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estimating the model parameters.
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. Introduction

To estimate the relationships between independent variables and the
dependent variable in statistical data analysis, regression models in general
and multiple linear regression, in particular, are essential tools, as we can
predict the values of the dependent variable whether they are values that do
not exist within the period studied or future values. These models can be
used in many fields such as economics, medicine, engineering, marketing,
and others (Omer et al., 2024: 112-113).

Sometimes some values differ significantly from the rest of the data
and are called outliers. These values are either harmful or necessary. Both
cases must be handled properly, as they affect the statistical analysis and
their excitation may lead to incorrect conclusions. A single outlier can extract
parameters far from the model's true parameters. There are many ways to
deal with these values, including deletion. Still, sometimes these values are
important in the data and cannot be deleted and must be handled with
extreme caution to recognize their importance and not mislead the results
(Ali et al. 2023: 9).

Some statistical methods have been developed to deal with outliers to
reduce their impact on the results scientifically called robust estimators, one
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of these methods is called Andrews' weighted function, which is a robust
estimator for dealing with data containing outliers. This method gives
weights to the variables. This method has proven successful in reducing the
impact of outliers on the model estimates, ensuring reliable and non-
misleading results. Andrews' weighted method gives less weight to outliers.
The further away the value is from the data mean, the less weight it is given to
reduce its influence on parameter estimates (Maronna et al., 2019: 357-366).

Much previous research has addressed the tuning parameter and
focused on strategies that give us a robust tuning parameter against outliers.
Many of them concluded that these methods reduce the influence of outliers
on the model's conclusions and improve the accuracy of the estimates. Some
other research has been completed by testing and examining the statistical
performance of these variables to expand our understanding of how to
enhance the stability of statistical models (Gladwell, 2008: 25-29).

This research aims to find a new approach that improves the effectiveness of
the Andrews function by determining the value of the optimal tuning
parameter for it, by finding parameters that are closest to the truth parameters
by reducing the mean square error between the model parameters without
outliers and the estimated parameters after adding outliers, all of this to
increase the stability and improve the accuracy of the estimates in the
presence of outliers. Through this approach, researchers seek to extract
results for more reliable and accurate statistical models.

. Linear Regression Model: Many statistical techniques are used to examine
relationships between variables, among which regression analysis is the most
Important technique for this purpose. (Legendre, 1805) and (Gauss, 1809)
used the least squares method to provide the earliest version of linear
regression. This method was initially used to calculate the orbits of the
celestial planets until Gauss developed the theory further in 1821 when he
proposed a theory called the Gauss-Markov theory, which is a fundamental
principle in estimating linear models. (Ali & Awaz, 2017: 38).

A statistical model is a simplified representation of a situation or
process that may produce testable hypotheses but does not represent reality.
Linear regression requires linear regression parameters to determine the
relationship between the independent variables and the dependent or
response variable. (Omar et al., 2020: 58-67).
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Due to its straightforward structure, direct computation and clear
interpretation, the Multiple Linear Regression (MLR) model is one of the
most widely used estimation models in research. The MLR model indicates
that there is a linear connection between the independent variables
(X41,X5,...,Xy) and the dependent variable (Y). The regression coefficients
are denoted by By, B4,...,and B, Where B, is a parameter that determines
the point of intersection of the regression line with the Y-axis and the
(B1,...,and B) are slope parameters. The error term € in classical regression

Is assumed to have a normal distribution with constant variance Var(g) =
o and E(g) = 0 (Xin & Xiao, 2009, p. 3; Chagas et al., p. 5, 2016; Zhang et
al. 2017, p. 6; Xie et al. 2021, p. 3; Ali et al. 2023, p. 3-6).

y =Bo + Bixs +Baxp+...+Bpxp + £ (D)

