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Abstract 

 Plug-in electric vehicles (PEVs) are a practical and environmentally friendly substitute for conventional 

automobiles.  PEVs have great potential to reduce greenhouse gas emissions by utilizing electricity as 

their primary energy source, thereby mitigating the negative environmental effects of traditional 

transportation systems.  However, due to the increased and frequently irregular demand for charging, the 

growing integration of PEVs into the electrical grid raises significant concerns regarding operational 

dependability and grid stability. In addition to increasing higher charging prices and perhaps causing 

infrastructure stress, random charging could place further strain on the distribution network. To cope with 

this issue, this paper proposes a controlled charging approach with centralized control architecture to 

regulate and schedule the charging process of PEVs powered by machine learning techniques such as 

neural networks and Naive Bayes, to minimize charging costs. Simulation results demonstrate the efficacy 

of this strategy, showing cost savings of around 50% and 36% in comparison to the random charging 

process.  
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I. INTRODUCTION 

This Vehicles that run on fossil fuels continue to dominate global sales, and the automotive industry is still expanding quickly. The 

globe is moving toward electric mobility, nevertheless, because of growing environmental issues like air pollution, the depletion of 

fossil fuel supplies, and the growing effects of greenhouse gas emissions. Three broad categories of electric vehicles are Plug-in 

Hybrid Electric Vehicles (PHEVs), Hybrid Electric Vehicles (HEVs), and Battery Electric Vehicles (BEVs) [1].  Furthermore, around 

40 million electric vehicles will be on the road globally by the end of 2023, according to the International Energy Agency's (IEA) 

Global EV Outlook 2024. This sum represents a continuous global trend toward cleaner, more sustainable mobility and includes both 

BEVs and PHEVs, as shown in Figure 1. PEVs are the most popular kind of electric vehicle at the moment since they can be 

recharged using an external power source.  BEVs are a subclass of PEVs that run solely on electricity and don't have fuel tanks, 

exhaust systems, or internal combustion engines.  They use high-capacity batteries, and in order to prolong battery life, they frequently 

use regenerative braking. A hybrid HEV, on the other hand, combines an electric motor and an internal combustion engine (ICE).  

Although the vehicle can be powered by both systems, HEVs cannot be externally charged; instead, they use regenerative brake and 

gasoline to keep their batteries charged, usually with the electric motor running at low speeds and the ICE running at greater speeds 

[3]. PHEVs share the dual-drive system of HEVs but include larger batteries that can be recharged both externally and through 

regenerative braking. PHEVs also allow the ICE to charge the battery or takeover propulsion when battery levels are low, making 

them technically advanced full hybrids with enhanced charging capabilities [4]. Therefore, the main objective of this study is to 

develop a centralized control strategy for the regulated charging of PEVs using MLs techniques. The proposed approach aims to 

reduce electricity charging costs by intelligently scheduling charging times.  
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The remaining structure of this paper is organized as follows: Section 2 presents a review of related works. Section 3 describes the 

methodology, including the proposed system architecture, driving patterns, and PEV charging strategies. Section 4 provides the results 

and discussion of the experimental findings. Finally, Section 5 concludes the study and outlines recommendations for future work. 

 

 
Figure 1 International EV stock, including BEVs and PHEVs, from 2013 to 2023 [2] 

 

II. RELATED WORK  

The worldwide EV fleet is expected to reach over 130 million by 2030 as governments throughout the world boost their investments 

in EVs and charging infrastructure to fight climate change [5].  However, from the standpoint of power providers, this quick growth, 

especially in PEV, presents difficulties for demand-side management (DSM). When a large number of PEV users begin charging their 

vehicles at the same time as they get home, which happens during periods of high power demand, there is often cause for concern. 

