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Abstract: Outliers affect the accuracy of 

estimating multiple linear regression model 

parameters and lead to estimated parameters 

that are inaccurate and far from their true 

values; thus, robust estimator methods such as 

the Andrews weighted function must be used 

to obtain more accurate parameters and 

robustness versus outliers. The proposed 

method involves choosing the optimal tuning 

parameter value that produces the minimum 

mean square error of the parameters and 

treating outliers. Simulation and real data were 

used to compare the efficiency of the models 

estimated based on the classical robust method 

for Andrews weighted function that uses the 

default tune parameter and the proposed 

algorithm through the MATLAB program 

dedicated to this purpose. The research results 

revealed the efficiency of the proposed 

algorithm in estimating optimal tuning 

parameters for the Andrews weighted function 

and treating outliers and the accuracy of 

estimating the model parameters. 
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 قويتحسين أداء دالة أندروز الموزونة في نموذج الانحدار الخطي المتعدد ال
 

 طه حسين علي سروين أسعد عثمان سربست سعيد إسماعيل ديار لزگين رمضان

 الإدارة والاقتصادكلية  الإدارة والاقتصادكلية  الإدارة والاقتصادكلية  العلوم الصحيةكلية 

 صلاح الدينجامعة  جامعة صلاح الدين دهوكجامعة  دهوكجامعة 

 مستخلصال

تؤثر القيم المتطرفة على دقة تقدير معلمات نموذج الانحدار الخطي المتعدد وتؤدي إلى   

معلمات مقدرة غير دقيقة وبعيدة عن قيمها الحقيقية؛ وبالتالي، يجب استخدام طرق تقدير قوية مثل 

يقة دالة أندروز المرجحة للحصول على معلمات أكثر دقة ومتانة مقابل القيم المتطرفة. تتضمن الطر

المقترحة اختيار قيمة معلمة الضبط المثلى التي تنتج الحد الأدنى لخطأ مربع متوسط المعلمات 

ومعالجة القيم المتطرفة. تم استخدام المحاكاة والبيانات الحقيقية لمقارنة كفاءة النماذج المقدرة بناءً 

مة الضبط الافتراضية على الطريقة القوية الكلاسيكية لدالة أندروز المرجحة التي تستخدم معل

المخصص لهذا الغرض. كشفت نتائج البحث  MATLABوالخوارزمية المقترحة من خلال برنامج 

عن كفاءة الخوارزمية المقترحة في تقدير معلمات الضبط المثلى لدالة أندروز المرجحة ومعالجة 

 القيم المتطرفة ودقة تقدير معلمات النموذج.

الانحدار المتعدد، القيم المتطرفة، التقدير القوي، دالة أندروز، ومعلمة نموذج  ت المفتاحية:الكلما

 .الضبط

1. Introduction 

  To estimate the relationships between independent variables and the 

dependent variable in statistical data analysis, regression models in general 

and multiple linear regression, in particular, are essential tools, as we can 

predict the values of the dependent variable whether they are values that do 

not exist within the period studied or future values. These models can be 

used in many fields such as economics, medicine, engineering, marketing, 

and others (Omer et al., 2024: 112-113). 

  Sometimes some values differ significantly from the rest of the data 

and are called outliers. These values are either harmful or necessary. Both 

cases must be handled properly, as they affect the statistical analysis and 

their excitation may lead to incorrect conclusions. A single outlier can extract 

parameters far from the model's true parameters. There are many ways to 

deal with these values, including deletion. Still, sometimes these values are 

important in the data and cannot be deleted and must be handled with 

extreme caution to recognize their importance and not mislead the results 

(Ali et al. 2023: 9). 

  Some statistical methods have been developed to deal with outliers to 

reduce their impact on the results scientifically called robust estimators, one 
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of these methods is called Andrews' weighted function, which is a robust 

estimator for dealing with data containing outliers. This method gives 

weights to the variables. This method has proven successful in reducing the 

impact of outliers on the model estimates, ensuring reliable and non-

misleading results. Andrews' weighted method gives less weight to outliers. 

