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This study investigates developing and optimizing 

hybrid algorithms for image processing and 

encryption using numerical optimization 
techniques based on heat diffusion methods. Using 

finite difference methods, we show the application 

to different types of images, which will be 
converted into arrays and treated as coefficients in 

the computational process. The paper aims to 

enhance image quality through algorithmic 
optimization and hybridization strategies. 

Experiments in one and two dimensions are 

conducted using both explicit and implicit 

methods to evaluate the impact of these techniques 
on image processing. The performance of the 

proposed approach is analyzed using statistical 

metrics such as Peak Signal-to-Noise Ratio 
(PSNR), Mean Squared Error (MSE), Maximum 

Difference (MD), and additional quality 

assessment parameters. 
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1. Introduction 

The distinction between an original image (𝑤0)  and its blurred counterpart (𝑘 ∗ 𝑤0)  is 
approximately proportional to the Laplacian of the image. This relation can be explained by 

assuming that (𝑘) is localized and scaled as  

𝑘ℎ(𝛼) =
1

ℎ
𝑘 (

𝛼

ℎ
1
2

)        with      (ℎ →  0). 

Having a point (𝛼 =  (𝛼1, 𝛼2)) on a plane and assuming (𝑤0) is (𝐶3) −smooth around (𝛼), (𝑘) 

must be a positive, and symmetric kernel meeting specific integrability and moment conditions. 

Using a Taylor expansion around (𝛼), it can be shown that as (ℎ →  0), 

𝑘ℎ ∗ 𝑤0(𝛼) − 𝑤0(𝛼) ∼ ℎ Δ𝑤0(𝛼). 

This concept implies that applying the heat equation at a specific scale to (𝑤0) is analogous to 

blurring (𝑤0)  with a kernel (𝑘ℎ) . Historically, researchers like Kovasznay et.al. [1] suggested 
reversing this process using the inverse of the Laplacian to enhance blurred images. By subtracting 
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a fraction of the Laplacian from the observed image in an iterative way, one can achieve some level 
of enhancement. However, this approach is fundamentally unstable, leading to noise amplification 

and eventual image degradation. 

Over the years, various strategies have been proposed to stabilize this reverse process. For 
example, Rudin [2] introduced a "shock filter" that modifies the Laplacian to enhance image edges 

while mitigating instability. Similarly, the Kramer algorithm [3] sharpens images by iteratively 

replacing pixel values with extrema from their neighborhoods, though it too has limitations, 
especially with complex image structures. More sophisticated approaches, such as the Perona-Malik 

equation [4], attempt to balance smoothing and enhancement by employing anisotropic diffusion, 

which varies depending on gradient magnitudes. These techniques offer several improvements, 

however, they do not fully replicate the reverse heat equation's effects. Recent efforts have shifted 
toward combining reverse diffusion with advanced regularization methods, such as neighborhood 

filters and non-local (NL) means. NL-means [5], in particular, leverage self-similarity within the 

image to selectively denoise without sacrificing important structures. 
Mathematics plays an important role in the field of image processing [6]. Ali et al. [7, 8, 9] 

investigated the application of the heat equation on image processing and how the behavior of the 

solution affects the structure of images in each step of reaching the solution. In other words, they 

worked on the method of finite differences, both the forward and backward to have blurring and 
deblurring on the quality of the images. We will modify their method by presenting a new 

modification of an optimized algorithm applied to the explicit and implicit methods (we will call 

them OFTS and OBTS) which refer to the Optimized Forward Time Step and Optimized Backward 
Time Steps respectively. Several other authors have worked mathematically on the field of image 

processing, for example, Ahmed et al. [10, 11] worked on inpainting techniques, showing that PDE-

based and Exemplar-based methods are commonly employed to recover missing image regions. 
However, these methods face challenges in accurately reconstructing large or richly textured areas. 

Recent advancements, including seam carving and isotropic diffusion approaches, have 

demonstrated improved performance in reducing artefacts and restoring significant missing sections 

in natural images. Many other researchers [12, 13, 14, 15, 16] worked on images processing using a 
variety of mathematical methods. On the other hand, researchers worked on not only different types 

of image processing methods but also different types of images such as medical images [17], 

standard images [18], images in the field of physics [19], and high-resolution images [20]. 
The rest of this manuscript is organized in the following manner. In the following Section 2, we 

present our newly modified and optimized methods that deal with a variety of images mathematically. 

