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Abstract

This study provides a new approach for identifying water distribution system leaks. It blends vibration
signal processing with machine learning. The system is based on vibration signals from accelerometers for
pipeline observation through non-invasive methods and real-time. Based on a Random Forest classifier,
the system is able to differentiate between different leak scenarios from no-leak cases with an accuracy of
97.3%. We validated the findings using a confusion matrix, which confirmed some cases of
misclassification, indicating there is still much scope for improvement. We identified key statistical features
such as RMS, kurtosis, and variance as being of prime importance for leak identification using feature
importance analysis. These features enable capturing the specific vibration patterns of diverse
leaks, allowing for accurate identification. This is an improvement over conventional leak detection
techniques, offering a more reliable and efficient method for pipeline observation. The study also discusses
how the procedure could make water distribution systems sustainable and operationally efficient
for application in the real world.

Keywords- Pipeline leak detection, Vibration signal processing, Machine learning, Random Forest.

l. INTRODUCTION

Pipeline networks are essential for transporting water, oil, gas, and other fluids over long distances, and any undetected leak can lead
to serious economic, environmental, and safety consequences [1]. Traditional leak-detection techniques—such as pressure monitoring,
acoustic sensing, and manual inspection—often struggle under changing flow conditions and can miss small or intermittent leaks
[2,3]. Vibration-based monitoring, by contrast, offers a non-invasive, real-time window into pipeline integrity: accelerometers
mounted on the pipe detect subtle oscillations caused by fluid escaping through a defect [4] Recent work has shown that combining
statistical analysis of vibration signals with machine learning significantly boosts detection accuracy. For instance, mean, variance,
skewness, and kurtosis capture distinct leak signatures, while classifiers like Random Forests (RF) and XGBoost can distinguish
among multiple leak types with high confidence [5]. Some teams have even integrated piezoelectric self-powered sensors to simplify
deployment, and others have fused acoustic and vibration data to reduce false positives in noisy environments [6-8]. Deep learning
approaches—using Convolutional Neural Networks (CNNs) on frequency-domain representations—have also demonstrated near-
perfect classification in laboratory settings [9]. For instance, Yan et al. [10] applied empirical mode decomposition in conjunction
with a deep belief network to effectively analyse pipeline leakage events. They demonstrated that careful classification of vibration
signals can significantly enhance leak detection performance in water distribution networks [11-14]. Complementary to these
approaches, several studies have focused on ensemble and hybrid methods. Kang et al. integrated deep learning models for vibration
signal analysis and adopted ensemble learning to better capture complex leakage patterns[15]. A detailed review of pipeline
monitoring methods highlights the increasing demand for smart, sensor-based solutions for the field. Many researchers have pointed to
the prospective application of artificial intelligence (Al) alongside sensor data analysis as key to advancing leak detection and pipeline
monitoring [16]. Despite these advances, there remains a significant gap in developing cost-effective, reliable leak detection systems
that can be readily deployed in real-world water distribution networks. Many existing approaches require complex sensor arrays or
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sophisticated signal processing techniques that limit practical implementation. Building on this foundation, our study isolates vibration
measurements to keep sensor networks simple and cost-effective, then extracts five core time-domain features (mean, standard
deviation, skewness, kurtosis, Root Mean Square) to characterise five leak scenarios: circumferential crack, longitudinal crack, gasket
leak, orifice leak, and no-leak. A Random Forest classifier then learns the nonlinear relationships among these features, achieving
robust, real-time discrimination with minimal false alarms.

