 2: Collaborative Filtering  

 Clean patch  ̂ estimation using collaborative filtering  

                ̂ =∑      
 
                                                                                                                                      (2) 

 Estimation of    using Wiener filtering                      

                   
 

  
    

  
    

     |
 

 
|   

 
                                                                                                               (3) 

         Step 3:  Denoised Image Construction 

                            
∑      (   ) 

   

∑   
 
   

                                                                                                                 (4)                                                                         

Here,   ( )       ( ) represents the Kth pixel intensity of patches pi and pj respectively, 

N is the patch size, K is the number of similar patches,   
  is the noise variance,   

  is the 

variance of the clean patch, H is the Fourier transform of the Wiener filter, N is the size of the 

search window, and P is the size of the patch. The parameters of the BM3D allow the 

possibility of tuning the model to achieve the best performance. Among the main critical 

factors, block size matters as it makes the resolution of block-matching and also has a great 

influence on denoising. In this case, the larger block sizes are favorable for image regions with 

relatively smooth planes, whereas the smaller ones are better for the textured regions. The 

size of the search window is another factor that impacts BM3D's capacity to detect like blocks, 

large windows capturing variations but potentially leading to high computational cost. The 

thresholding parameters should be realized, as they provide the anchor for blocking artifacts 
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between the noise and signal. The critical point in this is a balancing of these parameters, 

which is the key to achieving optimal performance of BM3D in image denoising tasks.  

    In the proposed denoising step, the best results are computed in terms of the Peak signal-to-

noise (PSNR) ratio using the following tuned parameters.  

                           Block_size = 32*32 

                           Sigma (Standard deviation of noise) = 3.74 

                           Transform_domain = Discrete Cosine Transform 

                           Search_window = 16 pixels  

                           SNR = 1 

The samples of five noised and denoised images of class 1 are shown in Fig. 4.   

 

 

Fig. 4. Samples of original and denoised images from class 1. 

 

3.2 Feature Extraction using XceptionNet and DenseNet 

 

Feature extraction is a process of identifying and retrieving relevant features from raw 

ear images for further input to neural networks or other machine learning model components. 

In the ear classification problem, two popular DL architectures, (1) Extreme Inception Net 

(XceptionNet) and (2) DenseNet with a cross-channel attention mechanism, were used to 

collect deep features from input scans. XceptionNet, the abbreviated form of "Extreme 

Inception," is a CNN architecture conceived by François Chollet in 2017 [28]. It is the 

transformation of the Inception architecture and presents a new idea, namely depth-wise 

separable convolutions. Depthwise separable convolutions replace the standard convolutional 

layers in traditional CNN architectures with two separate operations: depthwise convolution 

and pointwise convolution. This division decreases computational complexity, although it still 

maintains representational capacity. Therefore, such feature extraction is more efficient and 

effective. DenseNet is another popular neural network architecture that boosts performance 

and efficiency by using dense connections between layers [29]. In DenseNet, each layer 

receives inputs from all preceding layers and contributes its features to all subsequent layers, 

facilitating feature reuse and reducing the number of parameters needed. This dense 

connectivity improves the flow of gradients during training, making deep networks more 

stable and easier to optimize. The hybrid architecture of CNN based on XceptionNet and 
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DenseNet comprehensively inherits the feature extraction performance of XceptionNet and 

DenseNet, inserting attention mechanism and FPN to further higher image classification  

accuracy. Fundamentally, architecture is based on block XceptionNet, each block has a 

convolution depth-wise separable multiplication by 128 filters with size 3 by 3, and they are 

followed by a point convolution convolution multiplication by 256 filters of size 1 by 1. These 

blocks emphasize dimensionality reduction and efficient capture of local characteristics 

across all the space levels. DenseNet-like layers, which consist of convolutional layers densely 

connected with a growth rate of 32 correspondingly, also play a significant role in information 

flow by transferring information from all preceding layers. Further, the Attention mechanism 

is introduced to the convolutional filter feature maps in both blocks to emphasize only 

relevant features. The dedicated attention layers interleaved with the convolution layers in 

each block generate attention weights that boost importance features by selective amplifying. 

Specifically, the attention layers have 64 filters of size 3×3 that give the model greater 

flexibility because they can be used to target discriminative regions of the inputs.  

