
 
 

 

Diyala Agricultural Sciences Journal, 2025, Vol. (17) No. 1: 194-208 

 

ISSN: 2073-9524 

eISSN: 2310-8746 

 

194  

Impact of Spatial Contamination Levels of Heavy Metals on 

Cowpea and Soybean Growth, Yield and Nodulation 
 

Amarachi Nwokocha1* , Sani Idris3 , Mercy Zakka1 , Olufunso Akinboye1 , 

Oluwafunmike Oyekale1 , Olajire Fagbola1,2  

 
1Department of Agriculture and Industrial Technology, Babcock University, Ogun State, 

Nigeria. 
2Department of Soil Resources Management, University of Ibadan, Nigeria. 
3Department of Soil Science, Faculty of Agriculture, Institute for Agricultural Research, 

Ahmadu Bello University, 1044 Samaru, Zaria, Nigeria. 

*Corresponding author: mgbeoma@gmail.com 
 

Article history:  

Received: 7 March 2025  

Accepted: 24 May 2025 

Published: 30 June 2025 

Abstract 

    Agricultural soil contamination poses a global threat to crop productivity 

and food safety. Agricultural expansion led farmers to cultivate cowpea 

(Vigna unguiculata) and soybean (Glycine max) on land near a wet battery 

waste disposal site. This study evaluates the effect of battery waste deposits 

at varying distances on biomass, grain yields, and nodulation of these crops, 

as well as the impact on microbial populations. Twenty (20) soil sampling 

points were randomly selected across four sites: a non-contaminated control 

site, the main battery dumpsite (MDS), and areas located 20 meters and 40 

meters away from the MDS, with five sampling points per site. Using a 2 × 4 

factorial Complete Randomized Design, the crops were grown with 

recommended best practices and inoculated with effective USDA 110 

Bradyrhizobium strains. Results from analyses indicated that contamination 

significantly reduced plant height, leaf number, pod number, dry root and 

shoot weights, grain yield, and microbial population. Soil analysis revealed 

high concentrations of Lead (Pb), Chromium (Cr), Arsenic (As), and Cobalt 

(Co) at the contamination sites. Specifically, Pb levels were 1772.4, 563.1, 

and 157.6 times higher in the MDS, 20 MDS, and 40 MDS sites, respectively, 

compared to the control soil, which had a concentration of 20.10 mg kg–1. The 

bacterial population decreased by approximately 83% in the MDS area 

relative to the control. Findings from this study indicate that wet battery waste 

deposition significantly increases soil contamination with heavy metals, 

adversely affecting legume yield, growth, and microbial populations, 

rendering the area unsuitable for cultivation. 
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Introduction 

    Industrial waste disposal over the past decades has exacerbated soil pollution, with heavy 

metals posing significant environmental hazards. These contaminants disrupt soil productivity 

and adversely affect crop performance (Alengebawy et al., 2021). Industrial discharge and 

improper application of agrochemicals are major contributors to soil pollution, resulting in 

heavy metal persistence due to their resistance to bio-thermal degradation (Hananingtyas et al., 

2022). In agricultural soils, heavy metals impair crop growth, photosynthesis, nutrient uptake, 

and nitrogen fixation, culminating in stunted growth, chlorosis, and reduced yields (Haddad et 

al., 2015). Notably, these effects are prevalent in staple crops like soybean and cowpea, which 

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8049-4703
https://orcid.org/0000-0002-7206-9889
https://orcid.org/0009-0003-3854-8063
https://orcid.org/0000-0001-8369-6127
https://orcid.org/0009-0001-5441-4343
https://orcid.org/0000-0002-9006-6569


 
 

 

Diyala Agricultural Sciences Journal, 2025, Vol. (17) No. 1: 194-208 

 

194  

are essential for food security and soil nitrogen enrichment (Huynh et al., 2016). 