Such uncoordinated or random charging behavior can significantly strain the power grid, leading to increased electricity costs for 

consumers. To mitigate these issues, intelligent and well-coordinated charging strategies between grid operators and EVs are crucial to 

ensure grid stability and economic efficiency [6]. Recently, various works  have explored various approaches to optimize the 

scheduling of PEV charging operations. For example, heuristic algorithms and linear programming techniques were presented in [7] to 

solve dynamic and static scheduling difficulties, respectively.  Their goal was to include user demand and aggregator earnings into the 

strategy in order to increase cost reductions for vehicle owners.  Using only EV batteries, the study also used Vehicle-to-Grid (V2G) 

and Vehicle-to-Home (V2H) technologies to lower residential electricity bills.  Similarly, studies [8, 9] suggested techniques including 

Dynamic Programming (DP), Nonlinear Programming (NLP), and Mixed-Integer Linear Programming (MILP) for scheduling PEV 

aggregator operations in the face of variable upstream power prices.  Even though these techniques produce encouraging results, their 

computational complexity frequently limits them. Increasing the number of variables and constraints can make these methods 

extremely complex and time-consuming, making it challenging to find practical options in a fair amount of time.  Advanced models 

for improving EV charging procedures in unpredictable situations have been proposed in a number of research.  For instance, the 

authors [10] created a two-stage stochastic LP model that takes market pricing variations and fleet mobility concerns into account 

while optimizing EV aggregator profits in both day-ahead and balancing markets. In similar,  [11] used stochastic programming 

approaches to control EV fleet charging, taking into account market bidding, auxiliary service offerings, and the unpredictability of 

regulation signals. Another study, [12], used a multi-objective particle swarm optimization (MOPSO) framework to simulate electric 

vehicle charging stations (EVCS) using sequential Monte Carlo simulations to investigate optimal charging and discharging behaviors.  

Their method used three different battery operation methodologies to regulate the rate and timing of EV energy exchange. In contrast,  

[13] suggested a dynamic pricing-based charging approach that takes into consideration seasonal variations in EV charging demand 

and makes use of genetic algorithms (GA) to reduce charging expenses and avoid transformer overloads.  Additionally, it was shown 

by [14] that V2G technology allows EV users to reduce their charging costs by selling electricity back to the grid when demand is at 

its highest.  A decentralized smart charging approach was also presented in this work, which allowed for more scheduling flexibility 

by treating the dynamic time step as a variable rather than a fixed one.  In a similar direction, studies [15, 16] employed a Markov 

Decision Process (MDP) with uncertain transition probabilities and a constrained MDP to address the challenge of minimizing 

individual PEV charging costs. Reinforcement Learning (RL) methods were used to create heuristic control strategies for adaptive 

energy consumption plans. The RL framework allowed for ongoing policy improvement based on observed results by evaluating the 

efficacy of different charging techniques.  
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On the other hand, [17] optimized EV charging and discharging schedules based on anticipated electricity prices using RL algorithms. 

Despite its promise, RL techniques frequently need large datasets to develop efficient policies and require adjusting a large number of 

hyperparameters, which can be computationally and time-intensive.  A review of existing literature highlights the critical importance 

of selecting appropriate scheduling objectives. Among the various methods explored, ML stands out for its robust mathematical 

foundations and adaptability. Nonetheless, integrating PEVs into the power distribution network remains challenging, particularly 

when aiming to balance grid performance with user flexibility, allowing customers to charge their vehicles during preferred time 

windows while minimizing associated costs. To the best of the authors' knowledge, this balance between consumer autonomy and 

network optimization has not been comprehensively addressed in prior research. Consequently, this study focuses on the core issue of 

uncoordinated PEV charging, which can lead to increased electricity costs and inefficiencies. 

III. METHODOLOGY 

Now This section outlines the system architecture and underlying assumptions, alongside an optimized charging schedule model that 

leverages ML techniques. To assess different PEV charging behaviors, the study incorporates typical daily electricity pricing and 

examines various charging strategies, including both random and controlled charging scenarios. 

 

A. System Architecture and Underlying Assumptions 

There are two main control systems that can be used to get the best PEV charging schedule: centralized and decentralized.  Individual 

PEVs share decision-making power in a decentralized control structure, enabling each owner to choose their charging schedule 

according to their own tastes and energy needs.  In a centralized control structure, a central aggregator manages the entire billing 

process with the goal of maximizing system performance and striking a balance between grid operators' and consumers' incentives.  

By taking into account variables like grid load, electricity prices, and periods of peak demand, this method also makes it possible to 

optimize and coordinate charging plans more effectively. Utilizing real-time data and sophisticated optimization algorithms, the 

system can take advantage of changes in electricity prices to determine the most economical charging times [1, 18]. Both centralized 

and decentralized control structures for EV charging are conceptually represented graphically in Figure 2. 