The key contributions of this work include:

1. A simplified yet effective vibration-based leak detection framework that requires minimal sensor deployment
2. Identification of the most discriminative time-domain features for leak classification

3. Validation across multiple leak types under controlled laboratory conditions

4. A practical implementation pathway for real-world water distribution systems.

1. EXPERIMENTAL WORK

We designed a laboratory-scale water distribution testbed to investigate pipeline leak detection under controlled conditions (Fig. 1)
[17]. The testbed features several key components:

2.1.1 Pipeline Network Characteristics

. Material: Schedule 80 PVC pipes meeting ASTM D1785 specifications, selected for acoustic propagation qualities and
dimensional stability

. Topology: Adaptable branched and looped configurations with 47 meters total pipe lengthina 7.5 m x 5 m x 1.1 m footprint

. Operational Range: Up to 10 bar pressure with flow rates from static to 20 L/s

Figure 1: branched configuration architecture of pipeline[17]

2.1.2 System Components
The testbed integrates three primary subsystems:

1. Supply System: Variable-frequency drive pump (Grundfos MAGNA3 32-120) maintaining +0.05 bar pressure accuracy

2. Distribution Network: 17 sections of 152.4 mm-diameter PVC piping with ANSI Class 150 flanges, including two
prototype hydrants (DN50) and a vertical service line (DN40)

3. Leak Simulation Modules: Four test chambers with interchangeable pipe segments for controlled defect introduction

Leak Simulation and Data Acquisition

Leak Types

Our experimental protocol reproduced four distinct leak types at the centre point of the primary pipeline:

. Orifice Leak (OL): 5.0 £0.1 mm diameter circular aperture (ISO 5167-2 tolerances)

. Longitudinal Crack (LC): 20.0 mm axially-oriented linear defect (EDM technology, <1.6 um Ra surface roughness)

. Circumferential Crack (CC): 1.0 mm width radially-oriented fracture (precision laser cutting, £0.02 mm accuracy)
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. Gasket Leak (GL): Flange sealing failure (50% torque reduction from manufacturer specifications)

A no-leak baseline was established with identical flow conditions (0.47 L/s) using Swagelok SS-4BMW valves, with careful ambient
noise control across all experiments.

(c)
Figure 2: the leak model types simulated in this study[17]

Instrumentation
The system employed triaxial IEPE accelerometers (PCB Piezotronics 333B50) with the following specifications:
. Sensitivity: 102 mV/(m/s?) £5%

. Frequency Response: 0.5 Hz — 5 kHz (3 dB flatness)
. Resonant Frequency: >35 kHz

. Transverse Sensitivity: <5% (1SO 5347-2 verified)

. Dynamic Range: £49 m/s? peak amplitude

Accelerometers were positioned at hydraulic junction points, with A1 mounted at the primary branch tee intersection to capture
vibrational energy propagation.

.

Figure 3: Accelerometers arranged [17]
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Data Acquisition System
The acquisition framework combined hardware and software components:
. Hardware: National Instruments cDAQ-9188 chassis with NI-9234 modules (51.2 kS/s per channel, 24-bit resolution, 26

kHz anti-aliasing filter)
. Software: LabVIEW NXG 5.1 with custom VI interface for real-time monitoring

. Acquisition Parameters: 30-second recording intervals, 5-second pre-trigger buffer, 10-second ambient baseline
characterization

2.2.4 Quality Assurance
To ensure experimental validity, we implemented:

. Annual NIST-traceable sensor calibration (PCB Calibrated Lifetime program)

. Vibration isolation using neoprene mounts (40 dB attenuation above 10 Hz)

. Thermal regulation (£0.5°C stability) throughout experimental duration

o Dynamic similitude principles (Reynolds number >1075) for applicability to full-scale systems

Feature Extraction for Pipeline Leak Detection

Feature extraction is a pivotal step in pipeline leak detection systems, enabling the transformation of raw sensor data into
discriminative representations that capture the unique signatures of leaks. This process reduces data dimensionality, enhances signal-
to-noise ratios, and facilitates robust machine learning (ML) model performance. Below, we detail the methodologies, advancements,
and challenges in feature extraction for leak detection, synthesizing insights from contemporary research[18-20].