    Soybean (Glycine max) and cowpea (Vigna unguiculata L.) are among the most valuable 

leguminous crops, providing high-quality food and feed for significant portions of human and 

animal populations worldwide (Valliyodan et al., 2017). USDA (2022) put the global 

production of soybeans at 355.60 million tons and projected a 10% increase in 2023. In Africa, 

Nigeria is only 2nd to South Africa in terms of production (USDA, 2023). According to FAO 

STAT (2016) cowpea's global annual production was 6.5 million. tons, covering 14.5 million. 

ha, leading to 6,991,174 tons of dry grain yield. Nigeria is the largest cowpea producer in 

Africa, recording about 2.8 million. Tons per year (Rugare et al., 2013). Both crops supplement 

nitrogen to the soil and serve as a green cover against erosion and water depletion (Acharya, 

2019). 

    Several strategies have been explored to mitigate heavy metal toxicity in agricultural soils. 

Crop tolerance mechanisms, though often at the expense of productivity, have been observed 

(Kaur et al., 2013). Advances in agronomic practices and bioremediation, such as the use of 

metal-resistant microbial inoculants, offer potential for minimizing metal toxicity (Shahid et 

al., 2017). However, most studies focus on artificially contaminated soils, leaving gaps in 

understanding the field-level impacts of industrial waste contamination, particularly in tropical 

agricultural systems (Haddad et al., 2015). 

    This study investigates the effects of heavy metals from battery waste disposal on cowpea 

and soybean cultivated on reclaimed agricultural lands by analyzing contamination at varying 

distances from the dumpsite. It evaluates impacts on crop growth, nodulation, and microbial 

populations. 

 

 Materials and Methods 

 Soil Sampling Location and Experimental procedure 

   The experiment was executed in the Screenhouse of the Department of Agriculture and 

Industrial Technology, Babcock University in Ilisan-Remo, Ogun State, located in the 

rainforest agroecology of Nigeria, during the early rainy season (March to May) of 2023. Soil 

samples were collected at a depth of 0-15 cm from four locations: a non-contaminated control 

site, the main contaminated dumpsite, and sites located 20 meters and 40 meters away from the 

dumpsite of the defunct battery manufacturing company with screw auger. The sampling points 

were respectively located at the following coordinates: 7.7644° N, 4.1256° E; 7.7703° N, 

4.1114° E; 7.7697° N, 4.1103° E; and 7.7692° N, 4.1094° E. Each experimental unit was 

replicated three times, resulting in a total of 24 experimental plots. 

    Heavy metals, such as Lead (Pb), Arsenic (As), Chromium (Cr) and Cobalt (Co), were 

analyzed on both contaminated and non-contaminated soils prior to the establishment of the 

experiment. Urea (20 kg ha– 1), single super phosphate (40 kg ha– 1) and muriate of potash (30 

kg ha– 1) were applied. Five (5) kg of soil samples were filled into 7-liter capacity (25 × 20 × 

14 cm) plastic pots perforated at their base for easy drainage. Initial water application was done 

a week before planting, and the bradyrhizobium strain of USDA 110 (that is characteristically 

infective and effective as well as compatible with cowpea and soybean) obtained from the 

International Institute of Tropical Agriculture was introduced into the soil using peat as its 

carrier a week after planting and spread around the rhizosphere of the seedlings (da Silva Júnior 

et al., 2018). Both the cowpea and soybean seeds were obtained from the Institute of 

Agricultural Research and Training and sown at 3.0cm soil depth. After germination (4-5 days), 

waterings were adequately carried out until the field capacity moisture status.  

https://www.frontiersin.org/articles/10.3389/fpls.2022.1047563/full#B61
https://acsess.onlinelibrary.wiley.com/authored-by/Silva+J%C3%BAnior/Elson+B.
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Laboratory Analyses 

    To estimate the quantity of the heavy metals, the prepared samples of the soil were further 

ground with the aid of stainless steel, and 1 g was weighed into a digestion flask and digested 

using HF: HClO4:HNO3 chemical and heated on the hotplate for 180 minutes at 150–200°C as 

recommended by Nwajei and Gagophien (2000). Then, the digested mixture was filtered and 

distilled water was added to make it up to 100ml. Finally, the flame atomic absorption 

spectrophotometry AA240FS model was used to read the concentration accordingly.  Soil 

particle sizes were determined using the hydrometer method (Agbenin, 1995), organic carbon 

by the potassium dichromate method (Walkley and Black, 1934), pH in CaCl2 solution of 1:2.5 

by the use of pH meter, available phosphorus using Bray 1 extraction solution (Bray and Kurtz, 

1945), exchangeable bases and exchangeable acidity as described by Okalebo et al. (2002), and 

microbial population by plate count method (Holt et al., 1994). 