§=Bo +B1x1 +B2xp ++Bpxp 2

. Ordinary Least Squares Estimators: The ordinary least squares (OLS)
method works to minimize the sum of the squared differences of the errors
or between the predicted values in the model and the actual values.
Therefore, the OLS method is one of the most widely used methods when
estimating the parameters of a linear regression model for data analysis. It is
simple and effective for predicting linear relationships between variables
(Al etal., 2023: 7). There are three basic steps in OLS: First: Determine the
model that represents the relationship between the dependent variable and
the independent variables. Second: Estimate the parameters that give us the
least summation of the squared differences between the actual and predicted
data. Third: Test the model that was extracted using a set of statistics such as
(R?) or statistical tests such as hypothesis tests through some statistical tests
such as the t-test. The least squares method also depends on a set of basic
assumptions including homogeneity of variance, independence of errors, and
normal distribution of errors. When these assumptions are met, ordinary least
squares provide objective and efficient parameter estimates. In many fields
such as econometrics, statistics, and social sciences, the ordinary least square
Is an essential tool in predictive modelling and data analysis. (Buylov, 2022:
20-22):

. Outliers: Outliers can stimulate creativity and provide important insights,
even though they are sometimes seen as abnormal. In his book Outliers: A
Success Story, Malcolm Gladwell explains these outliers, their cumulative
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advantages, opportunities, and how to uncover the mechanisms of their
success (Gladwell, 2008: 25-29). Outliers can reveal new market trends and
uncommon disease patterns in fields such as business and epidemiology.
They are also useful for detecting bank card theft. However, sometimes,
robust strategies are needed to control outliers because they tend to mislead
the results and success of studies. Strategies such as robust regression and
statistical tests resistant to outliers are used to prevent them from
significantly impacting the conclusions (Ali et al., 2023: 5-7).

. Some Robust Estimators: Classical estimation techniques such as OLS
produce skewed parameters and misleading and inaccurate conclusions
when there are outliers in the data. They are sensitive to these values and
cannot deal with these values. Therefore, statistical techniques called robust
estimators were created. They were specifically designed to extract accurate
parameters and estimates in the presence of outliers. These techniques give
weights to the data to reduce the effect of these values or extract their effect
when estimating the parameters to obtain accurate conclusions. Among these
methods, there is a method called the weighted least squares (WLS) method,
where this method gives small weights to outliers to reduce their effect on
the conclusions and estimation of parameters (Hampel et al. 1986). There is
also robust logistic regression. This technique modifies classical logistic
regression in a way that makes it less sensitive to outliers. When we reduce
the influence of outliers, we derive estimates that more accurately and
reliably represent data that contain outliers (Pregibon, 1982). Huber
estimation is also a powerful strategy for outliers. In this method, to
minimize the impact of these values, unconventional loss functions are used.
Compared to the OLS method, this method is considered better in the case
of outliers, as it punishes large deviations less severely. (Huber, 1981). Many
studies have used these strategies and others to prove the superiority of these
techniques in the event of the presence of outliers in the data, such as: (Ali
et al. 2024); (Kareem et al. 2019 ); (Ali and Awaz, 2017).

. Weighted Andrews Function: Andrews function is a robust technique
against outliers and is one of the reliable statistical techniques. This method
gives weights to data according to their distance from the data center using
the weighting method. Outliers are assigned smaller weights to reduce their
effect. One of the main components of the Andrews weighted function is the
adjustment factor or adjustment constant or scale factor. This factor
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determines the sensitivity of the Andrews function to outliers. The analyst
can adjust this value to reduce or increase the sensitivity of the function to
outliers. According to (Marona et al. 2006), a lower value of the adjustment
coefficient results in less aggressive weighting of outliers, while a larger
value reduces the sensitivity of the function to deviations from the central
tendency (Huper and Ronchetti, 2009: 225). When using classical techniques
such as ordinary least squares (OLS), which are very susceptible to outliers
and provide inaccurate and time-consuming estimates, this function is
particularly useful (Huber, 1992: 86-95). Andrews Weighted Function
Formula is:
sin(r)

w(r) = for |r| < m and w(r) = 0 otherwise 3)

Where, r represents the residuals scaled by a tuning constant k, which
Is crucial for the robustness of the estimator (Huber, 1992: 86-95).