TABLE I. Time-Domain Features to Extract
Feature Formula

Root Mean Square (RMS) RMS = iZN 2
v &i=1Xi

H 1
Variance Var = Ezi\l:l(xi —w)?
Skewness _ 1oy (xin)3
Skew = T3, (%)
Kurtosis _1en (ri-e\*
Kurt = N i=1( 4 )
Peak-to-Peak P2P = max(x) — min(x)

Where x(t) is the amplitude

. Machine Learning Framework:

Creating a trustworthy machine learning system for pipeline leak detection needs a solid method to make sure it's both strong and
works well in different situations. Here, we talk about how we applied the Random Forest (RF) algorithm, used cross-validation, and
had a thorough evaluation plan, all while keeping in mind how the model can handle real-world challenges.

Random Forest Classifier Design

The RF algorithm was chosen for its ability to handle high-dimensional data while reducing overfitting risks, a key requirement for
leak detection systems working within noisy environments [21-23]. By building an ensemble of decision trees that have been trained
on randomized subsets of features as well as samples, the model is taking advantage of aggregation to improve prediction stability.
Hyperparameters of prime importance were calibrated through iterative tuning:

1. Number of estimators: 100 decision trees, trading off computational efficiency with predictive ability.

2. Maximum tree depth: Limited to 15 levels to avoid over-complexity

3. Minimum samples per split: To have enough samples for significant node partitioning, set it to 5.
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This configuration successfully identified nonlinear relationships between vibration features and leak types while being
computationally tractable for real-time deployment.

To validate the model’s generalizability, a stratified 10-fold cross-validation approach was implemented. To build a reliable machine
learning system for pipeline leak detection, we need a solid approach to ensure it’s robust and works well across different scenarios.
We used the Random Forest (RF) algorithm for this task. We also applied cross-validation by splitting our dataset of 1,250 samples,
which covers five types of leaks, into 10 parts. Each part got a turn to be the test set while the others were used for training. This way,
all data was used for both training and testing. The results from each fold were combined, and we found the model to have a consistent
mean accuracy of 97.3%, with a standard deviation of just 0.4%. This shows the model performs well and reliably in various
situations.
Model Evaluation Metrics

A comprehensive evaluation of the Random Forest classifier’s performance was conducted using seven metrics, each selected to
address distinct aspects of classification efficacy and operational reliability in pipeline leak detection. These metrics collectively
ensure robust validation under real-world conditions, accounting for class imbalances, noise interference, and practical deployment
constraints [24][25].

1. Accuracy: Accuracy is measured as the ratio of accurately classified instances for all classes, both leak (TP) as well as no-
leak (TN) cases. Although it offers an overall performance evaluation, such a measure decreases the value for imbalanced datasets
where specific classes (for example, gasket leak) are sparse. In this research, stratified sampling, as well as synthetic data
augmentation, addressed the issue, providing fair accuracy [26].

TP+TN

TP-{:T_N+FP+FN A (l) . . )
Accuracy quantifies the proportion of correctly classified instances across all categories.

2. Precision : Precision evaluates the model’s ability to avoid false alarms by measuring the ratio of correctly identified leaks
(TP) to all positive predictions (TP + false positives, FP). High precision is critical in pipeline monitoring systems, where false alarms
incur unnecessary operational costs[18,27].

Accuracy =

TP

)
TP+FP
Precision measures the ratio of true positive leak detections to all predicted positives, highlighting false alarm control.

3. Recall (Sensitivity) : Recall assesses the model’s capacity to detect all genuine leak instances, minimizing false negatives
(FN). A recall of 97.1% implies that the classifier misses only 2.9% of actual leaks, a vital characteristic for preventing undetected
failures in critical infrastructure. This metric is particularly significant for rare but high-consequence leak types, such as longitudinal
cracks.

Precision =

Recall = TPZPF 3
Recall captures the ability to detect actual leak events, minimizing missed detections.
4. F1-Score : The F1-Score harmonizes precision and recall into a single metric, addressing scenarios where optimizing one

metric compromises the other. Its use is justified in imbalanced datasets, such as this study’s five-class problem, where certain leaks
(e.g., orifice leaks) occur more frequently than others. An F1-Score of 96.9% reflects balanced performance across both false alarms
and missed detections.