Data Collection and Statistical Analysis 

    Data collected from the experiment included plant height by using a measuring tape and the 

number of leaves by manual counting from 2 to 12 weeks after planting. Also, the number of 

pods and the number of nodules were manually counted at weeks 10 and 12. Microbial 

population count was measured at 12 weeks after planting. Data obtained were processed using 

analysis of variance and post-hoc tests was conducted where applicable using the Duncan 

Multiple Range Test (DMRT) at 95% confidence level by the RStudio package 4.3.2, 2023 

version. 

Results and Discussion 

Soil Physical and Chemical Properties of Experimental Sites 

    Table 1 illustrates the physical and chemical properties of the four treatment soils, 

highlighting significant variations in heavy metal concentrations and nutrient levels. The Main 

Dump Site (MDS) exhibited the highest lead (Pb) concentration at 1772.4 times the control 

value of 20.10 mg kg¹. Similarly, soils sampled 20 m (20 MDS) and 40 m (40 MDS) away 

contained Pb concentrations 521 and 146 times higher than the control, respectively, reflecting 

an exponential decline with distance from the MDS. Chromium (Cr) concentrations displayed 

a decreasing trend, with levels in the MDS soil being 185.7%, 48.1%, and 39.8% higher than 

the control, 20 MDS, and 40 MDS, respectively. Arsenic (As) and cobalt (Co) followed similar 

patterns, indicating the spatial impact of contamination. However, copper (Cu) was 3.3% 

higher in the control compared to 20 MDS, deviating from the general trend. Among nutrients, 

sodium (Na) was significantly elevated in the MDS, 97.9% higher than the control, but dropped 

sharply in 20 MDS, reducing by 90.98%. Magnesium (Mg) remained moderately rated across 

all sites. Interestingly, nitrogen (N) levels were 89.7% lower in the MDS compared to the 

control, suggesting a negative impact on organic matter turnover. These findings emphasize 

the severe environmental effects of proximity to the MDS on soil health and agricultural 

productivity. The pH of the soils was predominantly moderately acidic, except for the MDS, 

which approached neutrality. This finding suggests the influence of specific environmental and 

anthropogenic factors on soil properties, contrasting with the results of Adegoke (2009) and 

Rahman et al. (2012), who observed significant shifts in soil pH under similar conditions. 

These differences may be due to the unique characteristics of the study site or varying industrial 

activities, highlighting soil pH as a sensitive indicator of ecological disruptions. Consistent 

with Jolly et al. (2012), untreated or partially treated industrial discharges were found to elevate 

heavy metal concentrations, exacerbating soil pollution and impairing soil functionality. 

Similarly, Fagbenro et al. (2021) documented moderate to high contamination loads in 
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Nigerian gold mining sites, reinforcing the persistent threat of industrial and mining activities 

on soil chemical properties, including pH. The neutral pH trend of MDS soils could be linked 

to inherent buffering capacity or ameliorative influences such as organic inputs or vegetation. 

Investigating these soils' mineralogical and microbial properties is vital for understanding 

resilience mechanisms and promoting sustainable soil management practices. 

