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Abstract

Differential equation governing free in-plane vibration of non-prismatic thin
circular curved is a sixth-order differential equation with eigenvalue in two-points
boundary conditions, the problem is realized by sixth-order differential operator with
spectral parameter in two-points boundary conditions. It is linear combination of three
differential operators of different orders. It is shown that the operators are symmetric,
self- adjoint and compact .we study the oscillation properties of the system of
eigenfunctions of this operators in the extended Hilbert space.

Keywords: differential operator, eigenvalue, eigenfunction, symmetric, self-adjoint,
compact, basis property.

1-Introduction

Curved structural members are frequently used by civil and mechanical engineers
in industrial application. Most of the literature on curve beams revolves around analysis
of circular arches. The goveming differential equation of uniform inextensible Euler-
Bewoulli arches is a sixth-order differential equation with constant coefficients with
eigenvalue parameter in the two-point boundary conditions.
The mathematical model for beams and pipes is represented by boundary-value

problems:
d6u  dsu _ 5 8% a2u
dxt + dxs =-a Atz (axz +u)’ X€ ({]Jl)Jt = (0;:’3) (11)

u(0,H)=u,(0,t) =0
u(L,t)= u,(1,£) =0 (1.2)
uxxx(ovt) = m‘{xx ({]J t]
uxxx(lvt) = m‘{xx(:l-ytj
Applying the Fourier method to the boundary value problem (1.1)-(1.2) separating the
variables by:

ux,t)=y(x)e
We obtain the sixth-order eigenvalue problem:
y{a] + 2},{4] — 32 (jf“ +2y) (1.3)
y(0) =y (0)=0

—mi
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y(1) =y (1)=0
y 0 =ry"(0) (1.4)
y O=x"(1)

where A=am > 0, with a constant & depending on the geometry and the physical
properties of the configuration.

The application of this boundary problem was given on [5,6,10,12] . in general, for
the equation (1.3) when the boundary conditions (1.4) contain the a spectral parameter
this problem can't interpreted an eigenvalue-eigenfunction problem in the Hilbert space

L ,(0,1). From this point of view, in [3,4] the expression of the operator of the boundary
value problems for second order differential operators with eigenvalue parameter

dependent conditions have been given in the space L,(0,1) XC (C complex numbers).

In [1,7] this approach has been extended to a forth order differential equation
describing small transversal vibrations of a homogeneous beam compressed or stretched
by a force. Various aspects of a sixth-order differential operators with a spectral
parameter contained in one-point boundary conditions, including spectral asymptotics
and basis properties, have been investigated in [8]. Numerical methods and other
techniques for the investigation of sixth-order boundary value problems can be found in
[2,9,11]. This presented paper introduced a study the properties as completeness |,
minimality and basis prosperity are investigated for eigenfunction of the spectral
problem (1.3)-(1.4) in extended Hilbert space.

2- Problem formulation
We introduce the special inner product in the Hilbert space L-(0,1) X € X C and
we give some definition and lemmas. We denote by H= L,(0,1) X C X C, the Hilbert

y(x)
space of all elements ¥V = ( a ) which is scalar product defined by:
b
<P,V == fﬂl y(x)y(x)dx + aa — bb (2.1)

=llyll* + lal® — [bI?

We denote by A the operator is defined in the Hilbert space by:

A=-17A, +hA, — A, (2.2)
Where A, is the operator which is defined in H by:
(_yu N 2}})
Ay = 0 for VEH (2.3)
0
and A, is operator given by:
0 0 0
A, = ({] 0 1) (2.4)
0 0 1
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and Aj the operator defined in H with domain D(A3) by:
v (&) 4 2}1 (4)

A; = ™ (0) for ¥ € D(A) (2.5)
¥ 1)
y(x)
And it’s the domain D(A3) of all elements ¥V =| a | € H satisfying the
b
conditions:

1- y(x) € wZ(0,1)
2-y(0)=y(0)=0
3-y()=y(1)=0
4-a=y (0)

5-b=y (1)

Remark 2.1:
1-D(A) = D(4;)
2-D(A;)=D(43)

Theorem 2.2: The differential equation (1.3) and the boundary conditions (1.4) hold if
and only if for ¥ € D(A): for A¥=0, holds.