The further away the value is from the data mean, the less weight it is given to 

reduce its influence on parameter estimates (Maronna et al., 2019: 357-366). 

  Much previous research has addressed the tuning parameter and 

focused on strategies that give us a robust tuning parameter against outliers. 

Many of them concluded that these methods reduce the influence of outliers 

on the model's conclusions and improve the accuracy of the estimates. Some 

other research has been completed by testing and examining the statistical 

performance of these variables to expand our understanding of how to 

enhance the stability of statistical models (Gladwell, 2008: 25-29). 

This research aims to find a new approach that improves the effectiveness of 

the Andrews function by determining the value of the optimal tuning 

parameter for it, by finding parameters that are closest to the truth parameters 

by reducing the mean square error between the model parameters without 

outliers and the estimated parameters after adding outliers, all of this to 

increase the stability and improve the accuracy of the estimates in the 

presence of outliers. Through this approach, researchers seek to extract 

results for more reliable and accurate statistical models. 

2. Linear Regression Model: Many statistical techniques are used to examine 

relationships between variables, among which regression analysis is the most 

important technique for this purpose. (Legendre, 1805) and (Gauss, 1809) 

used the least squares method to provide the earliest version of linear 

regression. This method was initially used to calculate the orbits of the 

celestial planets until Gauss developed the theory further in 1821 when he 

proposed a theory called the Gauss-Markov theory, which is a fundamental 

principle in estimating linear models. (Ali & Awaz, 2017: 38). 

  A statistical model is a simplified representation of a situation or 

process that may produce testable hypotheses but does not represent reality. 

Linear regression requires linear regression parameters to determine the 

relationship between the independent variables and the dependent or 

response variable. (Omar et al., 2020: 58-67). 
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  Due to its straightforward structure, direct computation and clear 

interpretation, the Multiple Linear Regression (MLR) model is one of the 

most widely used estimation models in research. The MLR model indicates 

that there is a linear connection between the independent variables 

(x1, x2, . . . , xn) and the dependent variable (Y). The regression coefficients 

are denoted by β0, β1, . . . , and βp Where β0 is a parameter that determines 

the point of intersection of the regression line with the Y-axis and the 

(β1, . . . , and βp) are slope parameters. The error term ε in classical regression 

is assumed to have a normal distribution with constant variance Var(ε)  =

 σ² and E(ε) = 0 (Xin & Xiao, 2009, p. 3; Chagas et al., p. 5, 2016; Zhang et 

al. 2017, p. 6; Xie et al. 2021, p. 3; Ali et al. 2023, p. 3-6). 

y =  β0  +  β1 x1  +  β2 x2 +. . . + βp xp  +  ε                           (1) 

ŷ  =  β0̂  + β1̂ x1  + β2̂ x2  + ⋯ + βp̂ xp                                (2) 

3. Ordinary Least Squares Estimators: The ordinary least squares (OLS) 

method works to minimize the sum of the squared differences of the errors 

or between the predicted values in the model and the actual values. 

Therefore, the OLS method is one of the most widely used methods when 

estimating the parameters of a linear regression model for data analysis. It is 

simple and effective for predicting linear relationships between variables 

(Ali et al., 2023: 7). There are three basic steps in OLS: First: Determine the 

model that represents the relationship between the dependent variable and 

the independent variables. Second: Estimate the parameters that give us the 

least summation of the squared differences between the actual and predicted 

data. Third: Test the model that was extracted using a set of statistics such as 

(R2) or statistical tests such as hypothesis tests through some statistical tests 

such as the t-test. The least squares method also depends on a set of basic 

assumptions including homogeneity of variance, independence of errors, and 

normal distribution of errors. When these assumptions are met, ordinary least 

squares provide objective and efficient parameter estimates. In many fields 

such as econometrics, statistics, and social sciences, the ordinary least square 

is an essential tool in predictive modelling and data analysis. (Buylov, 2022: 

20-22): 

4. Outliers: Outliers can stimulate creativity and provide important insights, 

even though they are sometimes seen as abnormal. In his book Outliers: A 

Success Story, Malcolm Gladwell explains these outliers, their cumulative 
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advantages, opportunities, and how to uncover the mechanisms of their 

success (Gladwell, 2008: 25-29). Outliers can reveal new market trends and 

uncommon disease patterns in fields such as business and epidemiology. 