Table 1. Physical and Chemical Properties of the Soil Across the Contamination 

Treatment 

Parameters Control 20 m MDS 40 m MDS MDS SE 

pH (H2O) 5.34 c 6.00 b 5.99 b 6.58 a 0.326 

Organic carbon % 1.155 b 2.112 a 2.310 a 0.660 c 0.289 

Total nitrogen % 0.127 b 0.232 a 0.254 a 0.013 c 0.082 

Av. P. (mg kg-1) 12.8 a 10.6 b 10.1 b 11.0 b 1.26 

Exch. A. (Cmol kg-1) 0.41 a 0.30 b 0.30 b 0.35 ab 0.036 

Ca (Cmol kg-1) 3.14 c 6.99 a 6.43 a 4.46 b 1.211 

Mg (Cmol kg-1) 0.99 a 0.91 a 0.96 a 0.76 b 0.072 

K (Cmol kg-1) 0.08 c 0.21 b 0.18 b 0.65 a 0.048 

Na (Cmol kg-1) 0.43 b 1.84 b 0.76 b 20.41 a 0.388 

Mn (mg/kg) 85.0 c 89.0 c 101.0 b 123.0 a 5.221 

Fe (mg kg-1) 121.0 c 141.0 a 156.0 a 148.0 a 7.345 

Cu (mg kg-1) 1.23 b 1.19 b 1.31 b 6.0 a 0.999 

Zn (mg kg-1) 1.56 b 1.74 b 1.80 b 3.25 a 0.766 

Sand % 81.0 a 82.0 a 79.0 a 3.55 b 2.000 

Silt % 12.0 b 13.0 b 14.0 b 22.00 a 3.552 

Clay % 7.0 b 5.0 b 7.0 b 31.00 a 2.844 

Pb (mg kg-1) 20.10 11315.5 3167.95 35645.75 12.33 

Cr (mg kg-1) 10.85 c 16.10 b 18.65 b 31.00 a 2.56 

Co (mg kg-1) 3.70 c 16.45 a 11.20 b 5.25 bc 1.466 

As (mg kg-1) 1.25 c 2.80 bc 5.10 ab 8.75 a 1.18 

Means with same letter (s) in a column are not significantly different at 5 % level of probability by Duncan 

Multiple Range Test (DMRT), ns; not significant, 20 MDS = 20 meters away from the dump site, 40 MDS 

= 40 meters away from the dump site. S.E= Standard Error. 

 

Effects of Soil Contamination and Legume Type on Plant Height and Number of Leaves 

    Table 2 presents a significant reduction in plant height over time, particularly in the MDS 

and 20 MDS treatments. In the MDS treatment, the plant height declined progressively by 

39.4%, 60.7%, 62.4%, 56.5%, 47.9%, and 53.4% at weeks 2, 4, 6, 8, 10, and 12, respectively, 

when compared to the control. This substantial decrease in height reflects the detrimental 

impact of the battery residue contamination, likely due to the heavy metal accumulation and its 

toxic effects on plant growth. Conversely, the test crops in the 40 MDS treatment exhibited a 

2.4% increase in plant height compared to the control, indicating a potential buffering effect or 
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some resilience in plant growth despite the presence of contamination. Table 3 demonstrates 

that the 20 MDS (management disturbance sites) significantly hindered the leaf development 

of the test crops compared to both the 40 MDS and the control treatments. Specifically, at 4, 6, 

and 10 weeks after planting, the crops in the 20 MDS exhibited reduced leaf numbers, 

highlighting the detrimental effect of this particular disturbance on plant growth. At week 4, 

the number of leaves in the 20 MDS treatment was noticeably lower than in both the 40 MDS 

and control groups, with similar trends observed at weeks 6 and 10. The contrast between the 

MDS and 40 MDS treatments in this study, highlights the spatial variation in contamination 

effects on leguminous crops. The reduction in growth observed in the 20 MDS and MDS 

treatments aligns with previous studies on heavy metal toxicity, which have shown that high 

concentrations of contaminants can impair plant development by disrupting nutrient uptake, 

photosynthetic processes, and cellular structures (Ashraf et al., 2019). Heavy metal 

accumulation in soil systems significantly impacted plant growth and physiological processes, 

which led to diminished agricultural productivity. As reported by Vineeth et al. (2014) and Arif 

et al. (2016), the presence of toxic heavy metals such as Pb and Cd impeded critical plant 

development stages, including leaf budding and vertical growth. These disruptions result in 

stunted growth and reduced vigor, as further corroborated by Mehboob et al. (2018).  

    The number of leaves in the 20 MDS treatment which was noticeably lower compared to 

both the 40 MDS and control groups at week 4 with similar trends observed at weeks 6 and 10 

suggests that the 20 MDS may have imposed greater stress on the crops. This could be 

potentially due to higher levels of soil contamination, which hindered the normal growth 

processes of the plants. In contrast, the 40 MDS and control treatments exhibited more 

favorable conditions, supporting better leaf production, likely due to less severe environmental 

impacts at these sites. These findings underscore the importance of assessing spatial variations 

in management disturbance to understand their influence on crop performance, particularly in 

environments exposed to anthropogenic stresses. High concentrations of Pb adversely affect 

plants by impairing physiological and biochemical pathways, as highlighted by Gomes (2011). 