Tuning parameters: The power and effectiveness of the estimator are
mostly determined by the fine-tuning parameter k. For evenly distributed
data without outliers, it manages the balance between efficiency and
resilience against outliers. The fine-tuning constant for the Andrews function
Is about 1.339 by default. This value can be changed to change the weights
given to outliers; smaller constants provide more robust estimates against
outliers by assigning less weight to larger residuals, (Maronna et al. 2006:
12). Decreasing the fine-tuning constant increases, the negative weight given
to large residuals, which improves robustness but may reduce efficiency. The
required degree of flexibility must be taken into account when choosing the
fine-tuning constant in real applications. On the other hand, if the fine-tuning
constant is increased, efficiency increases but robustness decreases. In robust
regression, the residuals are formulated as follows using the fine-tuning
parameter (Wang et al. 2005, p. 1-5):

_ resid 4
T k.sV1—h )

Where h represents the effect (or leverage) values from the least
squares fit, k: is the adjustment constant, resid: are the residuals from the
previous iteration (residuals or errors) and s is an estimate of the standard
deviation of the error component, calculated using the formula: MAD /
0.6745 where MAD represents the absolute median of the deviations (\Wang
et al. 2005: 1-5).
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. Mean Square Error of parameters: The mean square error (MSE) is a
popular and widely used criterion when evaluating the effectiveness of
estimators in regression analysis. Therefore, in this context, the (MSE)
statistic is used. This statistic includes variance and bias to improve quality
and expresses the accuracy of the estimator through them. The following is
the definition of the mean square error of the estimator (McLean et al. 2012:
6106-6109):

MSE(B) = E(B - B)’ (5)

This measure is the difference between the expected value and the true
value of the estimator or provides a balance between the estimator's variance
around its expected value and its true value and the extent of its bias or
variance. Robust estimates are used when dealing with outliers frequently in
linear regression models to reduce and control their influence. Compared to
traditional techniques such as (OLS) in the presence of extreme values,
robust estimates often produce a reduced (MSE) because they reduce the
influence of extreme values on the parameter estimates. Determining the
correct tuning parameter is a challenge for all researchers, especially when
using the Andrews weighted function. Choosing the correct tuning parameter
will reduce (MSE) and is the goal of all researchers trying to obtain results
with the least error and closest to the truth so that the predictions and
estimates are accurate in all areas. Robust estimators and their mean square
error in the presence of extreme values have been studied extensively in
studies such as Huber, (1981) and Hampel et al. (1986). More recent studies,
such as the work by Maruna et al. (2019), highlight the importance of the
regularization parameter in improving the mean squared error while
exploring developments in robust estimation methodologies (McLean et al.,
2012: 6106-6109).

. Proposed Method: The proposed method involves selecting the optimal
tuning parameter value for the weighted Andrews function that handles
outliers and produces the minimum mean square error of the coefficients in
the linear regression model in the following steps:

Step 1: Set Tune=0.1,0.11,0.12 ..., 100. To estimate the model parameters,
use the weighted Andrews function for robust estimators for all Tune values.
Step 2: Determines the optimal tune parameter value that gives the minimum
mean square error of the model parameters.
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Step 3: Use a weighted Andrews function depending on the value of the
optimal tuning parameter in estimating the parameters of the robust linear
regression model.

The proposed algorithm gives the largest value for the tuning
parameter if there are no outliers in the data, which provides estimates of the
parameters of the linear regression model completely like the ordinary least
square estimators.

. Simulation Study: To prove the superiority of the proposed method, we will
compare it with classical methods such as OLS and Andrews Classic. The
researchers will generate data using MATLAB randomly for simple and
multiple linear regression, then add extreme values. Let us make the
observation (12 and 25) for simple linear regression. We will give these two
values positive numbers to show in the drawing how to extract extreme
values for simple linear regression using the (OLS) method, and for multiples
we will give a negative value with a positive value to prove the superiority
of the proposed method in most cases of extreme values in the data relative
to the sample sizes. We will use distinct sample sizes (30, 50 and 100), and
repeat the sample (1000) times. Based on the differences between the real
parameter values and the parameter values of the methods used, we will
discover the best method or the method that is less affected by extreme
values. MATLAB is designed for this purpose for simple and multiple linear
regression in the appendices and we can modify it like changing the numbers
or values of the extreme values or their location or sample sizes as changing
their location can change the results but every time as an average we will get
close results and we will start with simple linear regression and figure 1 is a
regression line for the three methods with two extreme values as we
mentioned earlier for the simple linear regression model as shown below.
Figure 1 illustrates how outliers affected the ordinary least squares approach
by showing the regression line indicating the direction of the outliers. On the
other hand, outliers did not affect the classical and proposed Andrew’s
function. For the three methods, the result of simple linear regression is
shown in Table 1.
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* Data
OLS
Classical Robust
wH - Proposed Robust