They are also useful for detecting bank card theft. However, sometimes, 

robust strategies are needed to control outliers because they tend to mislead 

the results and success of studies. Strategies such as robust regression and 

statistical tests resistant to outliers are used to prevent them from 

significantly impacting the conclusions (Ali et al., 2023: 5-7). 

5. Some Robust Estimators: Classical estimation techniques such as OLS 

produce skewed parameters and misleading and inaccurate conclusions 

when there are outliers in the data. They are sensitive to these values and 

cannot deal with these values. Therefore, statistical techniques called robust 

estimators were created. They were specifically designed to extract accurate 

parameters and estimates in the presence of outliers. These techniques give 

weights to the data to reduce the effect of these values or extract their effect 

when estimating the parameters to obtain accurate conclusions. Among these 

methods, there is a method called the weighted least squares (WLS) method, 

where this method gives small weights to outliers to reduce their effect on 

the conclusions and estimation of parameters (Hampel et al. 1986). There is 

also robust logistic regression. This technique modifies classical logistic 

regression in a way that makes it less sensitive to outliers. When we reduce 

the influence of outliers, we derive estimates that more accurately and 

reliably represent data that contain outliers (Pregibon, 1982). Huber 

estimation is also a powerful strategy for outliers. In this method, to 

minimize the impact of these values, unconventional loss functions are used. 

Compared to the OLS method, this method is considered better in the case 

of outliers, as it punishes large deviations less severely. (Huber, 1981). Many 

studies have used these strategies and others to prove the superiority of these 

techniques in the event of the presence of outliers in the data, such as: (Ali 

et al. 2024); (Kareem et al. 2019(; (Ali and Awaz, 2017). 

6. Weighted Andrews Function: Andrews function is a robust technique 

against outliers and is one of the reliable statistical techniques. This method 

gives weights to data according to their distance from the data center using 

the weighting method. Outliers are assigned smaller weights to reduce their 

effect. One of the main components of the Andrews weighted function is the 

adjustment factor or adjustment constant or scale factor. This factor 
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determines the sensitivity of the Andrews function to outliers. The analyst 

can adjust this value to reduce or increase the sensitivity of the function to 

outliers. According to (Marona et al. 2006), a lower value of the adjustment 

coefficient results in less aggressive weighting of outliers, while a larger 

value reduces the sensitivity of the function to deviations from the central 

tendency (Huper and Ronchetti, 2009: 225). When using classical techniques 

such as ordinary least squares (OLS), which are very susceptible to outliers 

and provide inaccurate and time-consuming estimates, this function is 

particularly useful (Huber, 1992: 86-95). Andrews Weighted Function 

Formula is: 

w(r) =
sin(r)

r
  for  |r| <  π  and w(r) = 0   otherwise           (3) 

  Where, r represents the residuals scaled by a tuning constant k, which 

is crucial for the robustness of the estimator (Huber, 1992: 86-95). 

  Tuning parameters: The power and effectiveness of the estimator are 

mostly determined by the fine-tuning parameter k. For evenly distributed 

data without outliers, it manages the balance between efficiency and 

resilience against outliers. The fine-tuning constant for the Andrews function 

is about 1.339 by default. This value can be changed to change the weights 

given to outliers; smaller constants provide more robust estimates against 

outliers by assigning less weight to larger residuals, (Maronna et al. 2006: 

12). Decreasing the fine-tuning constant increases, the negative weight given 

to large residuals, which improves robustness but may reduce efficiency. The 

required degree of flexibility must be taken into account when choosing the 

fine-tuning constant in real applications. On the other hand, if the fine-tuning 

constant is increased, efficiency increases but robustness decreases. In robust 

regression, the residuals are formulated as follows using the fine-tuning 

parameter (Wang et al. 2005, p. 1-5): 

r =
resid

k. s√1 − h
                                (4) 