This is particularly evident in the reduction of chlorophyll content, which diminishes 

proportionally with increasing Pb levels, as demonstrated by Ali et al. (2014). Chlorophyll 

depletion directly affects photosynthesis, leading to compromised plant energy production and 

growth potential. Furthermore, Rasool et al. (2020) reveal that plants exposed to elevated Pb 

and Cd levels exhibit significant reductions in stomatal conductivity, chlorophyll 

concentration, and photosynthetic activity rates. The accumulation of Cd at 20 mg L–1 reduced 

soluble protein content by 52% and 70% after 24 and 30 days, respectively. These findings 

emphasize the urgent need for strategies to mitigate heavy metal contamination in soils to 

preserve crop health and productivity. 

Table 2. Effects of Soil Contamination Level and Legume Type on Plant Height 

Treatments 2 WAP 4 WAP 6 WAP 8 WAP 10 WAP 12 WAP 

Legume Type (cm) 

Cowpea 27.4 a 36.4 b 39.6 b 42.1 b 48.5 b 58.0 b 

Soybean 23.5 b 49.5 a 74.1 a 98.0 a 112.4 a 145.7 a 

SE 1.55 2.64 3.88 5.22 5.49 3.77 

Contamination       

Control 23.6 b 45.5 a 57.5 b 68.2 b 79.4 ab 108.1 a 
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MDS 14.3 c 17.9 c 21.6 c 29.7 c 41.3 c 50.0 c 

20 MDS 22.7 b 35.1 b 440 c 56.7 c 73.7 b 86.7 b 

40 MDS 30.0 a 48.4 a 69.0 a 85.3 a 88.2 a 110.7 a 

SE 1.83 2.00 4.22 5.86 4.91 9.33 

Interaction       

L x C N.S N.S * * N.S N.S 

Means with different letter (s) in a column for a treatment are significantly different at 95 % confidence level by 

the Duncan Multiple Range Test (DMRT). N.S = not significant, 20 MDS = 20 meters away from the main dump 

site, 40 MDS = 40 meter away from the main dump site, L = legume type and CL = contamination, WAP = weeks 

after planting. 

 

Table 3. Effects of Soil Contamination Level and Legume Type on the Number of 

Leaves plant-1 

Treatments 2 WAP 4 WAP 6 WAP 8 WAP 10 WAP 12 WAP 

Legume Type       

Cowpea 5.0 a 8.1b 10.7 b 12.1 b 14.4 b 14.0 b 

Soybean 4.0 b 10.8 a 12.9 a 17.4 a 26.4 a 28.8 a 

SE 0.22 0.56 0.33 1.35 2.33 2.00 

Contamination       

Control 4.5 n.s 10.2 ab 13.0 a 15.2 a 20.8 ab 20.2 a 

MSD 3.5 n.s 5.0 c 7.5 c 10.0 c 13.0 c 13.5 b 

20 MDS 4.5 n.s 7.7 bc 9.0 ab 13.2 bc 17.0 b 23.2 a 

40 MDS 4.5 n.s 10.5 a 13.3 a 16.0 a 23.5 a 24.8 a 

SE 0.97 2.12 2.35 1.99 2.0 2.66 

Interaction       

L*C N.S * * N.S * N.S 

Means with different letter (s) in a column for a treatment are significantly different at 95 % confidence level by 

Duncan Multiple Range Test (DMRT), N.S: Not significant, 20 MDS = 20 meters away from the dump site, 40 

MDS = 40 meters away from the dump site, L = legume type and CL = contamination level, WAP = weeks after 

planting. 