The hybrid CNN architecture features various blocks of various sizes, and it further 

combines these blocks with different configurations while extracting various spatial scales of 

the feature. The XceptionNet-type blocks compose two depth-wise separable convolutions 

with output from 128 filters of 3x3 followed by 1x1 point-wise convolutions with 256 filters. 

However, the DenseNet-like layers that have high connectivity are comprised of several 

layers, with a growth rate of 32; it's what is needed to ensure feature reuse and propagation. 

As a result, instead of 64 filters in the 3x3 of attention layers within each block, the attention 

uses feature map modulation based on learned attention weights. The detailed working of the 

feature hybridization process is shown in Fig. 5. 

 

 
 

Fig. 5. Proposed hybridization procedure using cross-channel attention enabled XceptionNet and DenseNet 

architectures. 
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3.2.1 Integration using Feature Pyramid Network (FPN) 

 

Besides feature extraction from both XceptionNet and DenseNet blocks, the Feature 

Pyramid Network (FPN) scheme is implemented to maintain the multi-scale features fusion 

respectively. FPN is based on lateral connections and top-down directed pathways that sum 

up the input of different resolutions into a single representation. First, a feature pyramid is 

created from the outputs of both XceptionNet and DenseNet blocks. Feature maps of the 

highest resolution layer from each block are utilized as the starting point. Therefore, these 

feature maps are further stacked with layers to get a pyramid of features with additional 

resolutions of space.  

The combination of feature mapping of different resolutions is implemented via lateral 

connections and top-down pathways. In lateral connections, some convolutional layers with 

one-by-one filters with 64 filters are added to lower-resolution feature maps to match the 

channel dimensions of the higher-resolution feature maps. The lateral connections in this 

architecture affect the smooth blending of features across resolutions. Finally, high-resolution 

feature maps utilize top-down pathways to transfer information to lower-resolution ones. 

This operation is done by interpolation of the feature maps from the higher resolution and 

adding them to the corresponding feature maps from the lower resolution. This procedure 

makes sure that all the details from every resolution are added to the final output. Moreover, 

attention mechanisms are incorporated into the fusion process to selectively upscale 

functionality. Attention layers are used to implement 32 filters of the size 3x3 on fused feature 

maps to obtain modulated feature responses depending on the learned attention weights.  

In our case, DenseNet yields feature maps at 64x64, 32x32, and 16x16 quadratures. These 

feature maps correspond to different levels of abstraction from the higher resolutions with 

the finer details captured in the (64x64) maps and more abstract representations found in the 

(16x16) maps. In addition, XceptionNet, an evolution of InceptionNet with separable 

depthwise convolutions, replicates different degrees of complexity quite flawlessly. The 

XceptionNet produces the feature maps at the resolution levels of 128x128, 64x64, and 32x32 

pixels. Like DenseNet, these feature maps contain information at various scales, and the 

highest resolution maps (128x128) capture fine details while the lowest resolution maps 

(32x32) retain more abstract features.  

After feature extraction, FPN creates a feature pyramid which is composed of levels taking 

different scales. The pyramidal structure of the network is represented by each level which 

refers to a specific spatial resolution that helps in making the network capable of multi-scale 

information capture.  The feature pyramid is organized hierarchically, starting with the 

highest spatial resolution in Level 1 (128x128 pixels), Level 2 (64x64 pixels) with a slightly 

lower resolution, and Level 3 (32x32 pixels) with an even lower resolution, and so on. At each 

level of the pyramid, where the features of DenseNet and XceptionNet do not have the same 

resolution, we employed bi-linear interpolation to alienate those features. This process is 

performed on the DenseNet features to match them with the resolution of the XceptionNet 

features. In Equation (5) and (6), level-wise, two upsampled procedures are shown.   
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At Level 2:  

                         
                              

                                                                                   (5) 

 

At Level 3:  

                        
                              

                                                                                    (6)                                        

         

The bilinear upsampling operation is mathematically represented in represented in Eq. (7). 