Figure (1): Regression Lines for OLS, Classical Robust, and Proposed
Robust

Table (1): Simple Linear Regression

OLS 0.1459 1 99
Classic robust 100 0.0210 1.3390 31 | 69
Proposed robust 0.0185 4.62 68 | 32
OLS 0.5318 0 | 100
Classic robust 50 0.0422 1.3390 27 | 73
Proposed robust 0.0371 1.01 73 | 27
OLS 0.6581 0 | 100
Classic robust 30 0.0840 1.3390 36 | 64
Proposed robust 0.0800 1.01 64 | 36

T represents the method that is better than other methods and F
Is worse. The data presented in Table 1 indicate that the proposed robust
method outperforms the classical robust methods and ordinary least squares
(OLS) when there are outliers in the data for sample size (100, 50, and 30),
as measured by the mean [ error where the proposed robust method value
was (0.0185, 0.0371, and 0.0800) for the tuning parameters (4.62, 1.01, and

L ————————————————————
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1.01) respectively and the classical robust method (0.0210, 0.0422, and
0.0840) respectively for the fixed tuning parameter (1.3390) and OLS
(0.1459, 0.5318, and 0.6581) respectively. Specifically, the proposed robust
method showed superior performance in (68, 73, and 64) out of 100
experiments, respectively, while the classical robust method was more
effective in (31, 27, and 36, respectively) experiments, and the ordinary least
squares method was in (1, 0, and 0, respectively) experiments due to its
sensitivity to outliers.

Table 2 shows the results of multiple linear regression for three different
sample sizes. The results in multiple linear support the proposed robust
methods same as simple linear because in all sample sizes, the proposed
robust method has less error of parameters for sample size (100,50 and 30)
which are (0.0455, 0.0872 and 0.1731) respectively and higher T numbers
(70, 69 and 67) respectively which represents the method is better. The
results in both simple linear regression and multiple regression for all sample
sizes used were in favor of the proposed robust method, but it should be
noted that the value of the tuning parameter varies in each experiment, unlike
the value of the classical robust method, which is constant.

Table (2): Multiple Linear Regression

Method Sar_nple Error of Tuning T F
Size parameters | parameter

OLS 0.2326 5 | 95
Classic robust 100 0.0488 1.3390 25 | 75
Proposed robust 0.0455 1.01 70 | 30
OLS 0.7215 4 | 96
Classic robust 50 0.0989 1.3390 27 | 73
Proposed robust 0.0872 3.99 69 | 31
OLS 2.2359 1 | 99
Classic robust 30 0.1810 1.3390 32 | 68
Proposed robust 0.1731 1.33 67 | 33

Real Data: The actual data were taken from the website of the Central
Statistical Organization in Iraq, the General Authority for Statistics and
Geographic Information Systems, where the data were about the average
living conditions in all governorates of Irag for the year 2017-2018, and the
variables taken are the average monthly per capita expenditure as a
dependent variable and the variables of food and clothing with shoes as
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independent variables, and the researchers extracted the parameters using all
three methods, the OLS method, the classical Andrew method, and the
proposed Andrew method, before taking the results we have to make sure
that there is no outliers in data to compare the results after add outliers to the
same data.
Figure (2): shows that there are no outliers in data between the range (2.5
and -2.5), with start taking out the parameters.

