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1. Introduction

Heat transfer squeezing unsteady viscous flow between moving plates has gained considerable
interest from scientists due to its wide range in many physical applications, including lubrication
systems, polymer processing, food processing, hydrodynamical machines, compression, and crop
damage from freezing, formation, and dispersion, among other things. Studying the various
characteristics of the nanofluids in various geometries has garnered a lot of attention lately. Fluids
with additional nanoscale particles are referred to as nanofluids. Water, ethylene glycol, and
kerosene oil are examples of common heat transfer fluids that are poor heat conductors. That is, the
development of energy-saving heat transfer equipment for power supply depends largely on these
heating and cooling fluids. These fluids are mixed with conductive metal nanoparticles to improve
and regulate thermal conductivity. Nanofluids are used in fuel cells, medicinal procedures,
microelectronics, and other fields. Many researchers interested in the problem of nanofluid flow
fields have done a lot of research in this field, as Sreenivasa Somireddy Reddy et al. [1] investigate
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the effects of an inclined magnetic field on heat and mass transfer in turbulent squeeze flow of a
viscoelastic fluid.

With an upper-convicted Maxwell model. Abdullah Dawaret et al. [2] the considered problem is
solved by two analytical methods called IRPSM, and the homotopy perturbation method (HPM) for
a squeezing flow between two parallel plates. Domairry and Hatami [3] looked at the flow analysis
between two parallel plates of Cu-water squeezing nanofluid. The problem of very efficient,
intelligent techniques have been used to solve the fourth-order nonlinear ordinary differential
equations arising from squeezing unsteady nanofluid flow by Ahcene Nouar et al. [4]. Khan et al.
[5] studied the squeezing flow of Cu-water or Cu-kerosene nanofluid between two parallel plates
while accounting for velocity slip and viscous dissipation. Study approximate analytical unsteady
flow and heat transfer analysis of CNTs nanofluid over stretching sheet for the improvement of heat
assignment ratio by Ali Rehman et al. [6]. Additionally, Hassan et al. [7] the problem of physical
flow on a compressed fluid is solved in Parallel plates through a porous Darcy channel when the
fluid moves as a result of the compression of the upper plate towards the expanding lower plate. The
problem of compressing fluid flow has been the subject of certain basic research [8-11], where
findings show that the heat transfer rate reduces with an excess in the squeezing parameter, it
increases with an excess in the nanoparticle volume fraction. The presence of the magnetic field in
the imposed problems is important and has received much attention from researchers, such as Eid
[12] who looked at the MHD mixed convection of nanofluid flow across an exponentially extending
sheet when chemical reactions and heat generation-absorption effects filled up a porous medium.
The effects of a magnetic field and heat generation absorption on the passage of a non-Newtonian
nanofluid across a permeable stretched surface with suction- injection were investigated by Eid and
Mahny [13]. Khaled Al-Farhan et al. [14] Numerical study of natural convective heat transfer of
partially heated tall rectangular cavity filled with (Al,0;-water) nanofluid. Focuses Yahaya
Shagaiya Daniel et al. [15] on the effects of suction as well as thermal radiation, chemical reaction,
viscous dissipation, and Joule heating on a two-dimensional natural convective flow of unsteady
electrical magnetohydrodynamics (MHD) nanofluid over a linearly permeable stretching sheet. This
improvement involves combining the proposed method (g-HAM) with the Laplace transform
supported by convolution theory and the Padé approximation [16- 18]. The effect was studied
physical parameters on the velocity and temperature distributions for heat transfer of unsteady two-
dimensional squeezing flow of a Casson fluid between parallel circular plates is studied [19]. The
table below describes all the symbols used in this study.

Nomenclature

p fluid pressure B, electromagnetic induction

Cons specific heat of nanofluids 1) ?_ngl;(lje of inclination magnetic
ie

Pnf density of nanofluids Ha Hartman number

fnf dynamic viscosity of nanofluids E. Eckert number

Vpf kinematic viscosity of nanofluids P.  Prandtl number

Onf electrical conductivity of nanofluids w  Nanoparticle volume fraction

ks (T) variable thermal conductivity S squeeze number

of base fluid ¢ thermal conductivity

The principal interest and aim here is to investigate the effects of an inclined magnetic field,
variable thermal conductivity, squeeze number, angle of inclination, and viscous dissipation on the
velocity and temperature distributions for time-dependent heat transfer nanofluid flow between two
parallel plates. Additionally, the effects of different kinds of nanoparticles such as Au, and Fe;0,
are also studied. The governing equations resulting from transformations are resolved using the g-
homotopy analysis approach and BVP4C. This means the proposed problem was first analytically
solved and then numerically solved. Generally, the main of the present work is to improve the
solutions of the g-HAM by combining the proposed method with the Laplace transform supported
by convolution theory and the Padé approximation. Features of various flow parameters on Nusselt
number and skin friction are discussed. Finally, solution results for LTCP-g-HAM are represented
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in several tables and graphs and compared with BVPAC. The thermophysical properties of different
nanoparticles are shown in Table (1) as follows:

Table 1. Thermophysical properties of pure water and nanoparticles.
Material p(kg/m?) C,(j/kgk) k(W /mk) a(Sm™1)

Clearwater 997.1 4179 0.613 0.05
Au 19300 129 318 4.52x 107
Fe30, 5180 670 9.7 0.74x 10°

2. Mathematical Formulation:

An unsteady two-dimensional heat transfer of a squeezing flow nanofluid between two infinitely
extended parallel plates is under consideration with the effect of slip velocity. This formulation
modeling applied a variable strength transverse magnetic field perpendicular to both plates. The
definition of distance between two plates h(t) = +1(1 — @t)/?, where [ is the starting point (t =
0).