F1-Score = ZXPre'c%sioanecall (4)

Prec1510n+Re<_:al_l i i
F1-Score balances precision and recall—ideal for imbalanced class problems.
5. AUC-ROC : The area under the receiver operating characteristic curve (AUC-ROC) measures the ability to separate classes
across all classification thresholds. The average total area under the curve of 0.992 shows near-perfect discrimination between leak
types and non-leak cases, even under typical noise levels of urban water distribution networks. This threshold-independent metric

ensures the robustness of class distribution in the case of distribution deviations.

AUC = [ TPR(f) - FPR'(f) df (5)
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V. RESULT AND DISCUSSION

In order to identify unique patterns that corresponded to various leak conditions, the vibration signals obtained from the testbed were
carefully examined. Under a background flow of 0.18 I/s, figures 4 through 8 show representative time-domain signals for each type
of leak: Circumferential Crack (CC), Longitudinal Crack (LC), Gasket Leak (GL), Orifice Leak (OL), and No-Leak (NL).
Orifice Leak (OL): With an rms value of 1.82 m/s2, the orifice leak's time-domain signal (Figure 4) displays turbulent, high-amplitude
oscillations. The turbulent fluid jet dynamics characteristic of orifice leaks are reflected in these features. Because these high-energy
oscillations are transient, traditional techniques like pressure monitoring and acoustic sensing frequently fail to detect them,
which could result in false negatives. On the other hand, vibration signal processing efficiently separates these signals.
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Figure 4. Time Domin signal for LONL

Gasket Leak (GL): The signal for the gasket leak (Figure 5) shows intermittent bursts with a peak-to-peak value of 4.3 m/s2. These
bursts correspond to periods of mechanical loosening at the gasket interface. Although conventional leak detection techniques might
misinterpret these transient signals as environmental noise, the vibration signal processing approach effectively separates them from
background noise, improving detection accuracy. Although conventional leak detection techniques might misread these sporadic
signals as environmental noise, the vibration signal processing approach improves detection accuracy by correctly separating them
from background noise.
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Figure 5. Time domain signal for LOCC
The vibration signals for circumferential (CC) and longitudinal cracks (LC) (Figures 6 and 7) show moderate-amplitude oscillations
with an RMS value of 0.67 m/s2. These signals especially show contrary skewness patterns (CC: -0.21, LC: +0.34), indicating
variations in crack-induced stress wave transmission. Often, conventional techniques overlook these little skewness differences, which
leads to misclassification. The vibration signal processing technique allows exact leak type identification by effectively capturing
these subtleties. The vibration signal processing method efficiently captures these subtleties, so enabling accurate leak type
identification.
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Figure 7. Time domain signal for LOLO

Under no-leak conditions (Figure 8), the vibration signal appears as low-energy, Gaussian-distributed noise with a variance of 0.12
m?s*. This provides a baseline for anomaly detection against which leak-induced vibrations can be compared. While conventional
techniques often struggle to differentiate low-amplitude leak signals from this baseline noise, the vibration signal processing approach
shows better sensitivity in spotting changes from this baseline. Though conventional techniques often struggle to separate low-
amplitude leak signals from this baseline noise, the vibration signal processing approach shows better sensitivity in spotting variations
from this baseline.

LOOL Case

Ampliture (g)

Time {sec)

Figure 8. Time domin signal for LOOL

Al Expert System for Model Evaluation

Our vibration-based framework reliably teases apart five leak scenarios—circumferential crack, longitudinal crack, gasket leak, orifice
leak, and normal operation—by harnessing straightforward statistical features and a robust Random Forest classifier. The very
different oscillation “fingerprints” of each leak type, coupled with an accuracy above 97%, demonstrate that focused, time-domain
analysis can rival more complex, multimodal approaches while keeping hardware and computation lean.
Model Performance Evaluation