Section 3 contains the measuring metrics which will be used to measure the generated images and 
compare them with the previously presented ones. Section 4 contains the results and discussion of 

this work. Finally, Section 5 concludes the findings of this research. 

2. Material and Methods 

In the study of a two-dimensional problem, consider a point 𝑊(𝛼1, 𝛼2) within the spatial domain, 

which corresponds to an image 𝑌(𝛼1, 𝛼2). To approximate the behavior of this point, a Taylor series 

expansion is utilized for both ( 𝛼1) and ( 𝛼2) axes. By truncating the series to the second-order terms, 

a mathematical model is developed to estimate the coordinates of corresponding points in the image. 
This approach provides a systematic method for analyzing image properties and preparing them for 

numerical processing. 

The study then focuses on the normalized one-dimensional heat equation with homogeneous 
Dirichlet boundary conditions. The equation is defined with specific boundary and initial conditions 

to ensure consistency in the problem domain. Finite difference methods are employed to approximate 

the spatial and temporal derivatives, splitting the computational grid into discrete intervals. Using 

the points ( 𝑊1, 𝑊2, 𝑊3, ) and ( 𝑊4), one may find the point ( 𝑌(𝛼1, 𝛼2)) in an approximate way, 
knowing that it can be represented as a Taylor series expansion [21]. Consequently, a partial series 

up to the second-order terms can be written as: 

Y(𝛼1 + θ, 𝛼2) = Y(𝛼1, 𝛼2) + θ
∂Y

∂𝛼1
+

θ2

2
⋅

∂2Y

∂𝛼1
2

+ … …                   
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𝑌(𝛼1 − θ, 𝛼2) = 𝑌(𝛼1, 𝛼2) − θ
∂𝑌

∂𝛼1
+

θ2

2
⋅

∂2𝑌

∂𝛼1
2

+  … …                   

 

Combing these two equations together, we get 
 

∂2Y

∂𝛼1
2

=
Y(𝛼1 + θ, 𝛼2) + Y(𝛼1 − θ, 𝛼2) − 2 ⋅ Y(𝛼1, 𝛼2)

θ2
                   

 

Similarly, one may represent the point 𝑌(𝛼1, 𝛼2) on the 𝛼2 axis by: 

 

∂2Y

∂𝛼2
2

=
Y(𝛼1, 𝛼2 + θ) + Y(𝛼1, 𝛼2 − θ) − 2 ⋅ Y(𝛼1, 𝛼2)

θ2
                   

Let us examine the one-dimensional normalized heat equation under homogeneous Dirichlet 
boundary conditions. 

 

𝑊𝑡 = 𝑊𝛼𝛼  (1) 

 

having the information below regarding the boundary bounds 

 

𝑊(0, 𝜏) = 𝑊(1, 𝜏) = 0 
as well as the below initial bounds  

𝑊(𝛼, 0) = 𝑊0(𝛼) 

 
 

To solve Eq. (1) numerically, we utilize the method outlined in the previous section, 

approximating all derivatives using finite difference techniques. The equation is discretized using a 

spatial mesh 𝛼0, 𝛼1, … , 𝛼𝑗 and a temporal mesh 𝜏0, 𝜏1, … , 𝜏𝑁. Here, ℎ is defined as the fixed spatial 

step size representing the distance between two consecutive points in the space domain, while 𝑘 

denotes the temporal step size between two consecutive points in the time domain.  

The value of 𝑤 at a specific point is represented numerically as: 

𝑤(𝛼𝑗, 𝜏𝑛) = 𝑤𝑗
𝑛 

This numerical representation provides a basis for analyzing the behavior of 𝑤 and facilitates the 

development of three distinct finite difference schemes, which are described in the subsequent 

sections. 

To increase the accuracy and reduce the cost of numerical computations, the finite difference 
method is optimized. These optimizations include the changing of h and k so that stability conditions 

are satisfied with minimal computational effort. High order schemes and other more efficient 

discretization methods are also used to reduce the truncation and hence convergence errors. This 
guarantees that the numerical procedure developed not only solves the given equation of interest but 

does the solution in cost effective manner out of the context as well. 