 

              (     )   ∑ ∑   (         )  (    )  (    ) 
   

 
                                                            (7) 

  

where    is the upsampled feature map, F is the original feature map, and w is the bilinear 

interpolation kernel weight function. For computing weight functions, we employed Rule 1 

and Rule 2 mentioned below: 

 

Rule 1:  

            For w(i,x′): 

 When i=0, w(0,x′) represents the weight assigned to the pixel to the left of the new 

pixel. 

 When i=1, w(1,x′) represents the weight assigned to the pixel to the right of the new 

pixel. 

 The weights are determined based on the distance between the new pixel's x-

coordinate x′ and the x-coordinates of the surrounding pixels. 

Rule 2:  

            For w(j,y′): 

 Similarly, w(j,y′) represents the weight assigned to the pixels above and below the new 

pixel, with j=0 for the pixel above and j=1 for the pixel below. 

 The weights are determined based on the distance between the new pixel's y-

coordinate y′ and the y-coordinates of the surrounding pixels. 

The weights are determined by using bi-linear interpolation where weights are assigned 

to the adjoining pixels based on the distances between the new pixel and the surrounding 

pixels. These weights therefore make sure that pixels nearby possess a dominant impact on 

the newly formed pixel, as opposed to pixels of lower influence that are more distanced from 

the new pixel. The final normalized weight matrix for level 2 and level 3 is given below. The 

detailed working of FPN is shown in Fig. 6. 
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Fig. 6. Visualization of Internal Mechanism of Feature Concatenation within FPN. 

 

3.3 Classification 

The extracted features are further used in the dimensionality reduction process. The 

UMAP is a high dimensionality reduction algorithm that is executed in a nonlinear manner 

[26]. It uses various manifold design and projection techniques to get an in-depth 

understanding of the extracted features. The distances function gets the first step, where the 

distances among points in a high-dimensional space are calculated and then projected to a 

constricted space. Subsequently, the distance of the points in that vast, low-dimensional space 

is estimated. Afterward, we opted for stochastic gradient descent to make the said distances 

as close to each other as possible. One of the remarkable traits of UMAP output is the 

equidistance of local and global structures: UMAP preserves more of the global structure in 

the final projections.  

The UMAP algorithm consists of two components—features that capture the inherent 

similarities of data and the dimensionality reduction step for the embedded manifold. 
 

STEP 1: For a given feature set 𝑋= (𝑋1, 𝑋2,𝑋3⋯𝑋 ), dimension reduction is initialized to 

compute a low-dimensional dataset Y = (𝑌1,𝑌2,𝑌3⋯𝑌 ) ~ N (0,10−4×   ). Then,     and 

initial     are calculated. 

The conditional probability of i for j is computed by  

                                                     

 (     )

                                                                                                                               (8) 

 

The symmetric formula of the similarity matrix P for X is defined as:  

                    P  =                                                                                                                                (9) 
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The similarity matrix Q of Y is given by  

                Q   = [   (      )
  ]

  
                                                                                                        (10) 

 

where a ≈ 1.73 and b ≈ 0.87 for default UMAP hyperparameters. 

P   computes the similarity 𝑋  and 𝑋   and Q   measures the similarity 𝑌  and 𝑌 .  

 

STEP 2: The cost loss is calculated using binary cross entropy (CE): 

         CE (p,q) = ∑ ∑         
   

    
 (     )     (

(     )

       
)                                                               (11) 

 

STEP 3: The parameters are optimized, and the number of iterations t, learning speed v, and 

momentum a are set. The  

target result is a low-dimensional data representation Y = 𝑌 , 𝑌 ,𝑌 ⋯𝑌 . 

 

STEP 4: The optimization phase is executed using the following equations: 

      𝑌   𝑌      
  

  
   (𝑌     𝑌   )  where 

  

  
 is the gradient vector of the loss function 

for Y; 
  

  
 = (

  

   
)     

Finally, reduced features seta is normalized with the help of batch normalization, and this 

layer normalizes every layer's input, making training stable. It involves learning two 

parameters per feature per layer: the mean and the standard deviation. Following that, the 

data are stabilized into the form of fully connected layers. Statistical settings comprise the 

number of neurons in each layer('units') and the kind of activation function to 

use. Conversely, the Rectified Linear Unit activation function is defined as ReLU (x) = max (0, 

x), and facilitates nonlinearity. Additionally, the softmax layer uses the softmax function for 

class identification, and results are reported.  