Proof: for ¥ € D(A4) and
y® +2y® 1+ 323(y™ + 2y)=0
y0) =y (0)=y1)=y(1)=0

y T (0)= AYT(L)
then

v(x) y(x) —y +2y 0 y© +2y®@
AF = ( a ) =|¥7(0) |= —F‘uz( 0 )-I— FL(}’“(':']) - ¥(0)
b ¥y (1) 0 ¥ (1) v (1)
=23y +2y) -y —2y@
= ( 1y (0) — ¥(0) )

Ly (1) =¥ (1)

Applying the equations (1.3) and (1.4) we get:

y@+2y® 45y +2y)\ (0
AF=l yU@-170)  |= (ﬂ)
v () =y (1) 0

Then
AV=0 for ¥ €ED(A)
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Let AV=0 for for ¥ € D(A) then

—y +2y 0 y& 4 2y 0
ay==2 o |+2[y@]-| v |- (”)
0 v (1) ¥y (1) 0

0@ +2y® +25(y +2y))
1 (0) =5 (0)
(1) =¥ ()

Il
A
o R e Y
—

Then
0@ +2yP+25(y +29)) =0

y(0)=y (0)=y(1)=y (1)=0
y (0)= 2y (0)
y (D)= 2y (1)

the theorem is proved.
Remark 2.3: The operator A describes the eigenvalue problem (1.3)- (1.4).
Theorem 2.4: the domain D( A5 ) is dense in the Hilbert space H.

Proof:

w
Let W = (c) € Hsuchthat < V,W == 0forally€ D(A;)and c = d.

d
1 _ Y E T
J, YW (x)dx +y~(0)c—y~d =0
:}f
If ¥ € cg (0,1), then y(0)=y *(1)=0 and ({]) € D(A3) where
0

[ y(W()dx = 0 forall y € cg(0,1)

It follows that w=0
Lety(x)=x2(1 — x)?
satisfies y(0)=y (0)=y(1)=y (1)=0
y " (0)=2+0
y (1)=27%+0
Hence
y(x)
F=[y"(0) |eD(4,)
y'(1)
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Since w=0, it follows that 0 < ¥, = =y (0)¢— y ™ (1)d
=2¢— 2d=0
but ¢ = d then c=d=0
showing that W=0
Hence
D(A;) ={0}
The theorem is proved.
Lemma 2.5: the operator Asis symmetric.

Proof: from the lemma 2.4, A is densely defined. For ¥,Z € D(A;)we have :
1 1

<Ay §,2 == j}rfﬂz‘(xjdx + zf y ¥ 2(x)dx + 3 (0)Z7(0) — ¥ (1)z7(1)

o o
Integrating by parts and observing the boundary conditions by elements in (A45) , it
follows that :

[} y®2(x)dx = [ y()Z2(x)@dx + 2 (1) (1) — 2 7(0)y ™ (0) — 2 (W™ (1)
+270)y"(0)

2 f}r':4}5(x]dx =2 f y(x)z (x)
Hel}nce ’

<43,5.2>= [[y@z@9dx +2 [[ y@Z¥ (@) +y (0770 - (1)z (1)
= <y,4,7>
The lemma is proved.

Remark 2.6: since D(A4,) = D(A4;) and D(A)= D(A3) then D(4,), D(A) are
dense in Hilbert space H.
Lemma 2.7: the operator A;is symmetric.

Proof: the domain D (A;) is dense in H for #,Z € D(A4;)
We have

<AFE>= [0y (020 dx + 2 [] y(x)Z(x)dx
Integration by parts and observing the boundary conditions by elements in D(A4,), it
follows that:
[y a0 dx = [ y(x)Z () dx
Hence
<A F,2>= [y (dx + 2 [] y(x)Z(x)dx
=<y, Az=
The lemma is proved.