  Where h represents the effect (or leverage) values from the least 

squares fit, k: is the adjustment constant, resid: are the residuals from the 

previous iteration (residuals or errors) and s is an estimate of the standard 

deviation of the error component, calculated using the formula: MAD / 

0.6745 where MAD represents the absolute median of the deviations (Wang 

et al. 2005: 1-5). 
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7. Mean Square Error of parameters: The mean square error (MSE) is a 

popular and widely used criterion when evaluating the effectiveness of 

estimators in regression analysis. Therefore, in this context, the (MSE) 

statistic is used. This statistic includes variance and bias to improve quality 

and expresses the accuracy of the estimator through them. The following is 

the definition of the mean square error of the estimator (McLean et al. 2012: 

6106-6109): 

MSE(β̂) = E(β̂ − β)
2

                            (5) 

  This measure is the difference between the expected value and the true 

value of the estimator or provides a balance between the estimator's variance 

around its expected value and its true value and the extent of its bias or 

variance. Robust estimates are used when dealing with outliers frequently in 

linear regression models to reduce and control their influence. Compared to 

traditional techniques such as (OLS) in the presence of extreme values, 

robust estimates often produce a reduced (MSE) because they reduce the 

influence of extreme values on the parameter estimates. Determining the 

correct tuning parameter is a challenge for all researchers, especially when 

using the Andrews weighted function. Choosing the correct tuning parameter 

will reduce (MSE) and is the goal of all researchers trying to obtain results 

with the least error and closest to the truth so that the predictions and 

estimates are accurate in all areas. Robust estimators and their mean square 

error in the presence of extreme values have been studied extensively in 

studies such as Huber, (1981) and Hampel et al. (1986). More recent studies, 

such as the work by Maruna et al. (2019), highlight the importance of the 

regularization parameter in improving the mean squared error while 

exploring developments in robust estimation methodologies (McLean et al., 

2012: 6106-6109). 

8. Proposed Method: The proposed method involves selecting the optimal 

tuning parameter value for the weighted Andrews function that handles 

outliers and produces the minimum mean square error of the coefficients in 

the linear regression model in the following steps: 

Step 1: Set Tune = 0.1, 0.11, 0.12 …, 100. To estimate the model parameters, 

use the weighted Andrews function for robust estimators for all Tune values.  

Step 2: Determines the optimal tune parameter value that gives the minimum 

mean square error of the model parameters. 
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Step 3: Use a weighted Andrews function depending on the value of the 

optimal tuning parameter in estimating the parameters of the robust linear 

regression model.  

  The proposed algorithm gives the largest value for the tuning 

parameter if there are no outliers in the data, which provides estimates of the 

parameters of the linear regression model completely like the ordinary least 

square estimators. 

9. Simulation Study: To prove the superiority of the proposed method, we will 

compare it with classical methods such as OLS and Andrews Classic. The 

researchers will generate data using MATLAB randomly for simple and 

multiple linear regression, then add extreme values. Let us make the 

observation (12 and 25) for simple linear regression. We will give these two 

values positive numbers to show in the drawing how to extract extreme 

values for simple linear regression using the (OLS) method, and for multiples 

we will give a negative value with a positive value to prove the superiority 

of the proposed method in most cases of extreme values in the data relative 

to the sample sizes. We will use distinct sample sizes (30, 50 and 100), and 

repeat the sample (1000) times. Based on the differences between the real 

parameter values and the parameter values of the methods used, we will 

discover the best method or the method that is less affected by extreme 

values. MATLAB is designed for this purpose for simple and multiple linear 

regression in the appendices and we can modify it like changing the numbers 

or values of the extreme values or their location or sample sizes as changing 

their location can change the results but every time as an average we will get 

close results and we will start with simple linear regression and figure 1 is a 

regression line for the three methods with two extreme values as we 

mentioned earlier for the simple linear regression model as shown below. 