 

 
Figure 2 Architecture for PEV charging control (a) decentralized (b) centralized [1] 

 

This study uses centralized control architecture because of its benefits and the increasing demand for charging that is optimally 

handled.  As an intermediary that indirectly engages with the energy market on behalf of the vehicles, an aggregator plays a crucial 

role in this structure by actively controlling the charging strategies of individual PEVs.  This method is predicated on a number of 

assumptions.  First, it is believed that the aggregator acts as a price taker, meaning it lacks the market power to change the price of 

electricity.  Second, it is believed that the availability of automated communication technology will allow for real-time charging 

process coordination and control.   
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Furthermore, it is assumed that the energy needs and driving habits for every vehicle journey are known beforehand. A crucial element 

in the model is the electricity price, which is derived from the Nord Pool electricity market and is based on an average workday  [19]. 

Figure 3 depicts how information moves through the centralized control system. 

 

 

Figure 3 Diagram of the centralized control architecture's information flow [20] 

 

B. Driving Pattern Behavior   

Developing an efficient charging strategy requires an understanding of how EV owners drive on a regular basis. This entails taking 

into consideration important variables such as the battery's State of Charge (SOC), normal driving habits, and the energy needed for 

each journey. Three daily tours morning, afternoon, and night were considered for this study. The Federal Test Procedure (FTP), New 

European Driving Cycle (NEDC), and Urban Dynamometer Driving Cycle (UDDC), which correspond to various trip types, were the 

standard driving cycles used to estimate the SOC throughout each driving phase. The Driving Cycle Simulink Block (2025) served as 

the source for these driving patterns. Based on the technical specifications of the vehicle, Table I offers comprehensive details on 

every possible trip situation.  

TABLE I.  DRIVING PATTERNS ASSOCIATED WITH DAILY TRAVEL PERIODS [20] 

Tours 

Driving 

configuration 

used 

Energy 

demanded 

SOC necessity of 

each trip 

Morning FTP 5.738 kwh 23.908 % 

Afternoon NEDC 2.826 kwh 11.775 % 

Night UDDC 3.975 kwh 16.574 % 

 

 

C. Dataset   

In this study, a supervised ML approach was used to optimize the charging schedules of PEVs. The dataset consists of numerical time-

series with 24 hourly records covering a full day. The primary source of the electricity price data is collected from [19], which reflects 

real-time variations in electricity cost throughout the day. Each record represents one hour and includes variables such as electricity 

price, vehicle availability, and battery state. Time series data is essential in this context because both electricity prices and charging 

decisions are inherently time-dependent charging during peak hours incur higher costs, while off-peak periods offer economic 

advantages. Modeling this temporal behavior allows ML algorithms to learn patterns in electricity pricing, enabling it to make 

accurate charging decisions at specific times. The input features include hour of the day, electricity price, initial SOC, vehicle 

arrival/departure times, and maximum charging power, while the output is a binary or probabilistic signal indicating whether charging 

should occur during that hour. 

 

D. PEV Charging Strategies  

This section explores two distinct charging strategies: random, and controlled charging. In the random charging scenario, EVs start 

charging as soon as they’re plugged in, with no regard for changes in electricity prices throughout the day. Figure 4 illustrates the 

flowchart detailing the steps involved in random EV charging scenario. At each iteration, the simulation first evaluates whether the 

vehicle is currently in a driving state.  
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If the vehicle is in motion, its SOC is reduced to reflect energy consumption due to driving activity. Following this, the model checks 

whether the battery SOC has reached 100%. If the SOC is below full capacity, the vehicle enters a charging phase during which the 

SOC incrementally increases based on the selected charging strategy and rate. Once charging is completed, or if the SOC was already 

at 100%, the simulation proceeds to verify whether the Max_iter has been met. If so, the cycle is terminated for the day. Conversely, if 

the vehicle is not being driven during a given time step, it remains idle and the SOC remains unchanged. In this idle state, the model 

includes a cost computation step that estimates the charging cost incurred during the most recent charging event. This cost is typically 

determined based on dynamic electricity pricing. After the cost calculation, the Max_iter condition is again evaluated to decide 

whether to continue or terminate the simulation cycle. 