This system has several physical properties, including incompressible flow, no chemical reaction,
and viscous dissipation effects are maintained. Figure (1) explains the geometric model of the
imposed problems. The following are the governing equations that depict the flow:

ou  dv
ou 0 0w 19D Py (07w, 0*u\  Onf po o
(at tug Tt Uay) " Pnpox + Pnf (axz + ayZ) Pnf Bysin“gu, (2)
or  ,oT L, or_ 1 9 oY, _Fnp (4 (0w\* (0w ov)?
ot tu ox + vay - (ﬁcp)nf dy (k“f(T) ay) t (ﬁcp)nf (4 (ax) t (ax + E)y) ) (3)
The boundary conditions are:
When y - 0: 2= 0,v=0,and Z = 0 (4)
y . ay - ,U - Y, ay — Y
dh
When y - h(t): v, = - and T =Ty, (5)

where p is the fluid pressure, C,, ; is the effective specific heat of the nanofluid at constant pressure,
u and v are the x and y directions velocities, p, is the density of the nanofluid, /i, is the effective
dynamic viscosity of the nanofluid, v, is the effective kinematic viscosity of the nanofluid, ;. is
the electrical conductivity of the nanofluid, k,(T) is the variable thermal conductivity of the
nanofluid, B, is the electromagnetic induction, and ¢ is the angle of inclination of the applied
magnetic field. The formulas for pyf, finf, vy, Conp + Ons and ks (T) can be seen as follows [14,
15], respectively:

A A ~ . _ Br ~ _ ~ A
Pup = Pr(L=w) + pow, finy = =5, (Pep), . = A= w)(p ) + w(p. ),
kng _ (kst2kp)—2w(kp—ks) — ong _

3<$—1>w

(Tf _ L

ke (kst2kp)+2w(kp—ks)'  of 1+ <§+2>_<3_1>W’ g (T) = kg [1 + 'STH] (6)
of °f

Where, oy is the base fluid, o, denote the solid nanoparticles, ¢ is the constant temperature profile,

and w is the volume fraction of nanoparticles. The values of dimensionless parameters are
introduced as follows:
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=Y __¢x df
T= l(1-p0)1/2’ u= 2(1-¢t) dt’ v= 2(1- qot)l/Zf T= g Ty. (7)

By incorporating the terms of Equation (7) into Equations (2) and (3), the resulting formulation is
obtained as follows
f ) dfd f . ; a’f _
—S.A.(1—w)?> [ + 3L dTZ T —f dT3 - (1-w)? 5HaA4sm2((p)F =0 (8)

ag S.PrA2

Fdg _ _4dg PrEc d*f 2 2 (df 2]_
1 S Tdr)+—A3(1—w)2-5[(a12) v (L) 1=0, @

— d°g
with:

Al—(l—w)+wgs,A2—(1 w) +w
/i

3(?—1>w
o e “

The Squeeze, Prandtl, Eckert, and Hartmann numbers are introduced as:

BCp)s , _ kny _ (ks + 2ky) — 2w(ky — k)
BCr T ke (kg + 2kp) + 2wl — k)

A4= 1+

12 ie. (PC p 20¢B§ (h(t))? 1
S = ¢—, Pr = —‘uf E,D p)f, EC = pf ( )2 Ha = —f 0( ( )) o =-—-
2vf Prks (PG 2(1 - <Pt) Prity X
The modified boundary conditions are
£(0) =0, df(")_o,dg—(”:o, YW o, F1) =1, LD _ g, (12)

dt dt

2141 — at

(]
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L]
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]
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Fig .1. Geometry of problem
The physical quantities of the skin Tricuon coertricient ana Nusselt number are explained as:

y u aT
_ bnf (@)y:h(t) _ —lknys (@)y:h(t)
o hywe KTy
The expression derived from the terms of Equation (8) is given as follows:
* l2 £ * —
Cr = mRefo = A (1 =w)*f"(1), N =1—¢tN, =—4A; g1.

3. Basic Idea of g-Homotopy Analysis Method

The technigue known as g-homotopy analysis is based on topological homotopy and conventional
perturbation. This method yields an approximate solution that approaches the exact solution. The
non-linear differential equation can be expressed in the following way to show the fundamental ideas
of g-HAM:

DN +UP+NPH -g@ =0, ren  KG@,L=0;rer (12)

Where the boundaries of the field Q are displayed by T, g(z) is a known analytic function, f denotes
the unknown function, & denotes the boundary operator. D and U refer to the linear differential
operator such that its order is less than D, N is the general non-linear differential operator. The
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definition of the homotopy in the homotopy perturbation technique is f: R X [0,%] - R and
constructed as

;I(f’ @) = 1 —ng)[D(f(r,@)) — D(fo)] — qhH@[D(f (D) + U(F (1)) + N(f () — g(f()1]3)=