Figure 1 illustrates how outliers affected the ordinary least squares approach 

by showing the regression line indicating the direction of the outliers. On the 

other hand, outliers did not affect the classical and proposed Andrew’s 

function. For the three methods, the result of simple linear regression is 

shown in Table 1. 
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Figure (1): Regression Lines for OLS, Classical Robust, and Proposed 

Robust 

Table (1): Simple Linear Regression 

method 
Sample 

size 

Error of 

parameters 

Tuning 

parameter 
T F 

OLS 
 

100 

0.1459  1 99 

Classic robust 0.0210 1.3390 31 69 

Proposed robust 0.0185 4.62 68 32 

OLS 
 

50 

0.5318  0 100 

Classic robust 0.0422 1.3390 27 73 

Proposed robust 0.0371 1.01 73 27 

OLS 
 

30 

0.6581  0 100 

Classic robust 0.0840 1.3390 36 64 

Proposed robust 0.0800 1.01 64 36 

  T represents the method that is better than other methods and F 

is worse. The data presented in Table 1 indicate that the proposed robust 

method outperforms the classical robust methods and ordinary least squares 

(OLS) when there are outliers in the data for sample size (100, 50, and 30), 

as measured by the mean β error where the proposed robust method value 

was (0.0185, 0.0371, and 0.0800) for the tuning parameters (4.62, 1.01, and 
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1.01) respectively and the classical robust method (0.0210, 0.0422, and 

0.0840) respectively for the fixed tuning parameter (1.3390) and OLS 

(0.1459, 0.5318, and 0.6581) respectively. Specifically, the proposed robust 

method showed superior performance in (68, 73, and 64) out of 100 

experiments, respectively, while the classical robust method was more 

effective in (31, 27, and 36, respectively) experiments, and the ordinary least 

squares method was in (1, 0, and 0, respectively) experiments due to its 

sensitivity to outliers.  

Table 2 shows the results of multiple linear regression for three different 

sample sizes. The results in multiple linear support the proposed robust 

methods same as simple linear because in all sample sizes, the proposed 

robust method has less error of parameters for sample size (100,50 and 30) 

which are (0.0455, 0.0872 and 0.1731) respectively and higher T numbers 

(70, 69 and 67) respectively which represents the method is better. The 

results in both simple linear regression and multiple regression for all sample 

sizes used were in favor of the proposed robust method, but it should be 

noted that the value of the tuning parameter varies in each experiment, unlike 

the value of the classical robust method, which is constant. 

Table (2): Multiple Linear Regression 

Method 
Sample 

Size 

Error of 

parameters 

Tuning 

parameter 
T F 

OLS 

100 

0.2326  5 95 

Classic robust 0.0488 1.3390 25 75 

Proposed robust 0.0455 1.01 70 30 

OLS 

50 

0.7215  4 96 

Classic robust 0.0989 1.3390 27 73 

Proposed robust 0.0872 3.99 69 31 

OLS 

30 

2.2359  1 99 

Classic robust 0.1810 1.3390 32 68 

Proposed robust 0.1731 1.33 67 33 

10. Real Data: The actual data were taken from the website of the Central 

Statistical Organization in Iraq, the General Authority for Statistics and 

Geographic Information Systems, where the data were about the average 

living conditions in all governorates of Iraq for the year 2017-2018, and the 

variables taken are the average monthly per capita expenditure as a 

dependent variable and the variables of food and clothing with shoes as 
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independent variables, and the researchers extracted the parameters using all 

three methods, the OLS method, the classical Andrew method, and the 

proposed Andrew method, before taking the results we have to make sure 

that there is no outliers in data to compare the results after add outliers to the 

same data.  

Figure (2): shows that there are no outliers in data between the range (2.5 

and -2.5), with start taking out the parameters. 

 
Figure (2): Standardized predicted values with standardized residual 

Table 3 shows the parameter values for this data using the three methods. 