2.1. Optimized explicit technique 

The explicit optimized method takes Strang’s approach [22] and combines it to the one-

dimensional heat equation method with a modified strong stability preserving second-order time 

discretization. This method uses the first-order central difference for the time derivative at the time 

step 𝑡𝑛  and a Taylor series expansion at position 𝛼𝑗 that results in the below equation: 

𝑤𝑗
𝑛+1 − 𝑤𝑗

𝑛

𝑘
=

𝑤𝑗+1
𝑛 − 2𝑤𝑗

𝑛 + 𝑤𝑗−1
𝑛

ℎ2
  

Here, 𝑤𝑗
𝑛+1 represents the value of the solution at the next time step, calculated explicitly using 

known values at the current time step. By reformulating this, the method can be expressed in a more 
detailed form: 
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𝑤𝑗
𝑛+1 = (1 − 2

𝑘

ℎ2
) 𝑤𝑗

𝑛 +
𝑘

ℎ2
𝑤𝑗−1

𝑛 +
𝑘

ℎ2
𝑤𝑗+1

𝑛   

The utility of the method lies in its ability to compute 𝑤(𝑗)
𝑛+1 explicitly from the known values at 

the previous time step, reducing computational complexity while maintaining reasonable accuracy. 

To show the validity of this method, we take a vector 𝑤 consisting of one hundred non-negative 

elements and apply it to the finite difference equation using mentioned values for 𝑑𝑡 and 𝑑𝛼. 

𝑤(𝑗)
𝑛+1 = 𝑤(𝑗)

𝑛 +
𝑑𝑡

𝑑𝛼2
(𝑤(𝑗−1)

𝑛 − 2𝑤(𝑗)
𝑛 + 𝑤(𝑗+1)

𝑛 )   

By performing fifteen optimized forward time steps (OFTS) to the vector 𝑤 , we observe the 

following results, see Fig. 1. 
 

 
Fig. 1. Four phases of OFTS of the vector 𝑤 

 
Below, the process is presented step-by-step in the form of an improved algorithm. This 

optimized approach is numerical stability as well as significantly enhances computational efficiency 

in applying the heat equation on different types of images. 

 

       Steps of the Optimized Explicit Algorithm for the Heat Equation 

1. Define the Problem Parameters: 

   - Initialize the domain [𝑥0, 𝑥𝐿] and the time domain [𝑡0 , 𝑡𝐹]. 
   - Set the step size (∆𝑥) and time step size (∆𝑡). 

   - Make sure that the stability condition Δ𝑡 ≤
(Δ𝑥)2

2𝛼
, where (𝛼) is the diffusion coefficient. 

 

2. Discretize the Heat Equation: 

- Using a forward difference for the time derivative and a fourth-order central difference for the     

derivative to have more accuracy. The discrete equation is given as: 

𝑤𝑖
𝑛+1 = 𝑤𝑖

𝑛 +
𝛼Δ𝑡

12(Δ𝑥)2
(−𝑤𝑖−2

𝑛 + 16𝑤𝑖−1
𝑛 − 30𝑤𝑖

𝑛 + 16𝑤𝑖+1
𝑛 − 𝑤𝑖+2

𝑛 ) 

3. Set Initial and Boundary Conditions: 



Numerical Optimization and Hybrid...                                           J. Basrah Res. (Sci.) 51(1), 43 (2025). 

47 

 

   - Define the initial temperature distribution 𝑤(𝑥, 0) =  𝑓(𝑥). 

   - Specify the boundary conditions (𝑤(0, 𝑡) =  𝑔0(𝑡)) and (𝑤(𝐿, 𝑡) =  𝑔𝐿(𝑡)). 

 

4. Construct the Computational Grid: 

- Create a uniform grid of size (𝑁𝑥) for the spatial domain and (𝑁𝑡) for the time domain based 

on (∆𝑥) and (∆𝑡). 

 

5. Initialize the Solution Matrix: 

- Allocate a 2D array for storing the solution (𝑤(𝑥, 𝑡)), with rows corresponding to spatial 

points and columns corresponding to time steps. 

- Populate the first row using the initial condition and apply the boundary conditions to the first 
and last columns. 

 

6. Iterative Time-Stepping: 

   - For each time step (𝑛 =  0, 1, … , 𝑁𝑡–  1): 
   1. Update the interior points using the optimized finite difference scheme. 

   2. Apply boundary conditions at (𝑥 =  0) and (𝑥 =  𝐿). 

 
7. Post-Processing: 

   - Smooth the results using a low-pass filter to mitigate any numerical oscillations. 

   - Optionally, normalize the results to maintain consistent physical interpretations. 

 
8. Output and Visualization: 

- Store the derived solution in the form of a two-dimensional array or alternatively display it in 

contour or surface view. 
   - Make analysis using qualitative methods by calculating MSE or PSNR. 