 

 
Figure 4 Flow chart of a random PEV charging scenario 

E. PEV Charging based on ML Techniques 

Supervised ML classifiers, including Neural Networks (NNs) and Naive Bayes (NB) methods, were employed to develop a controlled 

charging schedule based on electricity price data. Neural Networks, widely used for both classification and regression tasks [21], were 

implemented using a network architecture comprising an input layer, a single hidden layer with 100 neurons, and an output layer with 

neurons corresponding to the number of target classes. A hyperbolic tangent sigmoid activation function was utilized in both the 

hidden and output layers. For the classification output, the NN generated the label [1, 0]T to indicate a controlled charging plan. In 

parallel, the Naive Bayes classifier, a probabilistic model grounded in Bayes' theorem, was also applied. Despite its simplicity, the NB 

classifier is known for its effectiveness and computational efficiency. It is referred to as "naïve" due to its strong assumption that all 

features are conditionally independent given the class label, which often does not hold in practice but can still yield robust 

performance. The EV's arrival time was taken into consideration in order to determine if the PEV was charging or not. Based on 

threshold values connected to the SOC at the time of the EV's arrival, electricity prices were divided into two zones: the High Price 

Zone (HPZ) and the Low Price Zone (LPZ) to enable a regulated charging strategy. A low SOC suggests a longer charging time is 

required, whereas a high SOC suggests the vehicle needs a limited recharging time. A time-series electricity pricing dataset with 

hourly intervals was acquired to support this classification. Two separate classes were established in order to categorize the dataset 

under the regulated charge scenario. The LPZ was represented by the label "1" for price values over a predefined threshold, whereas 

values below. Values below or equal to the threshold were designated as "0," which corresponded to the HPZ, while price values 

beyond a predefined threshold were designated as "1," which represented the LPZ as demonstrated in Figure 5.  

 

 
Figure 5 Controlled charging time zones for PEV  
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The mathematical formulations underpinning the PEV charging optimization are crucial for defining the input features and evaluating 

the model's performance. The electricity price at any given hour h, denoted as Ph, serves as a primary time-series input feature, 

directly obtained from real-time data. The evolution of the PEV's SOC is governed by the charging decisions made by the ML model; 

specifically,                
                        

    
 where,   is the binary charging decision (1 for charging, 0 for no charging), 

       is the charge efficiency,            is the is the maximum charging power,     is the time step duration, and      is the 

battery’s capacity. This formulation ensures that the remain within defined limits                    Finally, the charging 

cost for an hour h,      is calculated as                             directly linking the model's decision with the prevailing 

electricity price. The total charging cost over the 24-hour period is then the summation of these hourly costs:           

∫                         
  

   
. These equations collectively provide a quantitative framework for the supervised ML approach, 

enabling the model to learn optimal charging strategies that minimize cost while adhering to operational constraints.  

 

IV. RESULTS AND DISCUSSION 

This section presents and critically analyzes the results derived from the study’s advanced modeling and simulation processes. A range 

of PEV charging scenarios is also explored to capture the variability in charging behavior, which is influenced by several factors, 

including the selected charging strategy, the battery’s SOC, battery capacity, and required charging duration. To investigate  these 

dynamics, two distinct charging patterns were analyzed: random charging and controlled charging. The random charging approach 

operates without coordination electricity price signals, which can lead to increased charging costs, particularly during peak demand 

periods. In contrast, the controlled charging strategy aims to align vehicle charging with lower electricity prices, thereby enhancing 

cost-efficiency. Moreover, four subplots indicating electricity price, charging state, SOC of battery, and charging cost are shown in 

Figure 6, which illustrates the consequences of random  PEV charging. It demonstrated distinct regions indicating trips and charging 

periods. Regions R1, R3, and R5 correspond to trips, and indicate EV driving. Conversely, regions R2, R4, and R6 represent charging 

intervals during which the EV is connected to the charger and begins charging immediately, without accounting for fluctuations in the 

daily electricity price. This uncoordinated charging strategy leads to a substantial cost, approximately £882, highlighting a clear 

opportunity for cost reduction through more deliberate and optimized charging schedules. Once the SOC reaches full capacity, the EV 

transitions to an idle state where no further charging occurs, maintaining a stable SOC throughout this phase, as observed during 

certain hours within R4 and R6. By the conclusion of the day, the EV battery is fully charged and prepared for use on the following 

day. 