Since the least squares method parameters make the errors as small as 

possible under normal conditions, we will take them as a basis for this stage 

and the stage after adding the outliers to the data to know the extent of the 

impact of these outliers on the three methods. However, it must be noted that 

the parameters for the classical Andrews method are far from the parameter 

values of the OLS methods, and it has a parameter error (42.7335), but the 

parameter values of the proposed method are very close to the parameter 

values of OLS methods with parameter error (0.0016). It uses the moving 

tuning parameter according to the data and not a fixed value. Figures (3 and 

4) show the results for data before adding outliers. 
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Table (3): Real data 

Method 
Error of 

parameters 

Tuning 

parameter 
Parameters 

OLS ----------- -------------- 

-21.8197 

2.6469 

1.5570 

Classic robust 42.7335 1.3390 

-15.2947 

2.3990 

1.8608 

Proposed robust 0.0016 11.329 

-21.78 

2.6451 

1.5595 

Figure (3) shows the true values with the estimated values as a line for each 

method. Since there are no outliers, all methods are convergent. 

 
Figure (3): Predicted line of methods with data 

Figure (4) shows the residuals for each method when estimating each value, 

where all methods were close together. 
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Figure (4): Residuals of methods 

  After extracting the real data results, we will add two outliers to the 

data, let be the second and sixth observations, y (2) = 500 and y (6) = 650, 

After adding these outliers, we will extract results for the data to see the 

extent of the impact of each method on the outliers and which one has the 

least impact on these values by comparing the differences between the 

parameter values for each method with the parameter values of the OLS 

method before adding the outliers. 

Table (4): Real data after adding outliers 

Method 
Error of 

parameters 

Tuning 

parameter 

Parameters 

(without 

outliers) 

Parameters 

(with 

outliers) 

OLS 2961.3 ------- 

-21.8197 32.5739 

2.6469 1.9833 

1.5570 3.0424 

Classic 

robust 
33.8334 1.3390 

-15.2947 -16.0076 

2.3990 2.4708 

1.8608 1.6921 

Proposed 

robust 
0.7813 3.539 

-21.78 -20.9365 

2.6451 2.6260 

1.5595 1.5387 
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  Table 4 shows that the parameters of the proposed method are better 

than those of the classical Andrew method based on the errors between the 

estimated parameters in the event of outlier values in the data, where the 

error value for the proposed method reached (0.7813) for optimal tuning 

parameter (3.539), and the parameter values were (β0=-20.9365, β1=2.6260, 

β2=1.5387). For the classical Andrew method, the error value was (33.8334) 

and the parameters (β0=-16.0076, β1=2.4708, β2=1.6921) which are less 

influential than the OLS method because the error values in it were equal to 

(2961.3) and the parameters (β0=462.3474, β1=27.9663, β2=-22.4318) 

which are very far from the parameter values without the outliers . Hence, it 

is the most influential with the outliers. The value of the tuning parameter in 

the proposed method is not fixed like the value of the tuning parameter in the 

classical Andrew method. The proposed method changes its value according 

to the number of outliers and their location. This was explained in the 

simulation data. Whenever we change the sample size or location of outliers, 

the value of the tuning parameter changes in our proposed method. Figures 

5 and 6 show the effect of the outliers on each method in charts. 

  Figure (5) shows that the estimated value line of the OLS method has 

been affected by the outliers and has been pulled in the direction of these two 

outliers, while the classical robust method has less influence and the 

proposed robust method is better than the two methods, as it is less 

influenced by the outliers than OLS and classic robust method. 

 
Figure (5): Line of estimate data after adding outliers 
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  Figure (6) shows that the OLS method was affected by the outliers in 

a way that made the differences for all values larger, while the classical 

method did not give the appropriate weight to the outliers. However, the 

proposed method gave the best weight to these values, making the errors as 

small as possible. 