Effects of Soil Contamination and Legume Type on the Numbers of Pods, and Nodules 

and Dry Shoot and Root Weights 

    The data presented in Table 4 highlight that the 20 MDS (metallic disposal sites) did not 

significantly enhance pod growth in either cowpea or soybean, particularly in the case of 

cowpea at weeks 10 and 12. Additionally, the number of nodules at these time points and the 

dry root weight at 2 WAP were also not favorably impacted by the 20 MDS treatment. These 

findings suggest that while both crops were adversely affected, soybean exhibited greater 

sensitivity to soil contamination across several growth parameters. Notably, there were no 

significant differences observed in dry root weight between cowpea and soybean at 12 WAP, 
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indicating a comparable response to the contamination at later growth stages. In Table 5, the 

effects of 20 MDS contamination on cowpea were more pronounced, with significant 

reductions in plant height at week 6 and pod number at week 10. In contrast, cowpea grown in 

uncontaminated (control) soil demonstrated significantly higher pod numbers at weeks 10 and 

12, as well as increased dry shoot and root weights at week 12, underscoring the detrimental 

impact of metal contamination on leguminous crop growth. Figure 1 further elucidates the 

interactive effects between legume type and contamination on final grain yield. Cowpea grown 

in control soil versus 40 MDS produced the highest grain yield, whereas the lowest yields (0 

g/plant) were recorded under MDS contamination. In contrast, soybeans only produced grain 

under control soil conditions, illustrating their heightened sensitivity to heavy metals. 

    Figure 2 corroborates this trend, showing that the combined effect of soybean and 

contamination closely mirrored that of cowpea, where both crops exhibited significantly higher 

biomass yield when grown in control soil, further supporting the hypothesis that soil 

contamination severely impairs crop growth and yield. These results collectively emphasize 

the vulnerability of leguminous crops, particularly soybean, to heavy metal contamination and 

underscore the need for careful management of contaminated soils to ensure the sustainability 

of legume-based agriculture. The results observed in this study aligned with Sheirdil et al. 

(2012), who reported that the application of 16 mg kg– 1 of Cd negatively affected soybean 

shoot length, root development, and nodulation, which resulted in a 50% maximum decline in 

% N fixation. Other researchers noted that nodule reduction in legumes could be due to 

inhibition of nitrogenase activity and photosynthesis by accumulated heavy metals in polluted 

soil (Manier et al., 2009). Other works have also reported a reduction in root and shoot dry 

weight, as well as pod number from heavy metal contamination in the soil (Basha and 

Selvaraju, 2015; Kumar et al., 2016). Also, Zhao et al. (2021) revealed that the high Cd level 

facilitated a decrease in the net growth of plants and their aboveground biomass. Progressive 

declines of about 27.57 % and 28.95% were also observed in root biomass when exposed to 50 

mg kg–1 and 100 mg kg–1 Cd concentrations, respectively. Collin et al. (2022) reported a 42% 

decrease in the growth of plant roots when exposed to high concentrations of Pb.  Moreso, 

according to Abdul-Aziz et al. (2022), toxic concentrations of as in the legumes biomass and 

grains were noted to be above the 0015 mg kg–1 FAO/WHO guideline limit. Heavy metal's 

deleterious effect on crops' yield and biomass is not limited to legumes since previous 

investigations have reported a reduction in rice yield catalyzed by Pb Cd and Cr accumulations 

(Xie et al., 2018). 

Table 4. Effects of Soil Contamination Level and Legume Type on the Number of Pod 

Plant– 1, Number of Nodules plant– 1, Dry Shoot and Root Weight (g) 

Treatments 
PDN 

WK 10 

PDN 

WK 12 

NN 

WK 10 

NN 

WK12 

DSWT 

WK 12 

DRWT 

WK 12 

Legume Type       

Cowpea 3.4 a 3.8 a 3.6 a 5.6 a 3.4 b 2.5 

Soybean 0.0 b 0.0 b 0.0 b 0.0 b 5.6 a 2.8 n.s 

SE 0.882 0.459 0.351 0.351 0.399 0.251 

Contamination        

Control 2.3 a 3.0 a 1.9 b 4.7 a 6.1 a 5.2 a 



 
 

 

Diyala Agricultural Sciences Journal, 2025, Vol. (17) No. 1: 194-208 

 

200  

Means with different letter (s) in a column for a treatment are significantly different at 95 % confidence level by 