 

This enhanced algorithm enhances not only the precision but also the numerical robustness which 
makes it applicable for large scale computations of the heat equation. 

 

2.2. Optimized implicit technique 

This approach uses a backward difference method for the time derivative at 𝜏𝑛+1 in conjunction 

with a second-order central difference for the derivative at position 𝛼𝑗  making the following 

governing equation: 

𝑤𝑗
𝑛+1 − 𝑤𝑗

𝑛

𝑘
=

𝑤𝑗+1
𝑛+1 − 2𝑤𝑗

𝑛+1 + 𝑤𝑗−1
𝑛+1

ℎ2
.    

This equation represents an implicit method for solving the one-dimensional heat equation. 

Unlike explicit methods, implicit schemes are more stable, allowing larger time steps without 

compromising numerical stability. The value of 𝑤𝑗
𝑛+1 is determined by solving a system of linear 

equations, which is expressed as: 

(1 + 2
𝑘

ℎ2
) 𝑤𝑗

𝑛+1 −
𝑘

ℎ2
𝑤𝑗−1

𝑛+1 −
𝑘

ℎ2
𝑤𝑗+1

𝑛+1 = 𝑤𝑗
𝑛                    

     Optimization and Numerical Improvements 

1. Stability Advantage: 

The backward difference approach is stable with no conditions required for any time step, as it  

avoids numerical oscillations commonly associated with explicit methods. 
 

2. Efficient Linear System Solver: 

The matrix that we get from the system of linear equations is tridiagonal, which allows us to use 
some efficient numerical algorithms like Thomas algorithm [23]. This reduces computational cost 

from 𝑂(𝑛3) to 𝑂(𝑛) [23], making the method a good choice for large-scale problems. 
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3. Numerical Accuracy: 

By using a second-order central difference for the spatial derivative, the method can have high 

accuracy and can make sure that the solution converges more effectively. 
 

4. Adaptive Time-Stepping: 

The implicit nature allows for larger time steps, reducing the total number of iterations required 
while maintaining numerical precision. 

To make things clear, we consider a vector 𝑤  with one hundred non-negative components 

representing initial conditions. This vector is then substituted into the finite difference equation, 

where 𝑑𝑡 and 𝑑𝛼 are pre-selected constants: 

𝑤(𝑗)
𝑛 = 𝑤(𝑗)

𝑛+1 −
𝑑𝑡

𝑑𝛼2
(𝑤(𝑗−1)

𝑛+1 − 2𝑤(𝑗)
𝑛+1 + 𝑤(𝑗+1)

𝑛+1 )                   

       Computational Procedure 

1. Initialization: 

   - Set the initial conditions for 𝑤 and define 𝑑𝑡 and 𝑑𝛼. 

   - Make sure that the grid and time steps satisfy the requirements for numerical accuracy. 

 
2. Solve Linear System: 

   - Construct the tridiagonal matrix derived from the finite difference scheme. 

   - Use the Thomas algorithm or similar methods to solve for 𝑤𝑛+1 efficiently. 
 

3. Iterative Backward Time Steps: 

- Perform fifteen optimized backward time steps (OBTS) on the vector 𝑤, updating the values at 

each iteration. 
 

4. Output Results: 

- Analyze the resulting vector 𝑤 after fifteen OBTS to observe the temporal evolution of the 
system. 

       Advantages of the Optimized Implicit Technique 

1. Enhanced Numerical Stability: The method remains stable even for large 𝑑𝑡, providing reliable 
results without requiring excessive computational resources. 

2. Reduced Computational Effort: Leveraging the tridiagonal matrix structure ensures the   

solution is computationally efficient. 
3. Scalability: The algorithm can handle larger systems or finer spatial grids without sacrificing 

stability or accuracy. 

4. Broader Applicability: This method is suitable for stiff problems where explicit techniques 

might fail due to stringent stability conditions. 

When fifteen backward time steps (OBTS) are applied to the vector 𝑤, results illustrating the 

accuracy and the stability of the method are obtained and it is seen to have the ability to model 

the temperature profile evolution with improved efficiency, see Fig. 2. 
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Fig. 2. Four phases of OBTS of the vector w 

To put things in steps, here we provide the enhanced algorithm which solves the heat equation 

using the mentioned implicit technique, which was also observed to improve the numerical 

stability and computational efficiency of the scheme. 