 
Figure (6): Residuals after adding outliers 

Conclusion: This research has proven that the proposed robust Andrew 

method is less sensitive to extreme values that it extracts better parameters 

that are closer to the true parameter values if outliers are found in the data, 

and that the value of the tuning parameter in the classical robust Andrew 

method is not the best in all cases, as it uses a fixed tuning parameter value; 

although it is better than the OLS method, this value must change according 

to the number and location of outliers in the data. The proposed method uses 

an algorithm that always changes the value of the tuning parameter until it 

obtains the tuning parameter, which makes the errors of the parameters as 

low as possible. Based on the simulated data, the proposed method showed 

its superiority in all sample sizes (30, 50, 100) and repeating experiments 

(1000 times), which enhances the credibility of its results and its 

effectiveness in dealing with outliers, and also in real data in this research. 

http://www.doi.org/10.25130/tjaes.21.70.2.19


Tikrit Journal of Administrative and Economic Sciences, Vol. 21, No. 70, Part (2): 355-373 

Doi: www.doi.org/10.25130/tjaes.21.70.2.19 

 

370 

Recommendations: This study recommended some points, including: 

1. Use the proposed robust Andrew function instead of the classic Andrew 

function in case of outliers in the data. 

2. Connecting Andrew's function to quantile regression to extract the best 

outlier-proof equation. 

3. Developing the proposed method so that its superiority over the classical 

method and OLS is close to 100%. 
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Program-1 

clc; clear all 

n=100; beta=[1 3]';p=1;T=0;F=0; rng ('default') % For reproducibility 

for j=1:100; clear k 

x1 = randn(n,1); X=[ones(n,1) x1 ]; x=[x1]; y = X*beta + randn(n,1);y(12)= 

15;y(25)=15; 

% OLS 

b = regress(y,X); mse(j) = sum((beta-b).^2); 

% Classical robust 

bc = robustfit(x,y,'andrews',1.339); mserc = sum((beta-bc).^2); msrc(j) 

=mserc; 

% robust (bisquare) 

k(1) = 1.339;rmse1(1)=100; 

for i= 2:100;   [BR,stats1] = robustfit(x,y,'andrews',k(i-1)); rmse1(i) = 

sum((BR-beta).^2); 

  e(i-1)=abs(rmse1(i)- rmse1(i-1));   k(i)=k(i-1)+0.01; end 

[t N] = min(e); R(j)=k(N); br = robustfit(x,y,'andrews',k(N)); 

mserp = sum((beta-br).^2); msr(j) = mserp; 

if msr(j) < msrc(j); T= T+1; else; F=F+1; end; end 

msec = mean(mse), mmserp = mean(msr), Optimal = mean(R), 

mmserc=mean(msrc) 

Program-2 

clc; clear all 

n=30;beta=[1 1.5 2 -2.5]';p=3;T=0;F=0; rng ('default') % For reproducibility 

for j=1:100; clear k 

x1 = randn(n,1);x2 = randn(n,1);x3= randn(n,1); 

X=[ones(n,1) x1 x2 x3]; x=[x1 x2 x3]; y = X*beta + randn(n,1);y(12)= -

15;y(25)=15; 

% OLS 

b = regress(y,X); mse(j) = sum((beta-b).^2); 

% Classical robust 

bc = robustfit(x,y,'andrews',1.339); mserc = sum((beta-bc).^2); msrc(j) 

=mserc; 

% robust (bisquare) 

k(1) = 1.339;rmse1(1)=100; 
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for i= 2:100; [BR,stats1] = robustfit(x,y,'andrews',k(i-1)); rmse1(i) = 

sum((BR-beta).^2); 

  e(i-1)=abs(rmse1(i)- rmse1(i-1));   k(i)=k(i-1)+0.01; end 

[t N] = min(e); R(j)=k(N); br = robustfit(x,y,'andrews',k(N)); 

mserp = sum((beta-br).^2); msr(j) = mserp; 

if msr(j) < msrc(j); T= T+1; else; F=F+1; end; end 

msec = mean(mse), mmserp = mean(msr), Optimal = mean(R), 

mmserc=mean(msrc) 
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