Duncan Multiple Range Test (DMRT), ns = Not significant; PDN =number of pod, NN = Nodule number, DSWT 

=Dry shoot weight, DRWT = Dry root weight, MDS = main dumpsite, 20 MDS = 20 meters away from the MDS, 

40 MDS = 40 meters away from the MDS. 

 

Table 5. Interaction between Contamination and Legume type on Plant Height (cm), 

Number of Pods /Plant, Dry Shoot and Root Weight (g plant-1) 

LT CL 
PLH 

6 WAP 
8 WAP 

NPD 

WK 10 
WK 12 

DSWT 

WK 12 

DRWT 

WK 12 

Cowpea Control 41.3 a 44.9 a 4.7 a 6.0 a 460 a 362 a 

 20 MDS 33.4 b 36.7 b 1.7 b 2.7 b 371 b 229 b 

 40 MDS 44.2 a 44.8 a 5.0 a 5.7 a 360 c 198 b 

 MDS 20.5 d 23.9 c 1.1 c 1.6 c 200 d 109 c 

Soybean Control 73.7 b 91.5 b 0.0 n.s 0.0 n.s 463 ab 289 a 

 20 MDS 54.7 c 76.7 c 0.0 n.s 0.0 n.s 391 a 197 b 

 40 MDS 93.8 a 125.9 a 0.0 n.s 0.0 n.s 388 b 276 a 

 MDS 43.4 d 48.3 d 0.0 n.s 0.0 n.s 311 c 108 c 

Means with different letter (s) in a column for a treatment are significantly different at 95 % confidence level by 

Duncan Multiple Range Test (DMRT), ns: Not significant; NPD = number of pods, DSWT =Dry shoot weight, 

DRWT = Dry root weight, MDS = main dumpsite, 20 MDS = 20 meter away from the MDS, 40 MDS = 40 meter 

away from the MDS. 

 

MDS 0.00 0.00 0.5 c 0.8 c 1.5 c 0.5 c 

20 MDS 0.3 b 0.3 b 1.2 b 2.5 a 6.0 a 1.6 b 

40 MDS 2.5 a 0.8 b 2.5 a 2,5 b 4.00 1.5 b 

SE 0.0002 0.001 0.002 0.001 0.003 0.001 

C*S * * * * * * 
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Means with different letter (s) across treatment for the crop are significantly different at 95 % confidence 

level by Duncan Multiple Range Test (DMRT), MDS = main dumpsite, 20 MDS = 20 meters away 

from the MDS, 40 MDS = 40 meters away from the MDS. 

 

 

 Means with different letter (s) across treatment for test crop are significantly different at 95 % 

confidence level by Duncan Multiple Range Test (DMRT), MDS = main dumpsite 20 MDS = 20 meters 

away from the MDS, 40 MDS = 40 meters away from the MDS. 

 

Figure 2. Interaction of Contamination and Legume Type on the 

Biomass Yield (g plant–1) 
MDS = Main dumpsite, 20 and 40 = 20 and 40 meters away, respectively  

Figure 1. Interaction of Contamination and Legume Type on the 

Grain Yield (g plant–1) 
MDS = Main dumpsite, 20 and 40 = 20 and 40 meters away, respectively  
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 Effects of Soil Contamination and Legume Type on Above-ground Biomass 

    The grain yield results, presented in Figure 3a, indicate that cowpea achieved the highest 

yield among the legume types evaluated, however, the spatial contamination analysis, as shown 

in Figure 3b, revealed a significant decline in grain yield at 20 meters from the MDS, with a 

reduction of approximately 50% compared to the control. Interestingly, the grain yield at both 

20 and 40 meters from the contamination source did not differ statistically, suggesting a plateau 

effect in the spatial distribution of contamination impact on crop performance. 