Here, H(t) indicates a non-zero auxiliary function, h # 0 is an auxiliary parameter, q € [0,%],11 >

1 indicates the so-called embedded parameter, and £, is an initial approximation of Equation (12)
that precisely fulfills the boundary requirements. D is an acceptable auxiliary linear operator. The

generic form of Equation (13) is as follows: when g = 0, g = % is substituted, and H(7) = 1.
H(f,0) =D (f(r,0) - D(f), (14)
H(f.2) =2DF @D +U(F@D ++N(F@ ) - g@), (15)

The deformation of topology is known as f(t, ) moves from f,(7) to f(r) as moves from 0 to
1

n' _ B B : :

As well, [D(f(z, @) = D(f,)] and [D(f(2)) + U(F (D)) + N(f ()]

are referred to as homotopic. The power series that we obtain after solving Equation (13) is as
follows:

ft, @) = Zm=0 fn(@q™ (16)
The correct solutions for the coefficients £, () in Equation (16) can be obtained using the homotopy

deformation equations [16]. Consequently, it is simple to get an approximate analytical solution to
Equation (12) as

F@) = limf(r,q) = S50 @ (2) a7
-y

where

7 _ 1ad"f(zq)

fn@ =S (18)

Equation (13) is derived m times concerning g with by putting g = 0 with the results by m!. The

introduction of the vector is fm(r) = {0, i), f@), ..., fn(D)}. The m*"*-order deformation
equation can be defined by:

fm (T) = 5m fm—l(T) + hH(T)D_l[Rm (f_m—l(r))]a (19)
where:
2 d™D(f(r.g) )+U(f(z.a) )+N(F @) -g(D))]
Ry (fin-1(D) = (mfl)! (ea) fwm_) ( ) ; (20)
q=
And
(0 m<1
Om = {n otherwise ’ (21)

It is important to have linear boundary conditions for the proposed problem, the nonlinear Equation
(19) is given f,(r) for m > 1. In comparison to a typical HAM, the operator n allows for
substantially faster convergence or even increases the probability of convergence. It should be noted
that Equation (13) can be used to get the standard HAM for n = 1.

4. Padé Approximation

Padé Approximate is the best approximation of the function by a rational function. The following
is the rational function defined by the power series:

f(r) =X cixt. (22)

A rational function f(7) has a Padé approximation, which may be expressed in notation using the
following form:

f@ =5 (23)
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According to their definition, P, is a polynomial of degree at most £ and Q,, is a polynomial of
degree at most » as

Pg(T) = 25:0 ajrj, (24)
Qe (D) = i bit!, (25)
Substituting Equations (22), (24), and (25) into Equation (23), yield

cot® + ot + T e = QT a4y T ay T et + 0(ztH), (26)

T boTO0+by Tl 4+by T2 +byT3 4o+ by T
Where b, = 1, Equation (26) is rearranged to take on the form
(cot® + 1t + 72 4 ) (bT° + byt + byt + b33 + -+ + b, T¥) = agt® + ay T + a7 +

ast® + -+ apré + (), (27)
The following equations can be obtained from Equation (27).

Co = Qg,
C0b1 + 1 = al'

Cobz + C1b1 + Cy = Ay,

coby + c1by_1 + Cobyy_5 + -+, = ay.
And
Co41 F Coby + Cp1by + -+ Cpyy1by = 0,

Co42 T Coy1by + Coby + -+ Coyynbyy = 0,

Coyn T C£’+%—1b1_+ C{f+%—2b2 + "'_+ Ceby = 0 ) ]
The Padé approximation of the rational function [17] can be obtained by solving the above system;
we obtain the unknown values that are substituted into Equation (26).

5. The Basic Idea of LTCP-g-HAM

This section illustrates the hybrid methodology that combines the convolution theory-supported
Laplace transform with the g-homotopy analysis method and Padé approximation. By rewriting

Equation (12) assuming that D = :—;1 as the operator's definition, which is as follows:

Considering the effects of the Laplace transforms on both sides of Equation (28), as follows:

%}? +U (f(r)) +N (f(r)) —g(®=0 (28)
L[+ uG@) +NF@) - 9@ ] =0 29

From the properties of the Laplace transform for Equation (29), the following outcomes are
obtained:

sPL[F@] - Zihsmen @ (0) + £[U () + N (F@) - 9] =0, (30)
Rearranging Equation (30) yield in:

LIf@] - Sinzg;lo snme-1f@) (@) +Sin L [U (f_(r)) +N (f(r)) — g(T)] =0, (31)
The Laplace transform properties can be applied, substituting Sin = % in Equation (31); we
get
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L[f@)] — 25 Ll B s @) + s £l x LU (F@) + N (F@) -
g&ﬂ—a (32)
Where Equation (32) can be written as follows:

L[f@)] - 25 L Bz ™0 @O + £ [Es o (0 (F@) + 8 (F@) - 9@ )] =

0, (33)
The operation * is defined by:

o LIf(1)* g(0)] = L[f (1) x g()],
o f@xg@=[;fx-IEdE,

By applying the convolution theory of Equation (33), the following results can be become:

£[f@)] - A gn snmo-17@)0) + L[ “EL (@) +N (@)

(n—1)!
—g (D]l:=¢d€ = 0. (34)