 

4. Results & Discussion  

The proposed model was trained using a PC equipped with Intel Core I5 Processor and 16 

GB RAM. It was implemented on Python 2.9, using Keras library and TensorFlow. In this 

section, the performance of the proposed model is validated on both datasets mentioned in 

section 2, and performance was compared with three benchmark deep neural network 

architectures: (1) VGG Net, (2) Inception Net, and (3) ResNet. Initially, a five-fold cross-

validation technique was employed to split the original dataset into five groups or folds and 

then train the model iteratively using four folds to feed the training data, with the remaining 

fold being used for testing. This procedure is carried out five times, after which each one is 

used as the test set exactly once during this procedure. During the training process, both 

models (DenseNet, ExceptionNet) summary for dataset 1 is provided in Tables 1 and 2. 

Similarly, the details of both models for dataset 2 are given in Tables 3 and 4. In both cases, a 
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grid search approach was applied for optimal parameter tuning and to minimize the number 

of zeros below a certain threshold (<= 20%). In addition, an early-stopping strategy was 

applied to avoid overfitting issues during model training. The experiment was repeated ten 

times, and the mean arithmetic value was calculated to present the correct result. Different 

tests are to be performed before the final model evaluation. This is done to ensure that the 

choice of hyper-parameter values is proper. According to Tables 5 and 6, the best optimizer is 

Adagrad, which sets the learning rate to 0.003 (Brown Column-Table 5). The number of 

epochs used in the experiment was 150, and the batch size was 16.  
 

 

Table 1: Layer-Wise Details of DenseNet Architecture for Dataset 1. 

Layer (type) Output Shape Param # 

Input_Layer (InputLayer)   [(None, 224, 224, 3)] 0 

conv2d_1 (Conv2D)                       (None, 112, 112, 64) 9472 

batch_normalization_1 Batch (None, 112, 112, 64) 256 

activation_1 (Activation)   (None, 112, 112, 64) 0 

Dense_block_1 

(DenseBlock)   

(None, 28, 28, 256) 526336 

transition_layer_1 Transition (None, 14, 14, 128)        33280 

Dense_block_2 

(DenseBlock)   

(None, 7, 7, 512)          1078784 

transition_layer_2 Transition (None, 3, 3, 256)          131328    

global_average_pooling2d (Gl (None, 256)                0 

Dense_1 (Dense)            (None, 10)                 2570   

Total params: 7,037,578 
Trainable params: 6,963,978 
Non-trainable params: 73,600 

 

 

Table 2: Layer-Wise Details of ExceptionNet Architecture for Dataset 1. 

Layer (type) Output Shape Param # 

Input_Layer (InputLayer) [(None, 299, 299, 

3)] 

0 

conv2d_71 (Conv2D) (None, 10, 10, 

2048) 

1050624 

activation_33 (Activation) (None, 10, 10, 

2048) 

0 

global_average_pooling2d_1 (None, 2048) 0 

Dense_2 (Dense) (None, 10) 20490   

Total params: 21,914,754 
Trainable params: 21,859,210 
Non-trainable params: 55,544 
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Table 3: Layer-Wise Details of DenseNet Architecture for Dataset 2. 

Layer (type) Output Shape Param # 

Input_Layer (InputLayer)      [(None, 224, 224, 3)] 0 

conv2d_1 (Conv2D)                       (None, 112, 112, 64) 9472 

batch_normalization_1 Batch (None, 112, 112, 64) 256 

activation_1 (Activation)     (None, 112, 112, 64) 0 

Dense_block_1 

(DenseBlock)    

(None, 28, 28, 256) 526336 

transition_layer_1 Transition (None, 14, 14, 

128)        

33280 

Dense_block_2 

(DenseBlock)    

(None, 7, 7, 512)          1078784 

transition_layer_2 Transition (None, 3, 3, 256)          131328    

global_average_pooling2d (Gl (None, 256)                0 

Dense_1 (Dense)               (None, 10)                 2570   

Total params: 7,037,578 
Trainable params: 6,963,978 
Non-trainable params: 73,600 

 

 

Table 4: Layer-Wise Details of ExceptionNet Architecture for Dataset 2. 