    When examining biomass yield (Figure 4a), soybean demonstrated superior biomass 

production over cowpea, emphasizing its greater overall growth potential under the given 

conditions. Further biomass yield analysis based on spatial contamination level in Figure 4b, 

indicated a widening disparity between the control and MDS, where the above-ground biomass 

in MDS was notably lower. At the same time, 20 meters from the contamination site 

outperformed 40 meters by about 22%, highlighting the potential for localized differences in 

contamination severity. These findings underline the significant impact of spatial 

contamination on both grain and biomass yields, emphasizing the need for strategic soil 

management and remediation in areas exposed to industrial waste. Based on the findings of 

this study, it was observed that there was a significantly higher concentration of Pb and other 

heavy metals in MDS which might have played a key role in reducing both the grain and the 

biomass yields. However, Nkansah et al. (2021), reported a lower level of Fe and Zn, Cr and 

Ni in processed cassava due to contamination. Ahmad et al. (2012) as well as Keshavarzi and 

Kumar (2020) discussed that the heavy metals have reached toxicity levels in the soil, thus 

stagnated growth. 

Effect of Contamination Level on Microbial Population 

    Table 6 shows that the MDS and 20 MDS had 88.9 and 80.7% less bacterial population in 

dilutions 6, respectively, compared with the control. Also, significantly highest population of 

fungi was found in 20 MDS, while MDS showed a contrary result. However, the rhizosphere 

of soybean was observed to have a significantly lower fungi population compared to that of the 

cowpea in dilutions 6 and 7. Figure 5 contains the interaction, in which cowpea under MDS 

and 20 MDS exhibited significantly reduced bacterial population. A similar observation was 

noted for cowpea-MDS interaction regarding fungi population in dilutions 6 and 7. Interaction 

between soybean and MDS and 20 MDS was significantly low in the fungi population. On the 

other hand, the result of the Interaction of contamination level and legume type on the microbial 

population as provided in figure 5 (supplementary material) recorded that the interaction 

between soybean and MDS significantly reduced the fungi population.  The reduction in 

microbial population found in the rhizosphere of the two test crops when they interacted with 

the various contaminated sites is in agreement with the findings of Rengel et al. (2015), who 

reported the negative impact of heavy metal toxicity to beneficial soil microbiota, as well as 

depression of their functions. Abdu et al. (2016) also reported that heavy metal causes a 

decrease in the nutrient status, microbial functionality, and uniformity of the soil. Additionally, 

Pan Jing and Long (2011). revealed that changes in certain enzymatic functions due to Pb and 

Cd interference bring about declination and changes in soil microbial communities. 
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 Figure 4a. Biomass yield based on legume type                                             
 

Figure 3a. Grain yield based on legume type 

Figure 3b. Grain yield based on Spatial Contamination Level 
MDS = Main dumpsite, 20 and 40 = 20 and 40 meters away, respectively  
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Table 6. Effect of Contamination on Microbial Population in (CFU g– 1 of soil) 

Legume Type Bacteria 106 Bacteria 107 Fungi 106 Fungi 107 

Cowpea 15.8 7.4 55.5 a 33.3 a 

Soybean 16.2 n.s 6.4 n.s 28.4b 27.0 b 

SE 2.11 1.98 4.77 2.00 

Contamination     

Control 38.0 a 9.7 a 22.5 c 12.0 c 

MDS 4.2 c 3.8 b 28.8 c 29.7 b 

20 MDS 5.2 c 3.7 b 65.2 a 40.2 a 

40 MDS 16.7 b 10.5 a 51.3 b 38.7 a 

SE 1.33 1.21 2,33 4.52 

 C*S N.S * * * 

Means with different letter (s) in a column for a treatment are significantly different at 95 % confidence 

level by Duncan Multiple Range Test (DMRT), N.S: not significant, 20 MDS = 20 meters away from 

the dump site, 40 MDS = 40 meters away from dump site. 

Figure 4b. Biomass yield based on Spatial Contamination level 
MDS = Main dumpsite, 20 and 40 = 20 and 40 meters away, respectively  
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Conclusions 

    This study demonstrates that wet battery waste disposal markedly elevates heavy metal 

concentrations-particularly lead, chromium, arsenic, and cobalt-in agricultural soils, leading to 

significant reductions in cowpea and soybean growth, nodulation, yield, and microbial 

populations. Spatial analysis revealed a gradient of contamination impact, with the main 

dumpsite exhibiting the most severe effects. The findings highlight the unsuitability of such 

contaminated lands for legume cultivation and emphasize the urgent need for remediation and 

stricter environmental controls to safeguard food safety and soil health. 
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