3.00000

2.00000 °]

1.00000 o0 @ (]

00000

-1.00000 ®

Standardized Predicted Value

-2.00000

-3.00000

-2.00000 -1.00000 00000 1.00000 2.00000 3.00000

Standardized Residual

Figure (2): Standardized predicted values with standardized residual
Table 3 shows the parameter values for this data using the three methods.
Since the least squares method parameters make the errors as small as
possible under normal conditions, we will take them as a basis for this stage
and the stage after adding the outliers to the data to know the extent of the
impact of these outliers on the three methods. However, it must be noted that
the parameters for the classical Andrews method are far from the parameter
values of the OLS methods, and it has a parameter error (42.7335), but the
parameter values of the proposed method are very close to the parameter
values of OLS methods with parameter error (0.0016). It uses the moving
tuning parameter according to the data and not a fixed value. Figures (3 and
4) show the results for data before adding outliers.
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Table (3): Real data

-21.8197
OLS | - | e 2.6469

1.5570
-15.2947
Classic robust 42.7335 1.3390 2.3990
1.8608
-21.78
Proposed robust 0.0016 11.329 2.6451
1.5595
Figure (3) shows the true values with the estimated values as a line for each
method. Since there are no outliers, all methods are convergent.

- Estimated values of the dependent variable

—O0LS

——Classic Robust
2 —Proposed Robust
s Data

200 —

Y fit

150 —

100 —

50

Observation

Figure (3): Predicted line of methods with data
Figure (4) shows the residuals for each method when estimating each value,
where all methods were close together.
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80

60

40

20

Residuals

—o OLS

—> Robust Method
_|— Proposed Method

e
Residuals for Different Estimation Methods

Figure (4): Residuals of methods

After extracting the real data results, we will add two outliers to the
data, let be the second and sixth observations, y (2) = 500 and y (6) = 650,
After adding these outliers, we will extract results for the data to see the
extent of the impact of each method on the outliers and which one has the
least impact on these values by comparing the differences between the
parameter values for each method with the parameter values of the OLS
method before adding the outliers.

Table (4): Real data after adding outliers

-21.8197 32.5739
oLS 20613 |  -eeee 2.6469 1.9833
1.5570 3.0424

e 115.2947 216.0076
fozsuss'f 33.8334 | 1.3390 2.3990 2.4708
1.8608 1.6921

Proposed 21.78 -20.9365
oo | 0.7813 3.539 2.6451 2.6260
1.5595 1.5387
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Table 4 shows that the parameters of the proposed method are better
than those of the classical Andrew method based on the errors between the
estimated parameters in the event of outlier values in the data, where the
error value for the proposed method reached (0.7813) for optimal tuning
parameter (3.539), and the parameter values were (3,=-20.9365, [3,=2.6260,
B,=1.5387). For the classical Andrew method, the error value was (33.8334)
and the parameters (3,=-16.0076, $,=2.4708, $,=1.6921) which are less
influential than the OLS method because the error values in it were equal to
(2961.3) and the parameters (B,=462.3474,3,=27.9663, 3,=-22.4318)
which are very far from the parameter values without the outliers . Hence, it
Is the most influential with the outliers. The value of the tuning parameter in
the proposed method is not fixed like the value of the tuning parameter in the
classical Andrew method. The proposed method changes its value according
to the number of outliers and their location. This was explained in the
simulation data. Whenever we change the sample size or location of outliers,
the value of the tuning parameter changes in our proposed method. Figures
5 and 6 show the effect of the outliers on each method in charts.

Figure (5) shows that the estimated value line of the OLS method has
been affected by the outliers and has been pulled in the direction of these two
outliers, while the classical robust method has less influence and the
proposed robust method is better than the two methods, as it is less
influenced by the outliers than OLS and classic robust method.

Estimated values of the dependent variable

700 —

—O0LS

Classic Robust
600 Proposed Robust
* Data

0 12 14 16 18]

. ;
Observation
I

Figure (5): Line of estimate data after adding outliers
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Figure (6) shows that the OLS method was affected by the outliers in
a way that made the differences for all values larger, while the classical
method did not give the appropriate weight to the outliers. However, the
proposed method gave the best weight to these values, making the errors as
small as possible.