Layer (type) Output Shape Param # 

Input_Layer (InputLayer) [(None, 299, 299, 

3)] 

0 

conv2d_71 (Conv2D) (None, 10, 10, 

2048) 

1050624 

activation_33 (Activation) (None, 10, 10, 

2048) 

0 

global_average_pooling2d_1 (None, 2048) 0 

Dense_2 (Dense) (None, 10) 20490   

Total params: 21,914,754 
Trainable params: 21,859,210 
Non-trainable params: 55,544 
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Table 5. Performance comparison between different optimizers and learning rates with the proposed 

architecture. 

Optimizer Learning Rate 
0.1 0.01 0.001 0.002 0.003 0.004 

Adam 59.06% 70.69% 71.30% 66.30% 91.80% 76.30% 
SGD 71.80% 91.09% 76.98% 71.52% 88.40% 82.34% 

Adadelta 59.40% 83.35% 81.54% 76.24% 90.88% 86.19% 
Adagrad 78.20% 88.83% 89.66% 84.33% 97.30% 90.33% 

 

The proposed architecture was implemented to discriminate multiple true labels of both 

datasets. The testing accuracies after each 20 epochs are reported on both datasets and given 

in Table 6. During model testing, the maximum classification accuracy was reported 98.24% 

for Dataset 1, and 94.66% for Dataset 2. In Fig. 7. (A), the training accuracy curve 

(represented by a blue curve) throughout the epochs. It reached a maximum accuracy of 

98.24% at epoch no. 113 and then it maintained this threshold. Similarly, the proposed 

approach realized a maximum of 94.66% classification at epoch no. 118 (Fig. 7. (B)). In the 

early phases, the learning ability of our model is very slow and consistent which shows the 

noisy behavior of both datasets. However, the model gains a significant improvement after 

epoch no. 80 and converged to the reported accuracy levels.  
 

Table 6. Performance comparison between different optimizers and learning rates with the proposed 
architecture. 

Dataset Epochs 
20 40 60 80 91-100 

Dataset 1 21.04% 41.33% 69.84% 84.52% 98.24% 
Dataset 2 18.54% 36.20% 61.53% 79.62% 94.66% 

 

 

Fig.7. The classification accuracy vs epochs graph for both ENV1.0 dataset (A) and IIT DELHI dataset (B). 
 

The ROC curve for both datasets is shown in Fig. 8, respectively.  In the image, the Area 

Under the Curve (AUC) values for most classes range from 0.74 to 1.00, which indicates a good 

performance for those classes. However, there are very few classes having lower AUC, such as 

class 110 (AUC = 0.77) and class 130 (AUC = 0.74). This suggests that the model may have 

difficulty classifying instances of these particular classes. The experimental analysis concludes 

(A) (B) 
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that avg. AUC for 165 classes is 0.8391 which reflects a superior discriminative ability of the 

proposed architecture. Similarly, our approach realized a competitive AUC score for all 121 

subjects. In this case, the avg. AUC score was 0.91 which is higher than state-of-the-art 

methods.   

 

Fig. 8. Receiver operating characteristics for various classes of ENV1.0 dataset (A) and IIT DELHI dataset (B). 

 

The weighted average classification accuracies for both datasets are given in Tables 7 and 

8 and compared in terms of epochs (per 10 epochs) with three state-of-the-art architectures: 

(1) InceptionV3 Net, (2) ResNet-50, and (3) VGG-Net. It can be observed that the proposed 

classification model realized better accuracy scores when compared with the above-

mentioned Deep Neural Networks (DNNS). Moreover, the key observation is the slower speed 

of the proposed classification model in the early epochs when compared with all baseline 

models. In the ENV1.0 dataset, our model achieved significant speedup after 60 epochs while 

it achieved maximum classification accuracy scores after 80 epochs when compared with all 

three neural networks. In this context, our model improved the accuracy levels by 11.21% 

(InceptionNet), 17.39% (ResNet-50), and 22.29% (VGG-Net) on the ENV1.0 Dataset. In the 

second case, our model enhanced the global weighted accuracy levels by 12% (InceptionNet), 

2.73% (ResNet-50), and 29% (VGG-Net). Moreover, the VGG-Net performed worst among all 

the classification models on both datasets.  