Hence, the nonlinear operator can be displayed as follows:

Blf(r,0)] = £[f@] - L) wnzt sre1 7@ 0) + £ 2 x w0 (F@) + NGF@)

(n-1)!
—g (©)lr=d§ ]. (35)
Now, taking the first term of Equation (19) Laplace transforms the results into are
L[fm () - Om fm—l(T)] = th(T) [Rm (fm—l(T))]i (36)
The above equation, after taking the inverse of the Laplace transform, has the following formula:
fn (@ = 8 fn1(©) + hqH@ LT[Ry (frn—1 (D)], @37)
where,

1 d™'B|f(T )]

- 1! dgm-1 4=0

Ru(fna @) = 1
Pade” approximation P of Equation (37)
P}f [fm (T)] =6 fm—l(T) + th(T)L_l [Rm O;_)m—l(r))]' (38)

6. The Applications of LTCP-g-HAM

The nonlinear ordinary differential Equations (9) and (10) are solved by LTCP-g-HAM and g-
HAM to obtain an approximate analytical solution. The following is an explanation of these
applications:

a*f . d*f  dfd*f zd3f ] , azf
F—S.Al.(l—W)ZS[ +3ﬁ ;F— F - (1 W)ZsHaA4sm2((p)F— 0 (39)
dg 2 SPTAZ __dg PrEc a*f 2 2 (4f 2] _

(1 + gg) + ( ) (f dr +A (1-w)25 [(drz) +46 (dr) =0, (40)
The assumptions of the initial conditions are:

— 2 3

fo(T) = F0+F1T+F2%+F3%, (41)
Go(1) = ¥y + W1, (42)

Where f(0) =T, f/(0) =T, ,f"(0)="1,f"0)=T;, g =¥, g'0) =Y,
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By using Equation (11) and Equations (41) and (42) the groups of initial condition are readily found,
as follows:

fo@ =TT +T33, (43)

go(r) = ¥,, (44)
From Adomain polynomials, a nonlinear operator is defined as follows:

d3 d?
(11— )2.5[ fm1+3 fm1 Zml god‘[f‘;d‘fzfmlz)_

m(fm 1(T)) =

Yo X deTSfm 1-2] — (1 — )25HaA4sm2(g0) fm —r=1, m=12,.. (45)

m— S.PrA
(gm 1(T))—(1+5.9) g 1+$(Zzodgmlz)2 rz(2m1 Zofsd Im-1-z —

e R [(zznoljrzfmlz) + 467 (3050 2 fonea-) ] m = (46)

dr A3(1-w)25

Now, Equations (8) and (9) can be solved to get:

fm(T) - mfm 1(T) +hH(T)f f f f d fm 1 — 9. A1 (1 W)Zs[ d(;:;—l +3ddf‘[mz—1
z zs odeS ‘L'me 1-2) — z z fsd 3fm 1-z] — @ = w)?>
Hadgsin(p) m)dr, m=1.2,.. )

9@ = bmns@) + 1@ [ [0+ DI oY g+

S.PTAZ zm_lzz _d _ dg_m—l N PrEc Zm_l dz ~ 2+
As ( =0 s=0fs dTgm_l_Z T dz ) A3(1—W)2'5[ 1m0 dTme_l—Z

467 (205" < freae Z) Ddr, m=1.2, .. (48)

The resulting solution has several iterations of analytical solutions that can be introduced by the
following:

fl(‘c) = (—0.04166666665hHaA,sin?(p)(1 — w)2'5F3 — 0.04166666665hSA, (1 —
W)2'5F1F3 -

0.1250000000hSA; (1 — w)?°T3)t* — 0.008333333336hSA, (1 — w)>°T275.

f2(1) = (—0.04166666665nhHaA,sin*(p)(1 — w)?°T;
— 0.041666666651hSA; (1 — w)?5TyT; —

0.1250000000nhSA; (1 — w)25T; — 0.1250000000h2SA, (1 — w)?5T;
— 0.04166666665h2Had,
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sin?(p)(1 — w)?5T3 — 0.04166666666h%SA; (1 — w)?°T I3)t*(—0.008333333336nhS A4,
(1 —w)?°TZ — 0.0083333333336h2S5A4,(1 — w)?°T'#)75 + (0.02083333334h2S2 A%l +

0.01388888888h2Ha?A3sin*(p)Tyw? — -+

§1(7) = (2hP.E.82T? + 0.5hP.E.82T2)7? + 1.333333333hP.E, 62, 573 +

As(1 —w)2s [

0.3333333333hP.E.5%T%1*].

1
g2(1) = R (2nhP.E.6°T? + 0.5nhP.E.I'? + 0.5h?P.E W ['? + 2h2P.E eW,I'? +
L1 —w)Z

1
0.5h?P.E.I'? + 2h?P.E.86%T?)1? + P (1.333333333nhP.E.6%T I3 +

A;(1—
0.33333333nhP.E 6%T2

1.333333333h2P.E.6°T T3 + 1.333333333h2P.E.6%eW, I [5)T3 + A;(1 — w)25

0.08333333332h2SP2E.A,T? 0.08333333330h%P.E A Hasin?(¢)T¥

AZ(1 —w)2S As

0.08333333330h2SP,E A, 2 . 0.333333332h2SP2E,§24,T3 .
As AZ(1 — w)?5

The remaining iterative components, f,,(z) and g,,(t) , m = 3,4,5,6,... can be acquired by
resemblance. The following is the formulation for the series solution by g-HAM:

fo,nh) = fr(r,m; h) = X" u;(T,n; h) (i)i, n=12,..
) (49)

L
gr,mh) = gn(t,nh) = X2 wi(t,n; h) (%) ,n=12,..