. I?!esiduals for Different Estimation Methods
[ ¢ —o OLS
350 — - — Robust Method
¢ ? Proposed Method
300 —
250 —
200 —
(73]
T
3
T 150
w0
i
nd
100 —
50 — Q
@
0 JJ - 9 I . l [ ! . T 9
° & ¢ 0 |
6 l : (L ©
100 | | l | \
0 2 4 6 8 10 12 14 16 18]
Observation I

Figure (6): Residuals after adding outliers

Conclusion: This research has proven that the proposed robust Andrew
method is less sensitive to extreme values that it extracts better parameters
that are closer to the true parameter values if outliers are found in the data,
and that the value of the tuning parameter in the classical robust Andrew
method is not the best in all cases, as it uses a fixed tuning parameter value;
although it is better than the OLS method, this value must change according
to the number and location of outliers in the data. The proposed method uses
an algorithm that always changes the value of the tuning parameter until it
obtains the tuning parameter, which makes the errors of the parameters as
low as possible. Based on the simulated data, the proposed method showed
its superiority in all sample sizes (30, 50, 100) and repeating experiments
(1000 times), which enhances the credibility of its results and its
effectiveness in dealing with outliers, and also in real data in this research.
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Recommendations: This study recommended some points, including:

. Use the proposed robust Andrew function instead of the classic Andrew

function in case of outliers in the data.

. Connecting Andrew's function to quantile regression to extract the best

outlier-proof equation.

. Developing the proposed method so that its superiority over the classical

method and OLS is close to 100%.
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Program-1
clc; clear all
n=100; beta=[1 3]';p=1;T=0;F=0; rng (‘default’) % For reproducibility
for j=1:100; clear k
x1 =randn(n,1); X=[ones(n,1) x1 ]; x=[x1]; y = X*beta + randn(n,1);y(12)=
15;y(25)=15;
% OLS
b = regress(y,X); mse(j) = sum((beta-b).”2);
% Classical robust
bc = robustfit(x,y,'andrews',1.339); mserc = sum((beta-bc).”2); msrc(j)
=mSserc;
% robust (bisquare)
k(1) =1.339;rmsel(1)=100;
for i= 2:100; [BR,stats1] = robustfit(x,y,'andrews'k(i-1)); rmsel(i) =
sum((BR-beta).”2);
e(i-1)=abs(rmsel(i)- rmsel(i-1)); k(i)=k(i-1)+0.01; end
[t N] = min(e); R(j)=k(N); br = robustfit(x,y, andrews',k(N));
mserp = sum((beta-br).”2); msr(j) = mserp;
If msr(j) < msrc(j); T=T+1; else; F=F+1; end; end
msec = mean(mse), mmserp = mean(msr), Optimal = mean(R),
mmserc=mean(msrc)
Program-2
clc; clear all
n=30;beta=[1 1.5 2 -2.5]";p=3;T=0;F=0; rng ('default’) % For reproducibility
for j=1:100; clear k
x1 =randn(n,1);x2 = randn(n,1);x3= randn(n,1);
X=[ones(n,1) x1 x2 x3]; x=[x1 x2 x3]; y = X*beta + randn(n,1);y(12)= -
15;y(25)=15;
% OLS
b = regress(y,X); mse(j) = sum((beta-b).”2);
% Classical robust
bc = robustfit(x,y,'andrews',1.339); mserc = sum((beta-bc).”2); msrc(j)
=mSserc;
% robust (bisquare)
k(1) = 1.339;rmse1(1)=100;
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for i= 2:100; [BR,statsl] = robustfit(x,y,'andrews'k(i-1)); rmsel(i) =
sum((BR-beta).”2);
e(i-1)=abs(rmsel(i)- rmsel(i-1)); k(i)=k(i-1)+0.01; end
[t N] = min(e); R(j)=k(N); br = robustfit(x,y,'andrews',k(N));
mserp = sum((beta-br).”2); msr(j) = mserp;
iIf msr(j) <msrc(j); T= T+1; else; F=F+1; end; end
msec = mean(mse), mmserp = mean(msr), Optimal = mean(R),
mmserc=mean(msrc)
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