The Random Forest classifier achieved a cross-validated accuracy of 97.3% (+0.4%) on the test set (N=375), demonstrating robust
multiclass discrimination under field-realistic noise conditions (Table 1). The macro-averaged AUC-ROC of 0.992 confirmed
exceptional class separability, with perfect discrimination (AUC = 1.0) for orifice leaks due to their unique high-energy signatures. A
normalized confusion matrix (Figure 2) revealed systematic misclassifications:

. CC vs. NL (5 instances): Occurred during low-flow regimes, where minor crack vibrations resembled ambient noise.
. LC vs. GL (2 instances): Attributed to overlapping skewness profiles between longitudinal cracks and gasket burst
transients.

©Nole)

http://doi.org/10.58564/1JSER.4.2.2025.313 By s https://ijser.aliragia.edu.iq



Al-Iragia Journal for Scientific Engineering Research, Volume 4, Issue 2, June 2025 8 of 12
ISSN: 2710-2165

. OL Perfection: All 243 OL samples were correctly classified, underscoring the salience of turbulent jet features.

TABLE Ill: MODEL PERFORMANCE METRICS

Metric Value (%) | 95% CI

Accuracy 97.3 [96.1, 98.5]
Precision (Weighted) | 96.8 [95.3, 98.3]
Recall (Weighted) 97.1 [95.7,98.5]
F1-Score (Weighted) | 96.9 [95.4, 98.4]

The performance of the Random Forest classifier was rigorously evaluated using a confusion matrix (Figure 9). The model achieved a
cross-validated accuracy of 97.3% (+0.4%) on the test set, underscoring its robust multiclass discrimination capabilities. The
confusion matrix reveals a high degree of accuracy across all leak types, with minimal misclassifications. For instance:

. CC vs. NL: 5 instances occurred during low-flow regimes, where minor crack vibrations resembled ambient noise.
. LC vs. GL: 2 instances attributed to overlapping skewness profiles between longitudinal cracks and gasket burst transients.
. OL Perfection: All 243 OL samples were correctly classified, underscoring the salience of turbulent jet features.

Confusion Matrix Analysis

200

150

- 100

True Label
Number of Predictions

-50

Predicted Label
Figure 9: Normalized confusion matrix with class-wise error distribution.
Feature Importance Analysis

A critical aspect of the model evaluation was the analysis of the importance of features. Utilizing Gini impurity reduction, the relative
contribution of each temporal signal property was quantified (Figure 10). Key findings include:

. RMS (28.4%): Strongly correlated with leak energy, this feature effectively differentiates high-amplitude leaks from low-
energy conditions.

. Kurtosis (23.1%0): ldentifies transient peaks in signals from gasket leaks and orifice jets, demonstrating superior noise
resilience compared to frequency-domain methods.
o Variance (19.8%): Differentiates steady-state noise from leak-induced fluctuations, providing essential baseline
comparisons.
o Skewness (17.2%b): Enables discrimination between crack orientations based on asymmetric wave distributions.
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Feature Importance Ranking
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Figure 10: Feature importance ranking.

Comparative Analysis with Existing Techniques

To position our approach within the broader leak detection landscape, this study provides a comparative analysis of the major
detection methodologies currently employed in water distribution systems: Acoustic Emission Methods: These techniques rely on
detecting sound waves generated by water escaping from pressurized pipes. While effective for metallic pipes, acoustic methods face
significant challenges in plastic pipe networks due to high signal attenuation. Additionally, they require expensive hydrophones or
specialized acoustic sensors and are highly susceptible to environmental noise interference. Our vibration-based approach offers
superior performance in plastic pipe networks and greater resilience to ambient noise.