       Steps of the Optimized Implicit Algorithm for the Heat Equation 

1. Define the Problem Parameters: 

   - Set up the spatial domain ([𝑥0, 𝑥𝐿]) and time domain ([𝑡0 , 𝑡𝐹]). 

   - Specify the spatial step size (∆𝑥) and time step size (∆𝑡). 

   - Ensure numerical stability, as implicit methods are unconditionally stable. 

 
2. Discretize the Heat Equation: 

- Use a backward difference for the time derivative and a fourth-order central difference for the 

spatial derivative. The discretized equation is: 

 

−
𝛼Δ𝑡

12(Δ𝑥)2
(𝑤𝑖−2

𝑛+1 − 16𝑤𝑖−1
𝑛+1 + 30𝑤𝑖

𝑛+1 − 16𝑤𝑖+1
𝑛+1 + 𝑤𝑖+2

𝑛+1) + 𝑤𝑖
𝑛+1 = 𝑤𝑖

𝑛 

 

3. Formulate the Linear System: 

   - Rewrite the above equation in matrix form:  

          𝐴𝑤𝑛+1 =  𝑤𝑛  

      

     Here: 

     - 𝑤𝑛+1 is the solution vector at time step 𝑛 + 1. 

- 𝐴 is a sparse tridiagonal (or pentadiagonal for fourth-order accuracy) matrix derived from 

the coefficients of 𝑤𝑖−2
𝑛+1, 𝑤𝑖−1

𝑛+1, 𝑤𝑖
𝑛+1, 𝑤𝑖+1

𝑛+1, 𝑤𝑖+2
𝑛+1. 

     - 𝑤𝑛  is the known solution vector at time step 𝑛. 

 
4. Set Initial and Boundary Conditions: 

   - Define the initial temperature distribution 𝑤(𝑥, 0) =  𝑓(𝑥). 
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   - Specify boundary conditions 𝑤(0, 𝑡) =  𝑔0(𝑡) and 𝑤(𝐿, 𝑡) =  𝑔𝐿(𝑡). 
 

5. Construct the Computational Grid: 

   - Define 𝑁𝑥 spatial points and 𝑁𝑡 time steps using (∆𝑥) and (∆𝑡). 
 

6. Initialize the Solution Matrix: 

- Allocate a 2D array for storing the solution, with rows for spatial points and columns for time 

steps. 
   - Populate the initial condition in the first row and enforce boundary conditions at the edges. 

 

7. Iterative Time-Stepping: 

   - For each time step 𝑛 =  0, 1, … , 𝑁𝑡 −  1: 

     1. Construct the coefficient matrix 𝐴 based on the finite difference discretization. 

     2. Apply boundary conditions to modify the matrix 𝐴 and vector 𝑤𝑛 . 

3. Solve the linear system 𝐴𝑤𝑛+1  =  𝑤𝑛  using a suitable numerical solver (e.g., LU 

decomposition or an iterative method like Conjugate Gradient). 

 

8. Post-Processing: 
   - Smooth results to minimize any oscillations from numerical errors. 

   - Normalize results for consistency if needed. 

 
9. Output and Visualization: 

   - Save the computed solution for analysis. 

   - Visualize results using contour or surface plots to show temporal evolution. 

 
Remark: In fact, the implicit technique is computationally more demanding due to the matrix 

inversion step but offers higher numerical stability and robustness for larger (∆𝑡) values.  

2.3.Two dimensional experiments  

In this sub-section, the application of both explicit and implicit methods to solve the two-

dimensional heat equation is demonstrated, with a focus on image processing tasks. The two-

dimensional heat equation, given 
𝜕𝑤

𝜕𝑡
= 𝛼 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2
), is discretized using finite differences for 

spatial and temporal derivatives. A uniform grid represents the spatial domain, and pixel intensities 

of an image correspond to grid values. For the explicit method, a forward time-stepping approach is 

employed, where the intensity at a grid point is updated using the current values of its neighbors. 
This method is computationally efficient and straightforward but requires small time steps to 

maintain numerical stability. In contrast, the implicit method utilizes a backward time-stepping 

scheme, where future grid values are computed by solving a system of linear equations at each time 
step. Although this approach is computationally more demanding, it is unconditionally stable and 

allows for larger time steps.  