By using LTCP-g-HAM to find the analytical approximate solution by taking the Laplace transform
to both sides of Equations (8) and (9), become
L[S = 5., (1 —wySe[e L4 38 SLL_ fOI (1 w)2SHad,sin(p)

ldt* dt? dt dt? dt3
L] =0, (50)

[4%5 420 (49)\? | SPra; zag _dgy PrEc __ (a?f\E . cp (af\h
L_drz]-l_L{gg dt? +£(d‘r) + Az (fd'r Td'r +A3(1—w)2-5 [(drz) +46 (dr) =0, (51)

By implementing the differentiation property of the Laplace transform with the help of the initial
condition from Equations (50) and (51), we get
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Is2+ T 1 _ 3f d*f dfd*f _d3f
L[f ]—<—>—S—4L[S.A1.(1—W)25< 73 3d_+EF_fF)

— (1 —w)*°HaA,

.
sin?(g) 375] =0, (52)
W 1 d’§  dg\* S.PrA, _dj 49 PrEc d2f\°
L[g]__-i_s_ZL{ g dt? +€<E) As G dr d‘L’ +A3(1—W)2'5 +
2 ((4F\
46 (g) 13=0, (53)

From the Laplace transform's properties substituting S% = iﬁ[ﬁ] and slz = %L[r] in Equations (52)

and (53) respectively, we get the following results:

Is? +T 1 a*f _d*f dfd*f _d°f
L[f ]—<¥>—§L[T3] X L[S. Ay (1 —w)?5 <rdr3 +3 S+ —de3>

_ (1 _ W)Z.S
HaA,sin?(¢) g] =0, (54)
I O | _d?%g dg\’> S.PrA, ~dg  dg PrEc
Hgl= S +1!L[T]XL{89 dr? +g(d ) As dr dT)+A3(1—W)25
a2f\? d
(5L) +467 (df) =0 (55)

The convolution theory concept uses the last terms of Equation (54) and Equation (55), the
outcome can be obtained following:

Iys? +T 1 d*f d*f  dfd*f _d’f
£[f] - <1S 3) L7 * (541 (1 - )25< —St3 St -5

1-w)* 5HaA4Sln2(<P) )] =0, (56)
Ly, _d?g dg\> S.Prd, _dg 49 PrEc d2f\’

tgl= s LT (eg dt? Te (E) As dr 'dr * A;(1 —w)2> [ dr? +

+452 (<L ) D=0, (57)

From taking the inverse Laplace transform for both sides of Equations (56) and (57) and from g-
HAM the following results are:

_ _ _ 52 (T
Fn®) = s () + L (L[fm_J (130 (P51 F)) -3 ) - aa-we

s4

L B D NI £ SNBSS WY S NS
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(1~ w)SHadysin® () TH)| _)dé, (58)

() = B (@ + AL (LGl = (1= 26,) (%)) + (-

_ _ d® _
5)[22101 §=0€gsﬁgm—1—z

N Z )2 +S.PrA2 <Zm‘1zz _d _ dg‘m_l)_l_ PrEc
g( 720 d gm 1- Z A3 7=0 S=0f:9 dTgm—l—Z T dt A3(1—W)2'5

(Z2 - ) 4407 (325 2 s ) ]

)ds, (59)
=¢

fil) =hLt+— [(0 ShI; + 0.553n)72% — 0.1666666667hI5T3
" (—0.04166666665hHad,sin?(¢)

(1= w)?°T; — 0.04166666665hSA; (1 —w)*° I3 — 0.125hS A, (1 — w)?° )t —

0.008333333350hSA4, (1 — w)?°T27>.

_ 1
f2(2) = I7 + —[(0.5000000001h>T5 + nhl} + 0.5000000000n° [3)7>
+ (—0.166666667 2T}

—0.3333333334nhl3)73 + (—0.008333333331h%Had,sin?(p) (1 — w)25T; —
0.008333333330nhHad,sin?(p)(1 — w)>5T; — 0.008333333331h25A4, (1 — w)25iTs —
0.008333333330nhSA4; (1 — w)25[; I3 — 0.2500000000h2SA; (1 — w)25T; —
0.2500000000nASA; (1 — w)25T3)t* + (0.0008333333350h2Had,sin?(¢)(1 — w)?5T; —

0.002500000002h%5SA; (1 — w)?°T% —

Now, take the Pade’s approximation at the fourth iteration we get:
Py (ﬁ(‘c)) = 1.44513194471 — 0.00127380130372 — 0.388111344473 — 0.0049716236537*

—0.047825960977° — 0.0014104848997° — 0.0015387284317”.