    
Table 7. Epoch-wise classification accuracies between the proposed model and baseline architecture models on 
ENV1.0 Dataset. 

Epoch-count Proposed Model InceptionV3 Net ResNet-50 VGG-Net 

After 10 epoch 09.08% 11.05% 23.56% 09.11% 

After 20 epoch 21.04% 29.39% 29.33% 19.33% 

After 30 epoch 36.38% 41.33% 41.18% 33.80% 

After 40 epoch 41.33% 53.48% 51.48% 39.56% 

After 50 epoch 59.88% 61.33% 63.78% 51.39% 

After 60 epoch 69.84% 67.80% 69.40% 59.20% 

(A) (B) 
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After 70 epoch 91.53% 74.40% 76.59% 71.12% 

After 80 epoch 94.52% 81.87% 81.02% 77.92% 

After 90 epoch 98.24% 88.33% 83.68% 80.33% 

     

Table 8. Epoch-wise classification accuracies between the proposed model and baseline architecture models on 
the IIT DELHI Dataset. 
 

 

Along with classification accuracy, we compared the performance of our proposed 

approach in terms of precision, recall, score, and Area Under the Curve (AUC) with all three 

conventional models. For both datasets, the detailed performance of all these models is 

represented in Tables 9 and 10, respectively. Regarding dataset 1, the findings in Table 9 

show that the proposed model performs better than all the baseline models (InceptionV3 Net, 

ResNet-50, and VGG-Net) in all metrics, including precision, recall, F1 Score, and Area Under 

the Curve (AUC). With a precision score of 0.9831, the suggested model excels at properly 

recognizing positive instances, indicating a low false positive rate. In comparison to other 

models, this makes it extremely reliable in categorizing DDoS threats. In comparison, 

InceptionV3 (0.9222), ResNet-50 (0.9018), and VGG-Net (0.8826) have poorer precision, 

indicating that they are more likely to misclassify innocuous events as threats. 

In terms of recall, the suggested model receives a high score of 0.9741, suggesting a great 

ability to recognize nearly all true positive situations, guaranteeing that very few genuine 

attacks are missed. The remaining models, InceptionV3 (0.9188), ResNet-50 (0.8912), and 

VGG-Net (0.8719), perform poorly in the recall, meaning that they miss more actual attacks or 

positive events. This lower recall indicates that these models are less effective at minimizing 

false negatives than the suggested approach. The F1 Score, which balances precision and 

recall, gives the proposed model a score of 0.97531, emphasizing its superiority. This high 

number demonstrates its strong effectiveness in reducing both false positives and false 

negatives.  

The competing models, with F1 scores of 0.91552 (InceptionV3), 0.8953 (ResNet-50), and 

0.8752 (VGG-Net), demonstrate a lower capacity to manage the trade-off between precision 

and recall, validating the suggested model's overall advantage in handling classification tasks 

well.  

Epoch-count Proposed Model InceptionV3 Net ResNet-50 VGG-Net 

After 10 epoch 11.08%  18.49%  21.06% 17.50% 

After 20 epoch 18.54% 29.13% 27.33% 31.04% 

After 30 epoch 33.38% 33.39% 47.39% 36.40% 

After 40 epoch 36.20% 39.43% 61.28% 48.12% 

After 50 epoch 51.88% 51.92% 68.40% 54.66% 

After 60 epoch 61.53% 68.02% 72.56% 62.46% 

After 70 epoch 73.53% 79.33% 84.66% 68.44% 

After 80 epoch 79.62% 80.02% 88.44% 70.94% 

After 90 epoch 94.66% 84.50% 92.14% 73.38% 
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Finally, the suggested model's AUC (0.9966) is near-perfect, demonstrating its excellent 

ability to discern between positive and negative classes. This means that the model can 

reliably distinguish between DDoS attacks and normal network traffic. In comparison, the 

AUC ratings for InceptionV3 (0.9322), ResNet-50 (0.9272), and VGG-Net (0.9028) are 

significantly lower, indicating that these models are less good at distinguishing between 

attack and normal cases. Overall, the results demonstrate the suggested model's ability to 

handle the complexities of modern network security threats, particularly DDoS detection and 

mitigation. 