In the experiments of this study, both approaches were implemented on the non-negative matrices 

corresponding to the initials of the author’s name as ‘ZHA’ where each matrix is an image of a 
particular distribution, refer to Fig. 3. The explicit approach showed a continuous smoothing of the 

patterns during all the iterations while the implicit one managed to obtain comparable outcomes with 

high reliability and with fewer iterations. The results were depicted in phases, revolving around the 
issue of the way patterns changed when each of the techniques was applied. Mean Squared Error 

(MSE), Peak Signal to Noise Ratio (PSNR/ PNR), Average Difference (AD) are among the statistical 

features that aided to determine the level of effectiveness of the inbuilt methods. These experiments 
underline the strengths and limitations of both explicit and implicit schemes concerning two 

dimensional image processing and their capabilities for noise suppression, edge sharpening and 

preservation of the structure. 
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Fig. 3. A 3D view of the initials ZHA. 

 

To implement the aforementioned methods with the selected letters, the parameters 𝑑𝜏, 𝑑𝛼1 and 

𝑑𝛼2  are fixed. Additionally, 50 iterations 𝑘 =  50 are performed for each method. The process 

begins with the application of the OFTS equation: 

 

𝑤(𝑖,𝑗)
𝑛+1 = 𝑤(𝑖,𝑗)

𝑛 +
𝑑𝜏

𝑑𝛼1
2

(𝑤(𝑖−1,𝑗)
𝑛 − 2𝑤(𝑖,𝑗)

𝑛 + 𝑤(𝑖+1,𝑗)
𝑛 ) +

𝑑𝜏

𝑑𝛼2
2

(𝑤(𝑖,𝑗−1)
𝑛 − 2𝑤(𝑖,𝑗)

𝑛 + 𝑤(𝑖,𝑗+1)
𝑛 )     

 

where 𝑑𝜏 = 10−5 , 𝑑𝛼1 = 2 × 10−2,, and 𝑑𝛼2 = 2 × 10−2. Next, the three letters "Z", "H", and 

"A" are represented as matrices 𝑤1 , 𝑤2, and 𝑤3, each of dimensions 𝑚 × 𝑛. These matrices are then 

combined into a single matrix 𝑤  of size 𝑚 × 3𝑛 . Finally, the same technique used in the one-

dimensional example with the vector 𝑤 is applied. The outcome of this experiment is illustrated in 
Fig. 4 below. 

 

 
Fig. 4. Six different phases of the OFTS on the initials ZHA 

 
Similarly, to implement the Optimized Backward Time Stepping (OBTS) method, specific 

parameter values must be defined, including 𝑑𝜏, 𝑑𝛼1 and 𝑑𝛼2. For this example, the values are set 

as 𝑑𝜏 = 10−5, 𝑑𝛼1 = 2 × 10−2, and  𝑑𝛼2 = 2 × 10−2 . Additionally, the method will iterate 50 

times for each scenario, corresponding to 𝑘 = 50. 
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The OBTS method begins with the following governing equation: 

𝑤(𝑖,𝑗)
𝑛+1 = 𝑤(𝑖,𝑗)

𝑛 −
𝑑𝜏

𝑑𝛼1
2

(𝑤(𝑖−1,𝑗)
𝑛 − 2𝑤(𝑖,𝑗)

𝑛 + 𝑤(𝑖+1,𝑗)
𝑛 ) −

𝑑𝜏

𝑑𝛼2
2

(𝑤(𝑖,𝑗−1)
𝑛 − 2𝑤(𝑖,𝑗)

𝑛 + 𝑤(𝑖,𝑗+1)
𝑛 )     

The next step involves initializing three matrices labeled “Z”, “H”, and “A”, as matrices 𝑤1 , 𝑤2, 
and 𝑤3 , respectively. Each of these matrices has dimensions 𝑚 × 𝑛 . These matrices are then 

combined to form a single larger matrix 𝑤, with dimensions 𝑚 × 3𝑛. 

 

The previous OBTS strategy applied to the vector 𝑤 in the one-dimensional example is now 
generalized to this setup. The performance of the system can be assessed in Fig. 5, demonstrating 

that the technique is quite effective when tackling multi-dimensional systems. 

 

 
Fig. 5. Six different phases of the OBTS on the initials ZHA 

3. Measuring Metrics 

Metrics nowadays are considered a very important resource in image processing and numerical 

analysis for measuring the accuracy of several tools that have been applied. Therefore, it is now 

possible to compare the input image with the output image in a way that illustrates the level of 
enhancement that has been reached using different approaches. The following metrics will be used 

in our study: 

3.1. Mean Squared Error (MSE): 

The MSE quantifies the average squared difference between the pixel intensities of the original 

image (𝐼𝑜) and the processed image (𝐼𝑝). It is defined as: 

MSE =
1

𝑁
∑  

𝑁

𝑖=1

(𝐼𝑜[𝑖] − 𝐼𝑝[𝑖])
2
 

where 𝑁 is the total number of pixels. A smaller MSE indicates greater similarity between the 

images and a higher reduction in noise. 