_ 1
gi(1) =¥, + PE [(2hP.E.62%I}? + 0.5hP.E.6°I*)t? + 1.333333334hP.E 6% 313

nA;(1 —
+

0.3333333330hP.E.52T274].

g2(1) = [(2h2P-E 6%WyA3T2 + 2h%P.E 6% AT + 4nhP.E 62 A5I2 +

AZ (1 )2.5n2
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0.5h%P.E.eWoA3l2 + 1.5h?P.E A3T? + nhP.E A3I*)T% + (1.333333334h%P.E 6%eW, A5 I
_|_

2.666666668h2P,E,52A;T,T; + 2.666666668nhP,.E,52A,T, Ty — 0.3333333334h2P.E,82A5 )13 +

(—0.08333333330h2P,.E A3 A Hasin?(¢) (1 — w)25[2
— 0.08333333330h2P,E,SA, AsHasin? ()

(1 — w)25TyI? — 0.2499999999h2P,E.SA, A5 (1 — w)?5 T2 + 0.3333333330h2P2E,52SA, I}

Now, take Pade’s approximation at the fourth iteration we get:
P (ﬁ(r)) = 1.276801013 + 0.132810675872 — 0.119823183973 — 0.034997957541* —

0.18103088757° — 0.022134329257° — 0.051625330747".

6. Results and Discussions

The impact of an inclined magnetic field and variable thermal conductivity on heat transfer of
squeezing unsteady ferrofluid flow with nanoparticle materials Au, and Fe;0, has been examined,
as well as different values for S, Ha, 8, w, €, P, E, and ¢ for velocity and temperature distributions.
Tables (2) and (3) the convergence of values I'; and I'; for nanoparticle materials Au, and Fe30, is
illustrated. These tables show that the values of I’y are constant for q-HAM at the fourth
approximation and for LTCP-g-HAM at the third approximation, while the values of I'; are constant
for g-HAM at the fifth approximation but LTCP-g-HAM at the third approximation, meaning that
the constants for LTCP-gq-HAM are better and converge to the values of BVPAC. From Tables (4)
and (5), it can be observed that the convergence of ¥,, where the new technique appears converges
to the numerical approximation of g-HAM. The effect of the Nusselt humber for nanoparticle
materials is displayed in Tables (6)-(8). From these tables, it can be seen that the values of the Nusselt
number for LTCP-g-HAM are more accurate than for g-HAM when ¢ = 5°and ¢ = 12° and it can
be observed that the values of the BVPAC for ¢ = 5° for all materials are equal; which means the
effect of the materials is similar, while the values of the BVP4C for ¢ = 12° are different meaning,
these materials have the same impact for 0 < ¢ < 12° while inverse occurs when ¢ > 12° Tables
(9)-(12). These tables demonstrated the increasing of physical parameters led to an increment of the
skin friction coefficient as well as the optimization of results through LTCP-g-HAM.

Table 2. The convergence of I, T3 for material Au whenn =2,h = -2, =0.5,Ha = 10,6 =
0.1,w=0,6=0,P.=0.1,E.=0.01,¢ =5".
Approximates g-HAM LTCP-g-HAM BVP4C
I I3 I I3 I I3
1 order 1.759799  -1.272649  1.431209 -1.690339 1.493209 -3.092849
2 orders 1.742052  -1.232354  1.432153 -2.204750 1.485231 -3.092581
3 orders 1.741697 -1.231622  1.457024  -2.484290 1.485231 -3.092581
4 orders 1.741707 -1.231640 1.457024  -2.484290 1.485231 -3.092581
5 orders 1.741707 -1.231641 1.457024  -2.484290 1.485245 -3.092593
6 orders 1.741707 -1.231641 1.457024 -2.484290 1.485245 -3.092593

Table 3. The convergence of I, T for material Fe;O,whenn =2,h=-2,5 =0.5,Ha = 10,
§=0.1,w=0,e=0P.=01,E. =0.01,¢ =5

Approximates g-HAM LTCP-g-HAM BVP4C
Fl F3 Fl 1—‘3 l—‘1 l—‘3
1 order 1.759799 -1.272649 1.431209 -1.690339 1.493209  -3.092849

2 orders 1.742052 -1.232354 1.432153 -2.204750 1485231  -3.092581
3 orders 1.741697 -1.231622 1.457024 -2.484290 1.485231  -3.092581
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4 orders 1.741707 -1.231640 1.457024 -2.484290 1.485231  -3.092581
5 orders 1.741707 -1.231641 1.457024 -2.484290 1.485245  -3.092593
6 orders 1.741707 -1.231641 1.457024 -2.484290 1.485245  -3.092593

Table 4. The convergence of W, for material Au whenn =2,h = —-2,5 = 0.5,
Ha =10, =01,w=0,6=0,P.=0.1,E.=0.01,9 =5°

Approximates gq-HAM LTCP-g-HAM BVP4C
1 order 1.000847 1.001446 1.000786
2 orders 1.001086 1.000058 1.000744
3 orders 1.001167 1.000732 1.000744
4 orders 1.001177 1.000686 1.000744
5 orders 1.001178 1.000686 1.000744
6 orders 1.001178 1.000686 1.000744

Table 5. The convergence of W, for material Fe;O,whenn = 2,h = —2,S = 0.5,
Ha=10,6 =01,w=0,6=0,P.,=01,E. =0.01,p =5°

Approximates q-HAM LTCP-g-HAM BVP4C
1 order 1.000847 1.001446 1.000786
2 order 1.001086 1.000058 1.000744
3 order 1.001167 1.000732 1.000744
4 order 1.001177 1.000686 1.000744
5 order 1.001178 1.000686 1.000744
6 order 1.001178 1.000686 1.000744

Table 6. Comparison of - g’ (1) between g-HAM and LTCP-g-HAM forn = 1.1,h = —0.9,S =
0.5,Ha =50, =01,w=0,e=0,¢0 =5".

