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ABSTRACT
A comparative study for temperature dependence of bulk modulus and an investigation
for the evolution of this variation have been established, by using five different theoretical
equations, according to their historical development. The theoretical results obtained in this
work have been compared with experimental data. Pyrope garnet, Mg3Al2(SiO4)3, has been
chosen as an example for solid materials.
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Mg3AI2(Si04)3

INTRODUCTION

The behavior of minerals under the influence of high temperature, has attracted the
attention of theoretical as well as experimental workers (Isaak et al.,1989; Anderson et al.,
1992; Kumar, 1996). The knowledge of elasticity of the minerals is useful for interpreting
the structure and composition of the lower mantle and also in seismic studies (Upadhyay et
al., 2011). Considerable efforts have been made to predict the equation of state of minerals
under varying conditions of pressure using diamond- anvil cell. However, fewer efforts have
been made under the effect of temperature at room pressure.
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Garnet is one of the most abundant mineral constituents in the earth’s upper mantle to
mantle transition region. Elastic properties of pyrope have been the focus of extensive
experimental and computational studies. Most of the high pressure experimental studies for
pyrope were carried out at ambient temperature (Sinogeikin and Bass, 2000; Chen et al.,
1999; Zhang and Herzberg, 1994) or high temperature-room pressure (Sinogeikin and Bass,
2002). In recent years, Ab initio molecular dynamics which simulates stress-strain
relationships at elevated pressure and temperature conditions, has been used to quantify
thermo-elasticity of pyrope (Li et al., 2011). Pyrope is the only member of the garnet family
which always displays red coloration in natural samples, and because of this characteristic it
got its name. The composition of pure pyrope is Mg;Al,(SiO,);. It is considered to be the
major end-member garnet in the earth’s upper mantle and transition zone. So we chose
pyrope as an example to study the validity of several theoretical methods for calculating the
temperature dependence of bulk modulus by comparing them with the experimental data.

THEORETICAL DETAILS

The bulk modulus is a material’s resistance to uniform compression, given by the 2nd-
order volume derivative of the material’s free energy; sometimes referred to as
“incompressibility” (Murphy, 2012). Many isothermal equations of state EOS require
knowing the value of the bulk modulus at the temperature of interest. The relationship

between the pressure and the volume is given by the isothermal bulk modulus (B7) :

-
oV

The experiments show that both the volume coefficient of expansion and the isothermal
bulk modulus are pressure and temperature dependent.

The bulk modulus varies with temperature, this variation is studied theoretically using
several methods. We calculate the results of these methods as follow:

Method 1
The following equation is presented by Kumar (Kumar, 1996 ; Pal ef al., 1998)

B, =B[l-a,6,(T-T)] .cooviiieiiiiiiieiin (1)

Where: By is bulk modulus at temperature 7. B, is bulk modulus at room temperature
(T,). a, 1s the coefficient of thermal volume expansion at ambient conditions. dy is the
Anderson-Gruneisen parameter which is considered to be temperature independent in this
method.

Method 2
The mathematical form of Kumar EOS reads as (Kumar and Bedi, 1996):

VKZI_%M 1+i{p_QUBU(T_TU)}} .............. )
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Here V is the volume at pressure P and temperature 7, 4 =(dr+1). , refers to their value at
room temperature and atmospheric pressure. Differentiation of Eq. (2) (i.e calculating
OP/0V)r and multiply the result by (-V) gives (Kumar 2000; Kumar 2002):

B p :{1—&”{1+§—Aao(T—TO)H{H%—Aao(T—T(,)} .............. 3)

B A
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Brp is bulk modulus at temperature 7 and pressure P. In a particular condition (P=0),
Eq.(3) may be rewritten as follow:

%:[1—%&4{1—Aao(T—TO)}}[l—AaO(T—TO)] ............................... (4)

o, 1s temperature dependant parameter (Vinet ef al.,1989) this dependence is given by the
following empirical relationship (Chandra ef al., 2008)

T k
5 =6, (F] ........................................................................ (5)

o

Where: 7, is the room temperature and &, is the value of Anderson-Gruneisen parameter at

T=T, . k is a dimensionless thermo elastic parameter which can be calculated from the slope
of the graph plotted between log o1 and log(7/7,) (Upadhyay et al., 2011).