3.2. Peak Signal-to-Noise Ratio (PSNR): 

PSNR evaluates the ratio of the maximum possible pixel intensity to the noise level in the 
processed image. It is computed as: 

PSNR = 10 log10 (
𝐼𝑚𝑎𝑥

2

MSE
) 

where 𝐼𝑚𝑎𝑥  the maximum pixel intensity value. Higher PSNR values signify better image quality. 
 
 



Numerical Optimization and Hybrid...                                           J. Basrah Res. (Sci.) 51(1), 43 (2025). 

53 

 

3.3. Normalized Cross-Correlation (nCC): 

The nCC measures the degree of similarity between the original and processed images. It is 

expressed as: 

nCC =
∑  𝑁

𝑖=1 (𝐼𝑜[𝑖] − 𝜇𝐼𝑜
) (𝐼𝑝[𝑖] − 𝜇𝐼𝑝

)

√∑  𝑁
𝑖=1 (𝐼𝑜[𝑖] − 𝜇𝐼𝑜

)
2

∑  𝑁
𝑖=1 (𝐼𝑝[𝑖] − 𝜇𝐼𝑝

)
2
 

      

where 𝜇𝐼𝑜
 and 𝜇𝐼𝑝

are the mean pixel intensities of the original and processed images, respectively. 

A value closer to 1 indicates high similarity. 

3.4. Average Difference (AD): 

AD calculates the mean pixel intensity difference between the original and processed images. It 

is given by: 

AD =
1

𝑁
∑  

𝑁

𝑖=1

(𝐼𝑜[𝑖] − 𝐼𝑝[𝑖]) 

Positive or negative values highlight the bias of the processing technique. 

3.5. Structural Content (SC): 

   - SC evaluates the structural similarity between the images. 

   - The metric is defined as: 

SC =
∑  𝑁

𝑖=1 𝐼𝑜[𝑖]2

∑  𝑁
𝑖=1 𝐼𝑝[𝑖]2

 

Lower values indicate better preservation of structural content. 

3.6. Maximum Difference (MD): 

- MD identifies the largest absolute intensity difference between corresponding pixels in the two 
images: 

MD = 𝑚𝑎𝑥(|𝐼𝑜[𝑖] − 𝐼𝑝[𝑖]|) 

     This metric is useful for detecting extreme outliers in the processed image. 

3.7. Normalized Absolute Error (NAE): 

   - NAE measures the total deviation normalized by the total intensity of the original image: 

NAE =
∑  𝑁

𝑖=1 |𝐼𝑜[𝑖] − 𝐼𝑝[𝑖]|

∑  𝑁
𝑖=1 |𝐼𝑜[𝑖]|

. 

 

Smaller NAE values indicate better preservation of the original image's features. 

4. Results and Discussion 

In this section, we demonstrate the practical relevance of the methods described in Section 2 

concerning various categories of images, i.e. these are Lenna, Baboon and Cameraman images. This 

experiment consists of a comparison of the processed images with the original images using for this 
purpose the statistical measures described in Section 3 such as PSNR along with other factors that 

seek to enhance quality and structural information retention. Lenna image was employed for general 

performance evaluations of the techniques, while the improvement of important diagnostic details 
of the methods was demonstrated through the use of Baboon image. Cameraman image is used to 

evaluate how effective the techniques are against noise, lighting and textures. In general, the results 

show considerable improvements in all categories, suggesting that the methods are flexible and can 
be relied on for different uses. 
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4.1. Lenna Photo 

Performing both optimized techniques presented in Section 2 on the Lenna image, we get a 

blurred image when applying OFTS and a sharpened image when applying OBTS. The results can 
be seen in Fig. 6 and the measuring metrics results between the original image and the blurred and 

sharpened images are listed in Table 1. 