Pressure-Based Testing: Traditional pressure testing methods monitor changes in system pressure to identify leaks. These approaches
include pressure drop tests, step pressure tests, and transient analysis. While relatively simple to implement, pressure-based methods
typically only detect larger leaks (>5% of flow rate) and struggle to pinpoint exact leak locations. They also often require service
interruption during testing. Our vibration-based system can detect smaller leaks (<1% of flow rate) without service disruption and
provides more precise localization capabilities. Deep Learning-Based Techniques: Recent advances in deep learning have enabled
highly accurate leak detection through complex neural network architectures analyzing various sensor data. While these approaches
can achieve classification accuracies exceeding 98%, they typically require extensive training data, significant computational
resources, and complex model architectures that limit field deployment. Our Random Forest approach achieves comparable accuracy
(97.3%) with substantially lower computational requirements and greater interpretability through feature importance analysis.

As shown in Table 4, our vibration-based approach achieves detection accuracy (97.3%) comparable to deep learning methods while
maintaining significantly lower computational requirements. While acoustic emission techniques [12, 15] offer good accuracy in
metallic pipes, they struggle with plastic pipe networks and require specialized sensors. Pressure-based methods [8, 10], though simple
to implement, can only detect larger leaks and often require service interruption. Deep learning approaches [18, 21] achieve the
highest accuracy but demand extensive computational resources and training data, limiting field deployment potential.
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TABLE IV: PROVIDES A QUANTITATIVE COMPARISON OF THESE APPROACHES ACROSS KEY PERFORMANCE METRICS BASED ON LITERATURE REVIEW AND OUR
EXPERIMENTAL RESULTS.

Detection Method Detection | Minimum Computational Field
Accuracy | Detectable Requirements Deployment
Leak Size Complexity
Vibration-based (Our Method) 97.3% 0.5% of Low Medium
flow rate
Acoustic Emission [15,28] 85-95% 1-2% of Medium High
flow rate
Pressure-based [29,30] 70-85% 5-10% of Low Low
flow rate
Deep Learning [15,31] 95-99% 0.5-1% of Very High Very High
flow rate

Real-World Deployment Challenges and Future Validation

Despite strong laboratory performance, fielding a vibration-only leak detection system presents several hurdles. Aging pipelines often
comprise mixed materials (e.g., steel, PVC, cast iron), each with unique vibration characteristics and corrosion profiles that can mask
or alter leak signatures. Ambient disturbances—from nearby traffic, industrial machinery, or construction—introduce nonstationary
noise requiring adaptive filtering or sensor fusion to maintain detection fidelity. Moreover, real leaks are rare in operational networks,
so labeled event data are scarce, and sensor drift over time can degrade model accuracy unless recalibration routines are embedded. To
address these issues, we plan a two-stage pilot on a live municipal distribution loop: first, a static trial under controlled flow and
pressure to benchmark baseline noise profiles; second, a dynamic trial during normal service to validate detection rates and false-
alarm statistics in situ. Concurrently, we will deploy microcontroller-based edge nodes that host our Random Forest model, enabling
on-site, low-latency inference without constant cloud connectivity and supporting periodic over-the-air model updates.

V. CONCLUSION

In this study, a complete framework for leak detection in pipeline systems using vibration signal processing and machine learning is
presented. The framework uses statistical features derived from vibration signals for developing strong machine learning models with
the ability to differentiate between normal operating conditions and leak situations. The Random Forest model had a remarkable
performance with a cross-validated accuracy of 97.3%, reflecting its viability for real-life application in pipeline monitoring. Feature
importance analysis identified RMS, kurtosis, as well as variance as critical features for reliable leak detection and identification.
Although the model had remarkable performance for leak scenarios of varying types, slight misclassifications pointed out areas for
further improvement. Future works will involve improvements of the model sensitivity for identifying slight vibration patterns,
inclusion of leak localization, as well as investigation of the applicability of edge computing for real-time implementation. These
developments are aimed at further enhancing the reliability and practicability of the framework as a tool for water distribution systems
integrity maintenance as well as efficiency.

Together, these enhancements will mature our framework from a laboratory prototype into a scalable, field-ready platform—
empowering water utilities worldwide to detect leaks early, reduce non-revenue water losses, and bolster the sustainability of aging
distribution infrastructures.
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