 

 
Figure 6 Random charging plan  
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Furthermore, the control signal obtained using ML approach is based on employing NN and NB classifier, which divides charging 

times into low and high charging zones. Additionally, the controlled PEV charging strategy with the ML (NN) approach is illustrated 

in Figure 7.  

 

Figure 7 Controlled charging plan using ML (NN) 

As illustrated in Figure 7, the PEV charging control signal derived from the ML approaches is activated exclusively within the LPZ. 

This implies that the EV’s SOC remains unchanged until the charging signal is triggered, coinciding with periods when the forecasted 

electricity price is significantly low. Consequently, this results in a marked increase in the SOC during these intervals. Additionally, 

this charging scenario results in a PEV charging cost of ML(NN) of approximately £440, with SOC at the end of the day is 89.3%.  

Moreover, the controlled charging scenario based on ML (NB), has been illustrated in Figure 8, which indicates more efficient 

compared to other controlled charging techniques due to the outcomes of charging cost and SOC at the end of the day with £560, and 

SOC of 99%. These numbers highlight the significant potential for reducing PEV charging costs by employing a well-coordinated 

charging strategy.  
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Figure 8 Controlled charging plan using ML (NB) 

A detailed comparison of the charging costs under different control strategies is presented in Table II.  It can be seen that the base 

scenario of random (uncontrolled) charging resulted in the highest cost of £882, whereas by applying the proposed centralized control 

strategy using ML models, the charging costs were significantly reduced. Specifically, using the NN model, the optimized cost 

dropped to £440, representing a cost saving of approximately 50.1%. Similarly, with the NB model, the total cost was £560, which 

equates to a 36.5% reduction. These cost savings were achieved by scheduling vehicle charging during off-peak hours and avoiding 

periods of high electricity tariffs, made possible through effective centralized control and predictive load management by the ML 

models. The results indicate that the NN model outperforms the NB model in terms of cost efficiency. This can be attributed to the 

NN's ability to better capture non-linear relationships in the data, resulting in more accurate prediction and scheduling of optimal 

charging times. 

 

TABLE II.  SUMMARY OF COST COMPARISON BETWEEN UNCONTROLLED AND ML-BASED CONTROLLED CHARGING METHODS 

Method 
Charging 

Cost (£) 

Cost 

Saving (£) 

Cost Reduction 

(%) 
Control Strategy Remarks 

Base 

(Uncontrolled 
Charging) 

882 – – None 
No control, random charging 

behavior 

ML-Based 

(Neural 
Network) 

440 442 50.1% Centralized (NN) 
Best performance; capturing non-

linear demand patterns 

ML-Based 

(Naïve Bayes) 
560 322 36.5% Centralized (NB) 

Moderate performance; based on 

probabilistic classification 

 

V. CONCLUSION AND FUTURE WORK 

This paper introduces  a ML-based algorithm designed to minimize the daily charging costs of PEVs through controlled charging 

strategies implemented within a centralized control architecture. The random charging plan represents an uncontrolled charging 

approach, where PEVs commence charging immediately upon connection to a charging point, without taking electricity price 

variations into account. Such an uncoordinated strategy not only poses risks of grid instability during peak demand periods but also 

leads to considerable charging expenses, estimated to be approximately £882. In contrast, controlled charging involves initiating or 

delaying the charging process based on ML strategies such as NN and NB that take into account dynamic energy pricing to minimize 

overall charging costs.  
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Under this approach, although PEVs are connected to the grid immediately after completing a trip, actual charging is strategically 

postponed to off-peak periods when electricity rates are lower. The results, cost savings are comparatively lower, about 50% and 36% 

less effective than the savings achieved by the random method, respectively.  

This work can be extended to incorporate multiple models of PEVs, accounting for differences in battery capacities and energy 

consumption profiles. Additionally, it would be valuable to consider a wider range of usage patterns, including scenarios with more 

than three trips per day or irregular, non-standard usage behaviors. 
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