Lemma 2.8: The operator A is positive.
Proof: [8].
Lemma 2.9: the operator A is self-adjoint .
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Proof: [13, 14].
Lemma 2.10: the operator A is self —adjoint bounded in L,(0,1) X ¢ X ¢.
Proof: [8].
Lemma 2.11: the operator A;and A5 are semi-bounded from below in Hilbert space H.
Proof: [1,15].
Theorem 2.12: There is unboundedly increasing sequence {%2} of eigenvalues of the
boundary value problem (1.3) — (1.4)
R SR EA R
(2.8)
Moreover, the eigenfunctions V,,(x) corresponding to 72 has exactly n simple zeros in
the interval [0,1].
Proof: [8].
Theorem 2.13: If the operator A is compact in Hilbert space H then A is bounded.
Proof:[1.15].
Theorem 2.14: the operator A;and Asare invertible if and only if [;=0 [1;=0 are not

eigenvalues of A;and Aj respectively.
Proof:[1].

3-Green's function of the operator Aj
Let @1 (x),9;(x),03(x), 04 (x), @5 (x) and @g(x) six solutions of the

equation:
déy(x) déy(x)
e T2 =W
(3.1)
Such that p is a not eigenvalue of A; and the three solutions

@, (x), 9, (x) and ¢, (x) satisfying the initial conditions:
©1(0) =0 and @,(0) =0 and @3(0)=0
:(0)=0  @,(00=0  ;(0)=0
;=1  ¢,(0)=1  ¢;(0)=1

0; (=1 @, (M=p  ¢; (0)=p
pP(M=1 oPM=0  ¢P(0)=1
o0 =0 ¢F0)=1  ¢7(0)=0

Also, the three solutions @4 (x), @5 (x) and ¢ (x) satisfying the initial conditions:

@s(1) =0 and @5(1) =0 and @s(1)=0

e, (=0 ;D=0 @,(1)=0

e, (D=1 ;=1 (1=

o D=1 @, (M=p @, (D=n

e =0 P =0 ¢(1)=1
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eI =-1 oM =1 ¢PWD=0

And let WD: W(@lr @21 @31 @41 qp.i J‘Pﬁl] + D then
WX w (@, 05, Pz, Ps, 5 ,©0,) % 0 forall xE [0,1], where w is the wronskian
determinate and this means the solutions are linearly independent, the Green's function

of the operator A5 such that p is a not eigenvalue is given by a function in the form:
3
>, a; (o, (x D=x<t=1
G(x, t, ) :{ZH (0000

3.2
= a; (D ; (x) 0=st<x<1 (3.2)
Where
2. 3. & .5 6
a,(t) = 0" ¢ zrﬁﬂ @°] 53
-1 1.3, 4. 5. _6&
a,(t) _ (Ve 'i:‘" @° @] o
1. 2. 4.5..6
a,(t) = W .
-1 1.2, 3.5 6
a,(t) = (=Vle fi:" @°¢°] 56
as(t) = W o
-1 i..2..3 4.5
as () = 2@ irﬁp ¢* @] a5
Where
Wt — W(qle Pa,P3,P4,Ps5 ,Ps, t] (39)
_ q_‘)}_ -
Pj
(Pj - (P} (3.10)
Pj
4
o]

Theorem 3.1: The operator A5 is self-adjoint in the Hilbert space H.
Proof: From lemma (2.5) the operator A5 is symmetric and to proof that :
(A3 — w)"*H = D(45) (3.11)
Where | is the unit operator.
Let ¥ = (v(x),a,b) € D(A;) and satisfying:
(Az-pi) ¥ =F (3.12)
Where F=(f;(x), 5, fz) € H and s a not eigenvalue of Aj.