Au

F3304_

g-HAM

LTCP-gHAM

g-HAM

LTCP-gHAM

BVP4C

1.52336273108
3.01023336320
5.87923137399
13.7276557447
1.50511668138
3.61228003537
6.02046672467
15.0511668138

1.51350765323
3.01384328341
5.9384685834

14.3119436884
1.50692164676
3.61661197376
6.02768656316
15.0692164832

1.52336273108
3.01023336320
5.87923137399
13.7276557447
1.50511668138
3.61228003537
6.02046672468
15.0511668138

1.51350766836
3.01384331529
5.9384685710

14.3119436785
1.50692165158
3.61661197956
6.02768656124
15.0692165015

1.51717817687
3.01461698607
5.95200370035
14.3334284523
1.50730849306
3.61754038329
6.02923397215
15.0730849303

Table 7. Comparison of —g'(1) between g-HAM and LTCP-g-HAM with Au forn = 1.1,
h=-1.26,S=1,Ha=100,§ =0.01,w =0.01,¢ = 0.001,p = 12°

P, E, g-HAM LTCP-g-HAM BVP4C

0.5 1 1.52259102292 1.52204656620 1.52220372687
1 1 3.00816104964 3.01366523122 3.02068120677
2 1 5.87295921439 5.92585684374 5.94944357501
5 1 13.6842385762 14.2039739812 14.2388987838
1 0.5 1.50436754053 1.50682930355 1.51033642106
1 1.2 3.60951787027 3.61640146283 3.62482146152
1 2 6.01402851945 6.02735758201 6.04139584288
1 5 15.0179198304 15.0686163924 15.1037397441

Table 8. Comparison of —g'(1) between g-HAM and LTCP-g-HAM with Fe;0, for

n=11,h=-126S=1,Ha=100,6 = 0.01,w =0.01,¢ = 0.001,¢ = 12°

P, E, g-HAM LTCP-g-HAM BVP4C
05 1 1.53631722722 152472320542 1.52941430817
1 1 3.03386424379 3.03399863250 3.03449706503
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2 1 5.91780223471 5.94230315080 5.97477253772
5 1 13.7520776535 14.1458616836 14.2870599288
1 0.5 1.51723447977 1.51723788959 1.51724419543
1 1.2 3.64034698616 3.64087146653 3.64140063992
1 2 6.06531246732 6.0686064159 6.06902879604
1 5 15.1452175580 15.1482760616 15.1728313736

Table 9. The comparison of - f''(1) forn = 3,h = —3,Ha = 10, P. = 0.1,
E.=0.01,6 =0.1,w = 0.02,& = 0.01,¢ = 5°

\) g-HAM LTCP-g-HAM BVP4AC

0 3.191698897084 4.721924867157 4.722056565409
0.5 4.870357728361 5.458861461486 5.171026835811
1.5 6.600915166112 6.221575690289 5.890627319671
2 7.218543891604 6.444418935022 6.180019541008
4 9.062755459888 6.938477789613 7.046600558228
6 10.33660050647 7.172804431174 7.646118574667

Table 10. The comparison of - f"'(1) forn = 3,h = —3,S = 1,P. = 0.1,
E.=0.01,6 = 0.1,w=0.02,¢ =0.01,¢ = 5°

Ha g-HAM LTCP-g-HAM BVP4C

0 5.534567108213 5.769317166121 5.413985749409
100 5.774608879712 5.868140840938 5.596733959683
200 6.000795490982 5.957919509285 5.774191735604
300 6.214964554771 6.039840619352 5.946748896744
350 6.318015097697 6.078170049160 6.031299626409
550 6.706817272438 6.216368597740 6.358887984981
750 7.063688377435 6.334356433487 6.671101452309

Table 11. The comparison of - /(1) forn = 3,h = —=3,Ha = 50,5S = 1,P. = 0.1,
E.= 0.01,6 =0.1,¢ = 0.01,¢ = 5°

w g-HAM LTCP-g-HAM BVP4C
0.02 5.656451759679 5.819942961723 5.506047396726
0.06 6.182353139054 6.062674455654 5.730750033108
0.08 6.374019472624 6.143500460889 5.816291998248
0.10 6.530378615155 6.190565259759 5.887118518898
0.15 6.800421388610 6.293706421903 6.010969183689