 
Table 9. Comparative performance measures for all the baseline models and the proposed methodology on the 
ENV1.0 Dataset. 

 

 

Table 10 refers to the performance of all classification models on the dataset 2. The 

performance levels of the four models (Proposed Model, InceptionV3 Net, ResNet-50, and 

VGG-Net) provide a thorough grasp of their usefulness in identifying DDoS attacks. Starting 

with precision, the proposed model shines out with a score of 0.9761, showing that it is very 

good at reducing false positives. This means that it usually always forecasts an attack 

correctly. In comparison, InceptionV3 and VGG-Net have reasonable precision scores of 

0.8834 and 0.8826, respectively, although they are less precise than our suggested model. 

ResNet-50 trails behind with a precision of 0.7941, indicating a higher potential for false 

positives than the other models. Recall conveys a different narrative. InceptionV3 has a high 

recall score of 0.9714, indicating that it detects virtually all true positives or actual assaults, 

demonstrating its ability to minimize false negatives. However, the proposed model's recall of 

0.9251, while somewhat lower, shows that it can identify the majority of attacks. ResNet-50, 

with a recall of 0.9234, and VGG-Net, with 0.8722, perform reasonably well, however, they 

miss more attacks than InceptionV3, indicating a lower sensitivity.  

The F1 Score, which balances precision and recall, gives the proposed model a score of 

0.9529, indicating its strong performance. This score reflects a decent balance of effectively 

identifying assaults and minimizing false positives. InceptionV3 follows with an F1 score of 

0.9254, indicating that it can find a decent balance between precision and recall, albeit not as 

well as the suggested model. ResNet-50, with a lower F1 score of 0.8053, appears to struggle 

more in maintaining this balance, whereas VGG-Net's F1 score of 0.8768 indicates reasonable 

performance when compared to the leading models. 

 

 
 

Model Precision Recall F1 Score Area under the Curve 

(AUC) 

Proposed Model 0.9831 0.9741 0.97531 0.9966 

InceptionV3 Net [33] 0.9222 0.9188 0.91552 0.9322 

ResNet-50 [34] 0.9018 0.8912 0.8953 0.9272 

VGG-Net [35] 0.8826 0.8719 0.8752 0.9028 
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Table 10. Comparative performance measures for all the baseline models and the proposed methodology on the 

IIT DELHI Dataset. 

 

Model Precision Recall F1 Score Area under the Curve (AUC) 

Proposed Model 0.9761 0.9251 0.9529 0.9141 

InceptionV3 Net [33] 0.8834 0.9714 0.9254 0.8368 

ResNet-50 [34] 0.7941 0.9234 0.8053 0.7248 

VGG-Net [35] 0.8826 0.8722 0.8768 0.8020 

 

5. Conclusions and Future Scope 

In this work, we designed a novel vision-based hybrid CNN classification framework by 

merging attention-enabled XceptionNet and DenseNet architectures. The proposed 

architecture realized a maximum of 98.24% and 94.66% accuracy scores on ENVN1.0 and IIT 

DELHI datasets, respectively. Further, it improved the performance of other baseline models, 

such as VGGNet, InceptionNet, and ResNet50, with a significant margin of 22.29%, 11.21%, 

and 17.39%, respectively, on the ENV1.0 Dataset. In addition, our hybrid architecture 

enhanced the accuracy levels by 12% (InceptionNet), 2.73% (ResNet-50), and 29% (VGG-Net) 

on the IIT DELHI dataset. Moreover, we enhanced the performance of existing state-of-the-art 

classification models in terms of high AUC scores on both datasets. The primary limitation of 

our proposed model is its high computational complexity (slower speed) and resource 

dependency. The complex structure uses various kernel functions at different levels and 

multiple Dense blocks to obtain maximum classification accuracy levels. Researchers may 

explore several optimization techniques, such as lightweight models based on model 

compression and low-rank approximation methods [35], transfer learning [36], parametric 

reduction [37], and Gabor tensors [38] approaches to resolve this issue. In addition, various 

hardware acceleration modules such as Graphics Processing Units (GPUs) [39] or Tensor 

Processing Units (TPUs) [40] and distributed computing [41] can also be used to deal with 

this limitation.   
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