 

 
Fig. 6. Performing OFTS (blurred) and OBTS (sharpened) on Lenna photo 

Table 1. Measuring metrics on Lenna image 

Type of measure OFTS Lenna OBTS Lenna 

𝑴𝑺𝑬 440.5546 44.2129 

𝑷𝑺𝑵𝑹 21.6908 31.6753 

𝒏𝑪𝑪 0.9627 1.0049 

𝑨𝑫 0.0069 -0.2485 

𝑺𝑪 1.0524 0.9878 

𝑴𝑫 165 50 

𝑵𝑨𝑬 0.1102 0.0377 

4.2. Baboon Photo  

Performing both optimized techniques presented in Section 2 on the Baboon image, we get a 

blurred image when applying OFTS and a sharpened image when applying OBTS. The results can 

be seen in Fig. 7 and the measuring metrics results between the original image and the blurred and 
sharpened images are listed in Table 2. 

 

 

 
Fig. 7. Performing OFTS (blurred) and OBTS (sharpened) on Baboon photo 
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Table 2. Measuring metrics on Baboon image 

Type of measure OFTS Baboon OBTS Baboon 

𝑴𝑺𝑬 681.6401 148.6838 

𝑷𝑺𝑵𝑹 19.7953 26.4082 

𝒏𝑪𝑪 0.9627 1.0171 

𝑨𝑫 -0.3485 -0.4468 

𝑺𝑪 1.0395 0.9595 

𝑴𝑫 166 61 

𝑵𝑨𝑬 0.1465 0.0652 

4.3. Cameraman Photo 

Performing both optimized techniques presented in Section 2 on the Baboon image, we get a 

blurred image when applying OFTS and a sharpened image when applying OBTS. The results can 
be seen in Fig. 8 and the measuring metrics results between the original image and the blurred and 

sharpened images are listed in Table 3. 

 

 
Fig. 8. Performing OFTS (blurred) and OBTS (sharpened) on Cameraman photo 

 
Table 3. Measuring metrics on Cameraman image 

 

Type of measure 
OFTS 

Cameraman 

OBTS 

Cameraman 

𝑴𝑺𝑬 378.0120 18.2722 

𝑷𝑺𝑵𝑹 22.3557 35.5129 

𝒏𝑪𝑪 0.9708 1.0037 

𝑨𝑫 0.0037 -0.0421 

𝑺𝑪 1.0386 0.9916 

𝑴𝑫 172 45 

𝑵𝑨𝑬 0.0861 0.0201 

5. Conclusion 

This study confirmed the viability of image processing and encryption metrics using 

hybrid numerical algorithms that involve heat diffusion techniques to study the problems 

associated with images. The image structure modification was studied by incorporating 

several explicit and implicit approaches along with forward and backward time steps, 

resulting in interpretation of improved quality. Such case studies were undertaken on three 

model types of images: Lenna, Baboon and Cameraman images, which implies that these 

methods can be used on a wide variety of images. The experiments showed improvement in 

the quality of image characteristics in terms of common statistical parameters including but 

not limited to Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), and 
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Maximum Difference (MD). However, the explicit method was found to be computationally 

efficient, making it fit for a situation where speed is required. However, the implicit method 

showed better numerical stability with high resolution and complicated data sets. This 

research showcased the ability of these methods to alter the image structure and improve its 

quality, confirming their applicability for realistic problems like enhancement and 

restoration of images. 
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الأمثلية العددية والخوارزميات الهجينة ودورها في معالجة الصور وتشفيرها من خلال  

 استخدام معادلة الحرارة 

 زينب حسن احمد* 

 ، العراق. 34001قسم الرياضيات، كلية العلوم، جامعة تكريت، تكريت 

 

 معلومات البحث  الملخص  

تتناول هذه الدراسة تطوير وتحسين الخوارزميات الهجينة لمعالجة الصور وتشفيرها 

المستندة إلى طرق انتشار الحرارة. يتم تطبيق الطرق    ةالعددي  الأمثلية  باستخدام تقنيات

على أنواع مختلفة من الصور، حيث يتم تحويل الصور    المنتهيةللفروقات  العددية  

إلى مصفوفات تعُامل كمعاملات في العملية الحسابية. يهدف البحث إلى تحسين جودة 

إجراء تجارب في  والتهجين الخوارزمي. تم    الأمثليةالصور من خلال استراتيجيات  

بُعدين، باستخدام الطرق الصريحة والضمنية لتقييم تأثير هذه التقنيات على معالجة 

باستخدام مقاييس إحصائية مثل نسبة الإشارة   ةالمقترح   الطريقةالصور. تم تحليل أداء  

( الضوضاء  )PSNRإلى  التربيعي  المتوسط  وخطأ   ،)MSE فرق وأقصى   ،)

(MD ومعايير إضافية ،)لتقييم جودة الصور . 
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