Method 3
The following expression is derived theoretically by Garai and Laugier (Garai and
Laugier, 2007):

T
B, =B, Exp{— [6,a, dT} ..................................................... (6)

T7=0

Where: Br— is the bulk modulus at absolute zero temperature. In the above reference the
integration was done numerically by using linear polynomials with correlation coefficient
and the derived analytical solution for the temperature dependence of the isothermal bulk
modulus has been applied to ten substances. They assume that the Anderson-Gruneisen
parameter is approximately constant at temperatures above the Debye temperature. To do
the integration in Eq. (6) we have to take into account the linear variation of ay, with T
which can be scripted as follows (Anderson, 1995):

aV=aU[1+ao5T(T—T0)] .......................................................... (7

Where: T,=300 K. Substituting Eq.(7) in Eq.(6). The steps of integration are:

T
B; :BT_OEXP{_ Or “ao +05025T(T_To) ]dT}

=0
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TZ
B, = BT_OExp[—5T a,T-6}a’ ~7+5ﬁ af]j)T}

B, =B, Exp{— ora, T(1+ or j" d +0;a, Toﬂ .............................. ()

To calculate the variation of bulk modulus with temperature by using Eq.(8) we need
the value of (Br-y) which can be calculated from Eq.(1). At 7=0 the calculated value of bulk
modulus is (177 GPa) for pyrope garnet.

Method 4
Singh and Gupta proposed equation of state to determine By (Chandra et al., 2008;
Chandra et al., 2009). The expression for bulk modulus is given bellow :

a o
B, = B | 1—— e T T 9
T o T;}k(k‘f‘l){ 0 }:| ( )

This equation is characterized by the presence of the dimensionless thermo elastic parameter
(k) which in case that it equals 0, Eq. (9) will return to Eq. (1).

Method 5
Assuming that the product of thermal expansivity and bulk modulus will remain

constant. The expression for bulk modulus as a function of temperature can be written as
(Upadhyay et al., 2011):

1+114 Exp{ozoA(T—To)}_l.|_{OloA(T—_To)}3

B, 6
s Y S et 10
] (10)
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RESULTS AND DISCUSSION

The variation of bulk modulus with temperature for pyrope garnet is plotted in (Fig. 1)
using the equations of methods (1-5) together with experimental data reported by
(Anderson et al., 1992). The values of input parameters used in the theoretical equations are
0,=2.36 %107 K (Anderson et al., 1992), B,=169.4 GPa , 6°7=6.27 (Anderson, 1995 ) and
k=0.018 (Upadhyay et al., 2011).

In method 1 Eq.(1) is the simplest form of the temperature dependence of bulk
modulus. In addition, the Anderson- Gruniesen parameter is considered to be temperature
independent. Nevertheless, (Fig.1) shows that Eq. (1) has a good agreement with
experimental data.

In method 2 Eq. (4) is used to calculate the variation of B with T taking into account
that the Anderson- Gruniesen parameter varies with 7 according to Eq. (5). The results of
this method also agree with the experimental data.

In method 3 Eq. (6) has some difficulties such as the way of integration, the correlation
coefficient, considering the Anderson- Gruniesen parameter constant and needing the exact
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value of B at 7=0. The results of this method i.e. Eq. (8) shown in Fig. (1) have less
agreement with the experimental data than the other methods.

In method 4 Eq. (9) needs the value of the parameter £ which is available for pyrope
garnet. The results show a good agreement with the experimental data and the other
methods.

In method 5 Eq. (10) is used and the Anderson- Gruniesen parameter is considered to
be a temperature dependent parameter. The results shown in Fig. (1) have a good agreement
with the experimental data.
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Fig. 1: The variation of bulk modulus with temperature for pyrope garnet using
different theoretical methods, with experimental data from (Anderson et
al., 1992).

CONCLUSIONS

The variation of bulk modulus with temperature is shown in Fig. (1) using five
theoretical equations along with the experimental data for pyrope garnet. The curves of Eq.
(1, 4, 9, 10) are close to each other and to experimental data especially near the room
temperature and diverge a little bit at higher temperatures. The results of Eq. (8) have a less
agreement with the other results. This disagreement increases at higher temperatures.

We conclude from this comparative study that the accuracy of any theoretical equation
does not depend on its complications, but it depends on the way of derivation and the
conditions of using the equation.
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