The impact of squeezing numbers on velocity and temperature profiles can be seen in Figures (2)
and (3), there are two trends for the velocity profile in the interval T € [0,0.5]: the flow velocity
decreases as the squeezing number absolute value increases. In the other direction, the behavior of
the second interval T € [0.5,1] is entirely different. It was observed that the velocity rises as the
sgqueeze number grows, starting at a critical value 7, = 0.5. Conversely, the temperature profiles. It
should be noted that when the squeeze number increases, there is a commensurate drop in
temperature and boundary-layer thickness. This is due to S dependency on ¢ for the nanoparticles
of Au and Fe;0,. It is evident from Figures (4) and (5) that there are two trends for f' (7). When
the Hartmann number falls within the interval, 7 € [0,0.5], a decrease in flow velocity is observed.
Conversely, inthe interval, T € [0.5,1], the flow exhibits distinct behaviors, where an increase in the
Hartmann number leads to a rise in velocity from a critical point 7, = 0.5. Additionally, the values
of g(7) illustrate the influence of the Hartmann number and other studied parameters on temperature
profiles. Notably, an increase in this parameter results in a temperature drop, consequently reducing
the boundary layer thickness. As the inclination angle of the applied magnetic field increases, it leads
to flattening velocity and temperature in the center of the channel, as shown in Figures (6) and (7).
The temperature and flow velocity take low values compared to the results obtained for the vertical
magnetic field. Figures (8) and (9) illustrate how the solid volume concentration of Au, and Fe;0,
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nanoparticles affect the temperature distribution and flow velocity, respectively. It is discovered that
the two figures of nanoparticle effect are identical, with high values of velocity occurring as solid
volume concentration and temperature increase. Finally, the impact of ¢, 8, E., P. for various

nanoparticle materials can be visualized.

ar)

T~
.7 1.6 I~

|[—- s=o0 S=2 — -s—=4] [ s=0—5=2—-5=4]|

Fig. 2. f'(z) and g(z) for Fe;0, ,p =45’ ,E. =0.5,e =0.5,P. = 7,Ha = 1,w = 0.05,5 = 0.1
f'(@

g@)

- e T~

-1 -0.5 0 0.5 1
T
[-- 5=0—5=2—-5=4]

[--s=0—5=2—-5=—4|

Fig. 3. f'(r) and g(z) for Au ,p = 45",E, = 0.5, = 0.5,P. = 7,Ha = 1,w = 0.05,5 = 0.1

0 0.5

0.5
T

[-- Ha=0 — Ha=5—-Ha=10]|

|-+ Ha=0—Ha=5—-Ha=10|

Fig. 4. f'(r) and g(z) for Fe3;0, ,¢ = 45,E, = 05,6 = 0.5,P, =7,S = 2,w = 0.05,5 = 0.1
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(@)

-

-1 -0.5 0 0.5 1

[~ Ha=0— Ha=5 —-Ha=10] [~ Ha—0-——Ha—5—-Ha—10|

Fig. 5. f'(¢) and g(7) for Au ,p = 45, E, = 0.5, = 0.5,P, = 7,5 = 2,w = 0.05,5 = 0.1
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Fig. 6. f'(r) and g(z) for Fe3;0, ,S = 2,E, = 0.5, = 0.5,P, = 7,Ha = 100,w = 0.05,5 = 0.1
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Fig. 7. f'(z) and g(7) for Au ,S = 2,E. = 0.5,¢ = 0.5,P. = 7, Ha = 100,w = 0.05,5 = 0.1
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Fig. 8. f'(r) and g(z) for Fe30, ,S=3,E, = 0.5, = 0.4,P. = 7,Ha = 200,¢ = 45°,6 = 0.1
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Fig. 9. f'(z) and g(z) for Au ,S = 3,E, = 0.5, = 0.4,P, = 7,Ha = 200, = 45°,5 = 0.1

The measure errors for g-HAM and LTCP-g-HAM can be indicated in Table (12), this Table
demonstrates that the error measures of and for LTCP-g-HAM are accurate from g-HAM.

Table 12. The comparison of the errors of £(z) and §(r) between g-HAM,
LTCP-g-HAM, whenn = 2,h = —1.9,Ha = 10,5 = 0,9 = 1,
w=0.02,P.=0.1,E. =0.01,§ = 0.1, = 0.01, o, = 19300

f(@© g
Error g-HAM LTCP-gHAM g-HAM LTCP-gHAM
Ly 2.01 x 10714 9.57 x 10717 5.95 x 1012 8.84 x 10714
L, 1.42 x 1077 9.79 x 10~° 2.44 x 107° 2.97 x 1077
Ly 2.11 x 1077 1.45 x 10°8 3.17 x 10~° 3.54 x 1077

7. Conclusions

In this work, the effects of inclined magnetic fields and variable thermal conductivity on
heat transfer squeezing flow of unstable nanofluids have been investigated. The relevant
nonlinear partial differential equations were transformed into a set of ordinary differential
equations that have been solved analytically and numerically. The general conclusion can
be submitted as follows:
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e The nanoparticles Au and Fe;0,, when dispersed in the base fluid, H, 0, exhibit a similar

influence on the obtained solutions. The presence of the base fluid significantly enhances
the heat transfer properties, contributing to improved thermal performance.

e The incorporation of an inclined magnetic field, coupled with variable thermal

conductivity, leads to a reduction in heat transfer efficiency.

e The convolution theory has a big impact on optimizing the results of solutions that solve

the nanofluid problems.

e For certain values of the governing physical parameters, the solutions obtained using the

proposed technique, are more accurate than those obtained using the q-homotopy analysis
method.

e The comparison results of velocity and temperature profiles with the results of previous

studies found that the results obtained from the proposed technique have a high level of
agreement with the numerical solution.
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