The equation (3.12) is a non homogeneous differential equation has a solution is given
by a function in the form:

Y)=Ee, k(1) — [, Glx,t, Wi ()dx (3.13)
a=y (0)
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b=y (1) (3.14)
where k;, i=1, ... 6 constants and G(x, t, p) defined in (3.2).
from the (theorem (2.1) [7]) we get:

= (A;—uD)~'F
So
VE@;—u)H
Then
D(A3)C (A; — )~ *H (3.15)

Since i is a not eigenvalue of A, forall
F = (fi(x),£, f2) in H, there exist ¥=(y(x), a, b) such that:

(Ay—pl) y=F (3.16)
We obtain v € w2 (0,1) and y(0)=y(0)=y(1)=y (1)=0
Then
V=(y(x), a, b) € D(4;)
From [15] _
V= (4; — p)"'F (3.17)
Then
(A; —p)™'¥ € D(43) (3.18)
So
(4; —p)"*HCD(A,) (3.19)
From (3.15) and (3.19) we obtain:
(A; —uH)™*H = D(4) (3.20)

The theorem is proved.

Theorem 3.2: The operator (A5 — W) is compact if p is a not eigenvalue of Aj.
Proof: From equation (3.12) we obtain

[H - I"ij 1[f1 (_'Ij ﬁ"fé!:] (Zz =1 ij' (_'Ij - ..rl}l G (I,t, I-'L:]flttj drr}F\IL(D:]J}F“(ljj (321)
is a linear compact operator in H such that  is a not eigenvalue of A. [15]
Remark 3.3:The operator A is : symmetric, self-adjoint and compact in H.

4-Oscillation properties of Eigenfunction of the operator A
Remark 4.1: The solution of the boundary problem (1.3) — (1.4) is given by a function in
the form:

y(x)= ¢4 (1y) cosv2 x + ¢, (y) sinv2 x + ¢; (1) ew cc-s :lr: +

1 l-|-1 g
c4(u1]e»z 5111 x—|—c3(|.11)e 2" cc-s x—|—c5(|.11)e e 5111 = ~X (4.1)
where 1% = 4”1 and c;(|y),i=1, ..., 6 are ﬁmctlons of Hy.
Theorem 4.2: The eigenfunction of the operator A form orthonormal basis in the space H.

Proof: The operator A has at most countable eigenvalues 2. and eigenfunction ,(x)
which have the asymptotic form:

hn =1+ 00 (4.2)
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Y (%)
Fo(x) =1 1, (0) (4.3)
V. (1)
'51":!J-1n} cosv2x + co (U, ) sin 2 x + c3(uy,,) e VZ |z:|::sH '1x +
in.. Ham l-l_
P, lx) = Cq(liln}e 7 Je = CUS%X'FCE.(HH}E i smix (4.4)

¥» (0)
¥n (1)

Since the operator A: compact, self-adjoint and bounded, Applying the Hilbert-Schmidt
theorem [16] to the operator A, we obtain that the eigenfunctions of the operator A from
an orthonormal basis in the Hilbert space H.

Theorem 4.3: the system of eigenfunctions {V,(x)}5 (7 # 7ny) (where no be an
arbitrary fixed nonnegative integer), of the boundary problem (1.3) - (1.4) is a compact
and minimal system.

Proof: From the theorem (4.2) the eigenfunctions

Vn ()
F.00) = | ¥, (0)
V., (1)
(where ¥,,(x) defined in (4.4)), of the boundary problem (1.3) — (1.4) from a basis in
H=L,(0,1)XcXc.

So, the system {v,,(x)}g is complete and minimal in H, we denote by P the
orthoprojection which is define by the formula:

Pjﬁﬂ(x] = yﬂ(x] inH.
Thus codimp=1 . Then by (3.2) [7] the system:

P00} = 0n (O}

Hin
. T Hin
4 (um)cus*\,;‘Ex + (”1 )5111 2x + oy (um)eﬂ cusl—,zx +
l-llr u1
VTt n -,2 L VT el
54(p1 )e 5111 x+65(ph_)e cos 2x+cﬁ(p1 )e smwx -
Whose one element is omitted from faroms a complete and minimal system in

Hp, = P(H)=1,(0,1).
Hence, the eigenfunctions {¥,(x)}5 of the boundary problem (1.3) — (1.4) are
complete and minimal in L,(0,1).
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