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In this paper, we introduce a novel flexible probability distribution called 

the Exponentiated Cosine Lomax distribution (ECLD), developed by compounding the 

exponentiated family with the cosine Lomax distribution. The proposed model 

incorporates an additional shape parameter, enhancing its flexibility to model complex 

real-world data with heavy tails, skewness, and non-monotonic hazard rates. We 

derive key statistical properties of the ECLD, including moments, moment-generating 

function, quantile function, and hazard rate. The model parameters are estimated using 

the maximum likelihood estimation (MLE) and maximum product of spacings 

(MPS) methods. A comprehensive simulation study is conducted to assess the 

consistency and efficiency of the estimators. To demonstrate the practical applicability 

of the ECLD, we analyze two real-world datasets. Comparative studies with existing 

models, including the Odd Frechet Lomax, half logistic Lomax, cosine Lomax, Lomax 

and sine Lomax distributions, reveal that the proposed ECLD provides a significantly 

better fit based on goodness-of-fit criteria such as the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and Kolmogorov-Smirnov (K-S) test. 

The findings suggest that the ECL distribution is a robust alternative for modeling 

skewed and heavy-tailed data in various fields. 
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1. Introduction  

Probability distributions play a pivotal role in 

statistical modeling, providing the 

mathematical foundation for describing real-

world phenomena across various disciplines, 

including engineering, finance, environmental 

science, and survival analysis. The choice of an 

appropriate probability distribution is crucial, 

as it directly influences the accuracy of data 

analysis, parameter estimation, and predictive 

performance. Over the years, researchers have 

developed numerous flexible distributions to 

capture complex data behaviors such as 

skewness, heavy tails, and multimodality, 

which classical distributions often fail to 

adequately model. 

Recently, trigonometric transformations have 

gained significant attention in the statistical 

literature for their ability to introduce 

additional flexibility into existing distributions. 

By incorporating sine and cosine functions into 

the structure of traditional distributions, new 

flexible models have emerged, demonstrating 

superior fit in various applications. Examples 

include the sine half-logistic inverse Rayleigh 

distribution [1], the ArcTan Lomax distribution 

[2], the sine exponential distribution [3], the 

type-I cosine exponentiated Weibull 

distribution [4], the new sine inverse Rayleigh 
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distribution [5], the Arc-tangent exponential 

distribution [6], the sine Lomax distribution 

[7], the sine Weibull distribution [8], the cosine 

pie-power odd Weibull distribution [9], the 

cosine Gompertz distribution [10], the sine 

power Rayleigh distribution [11], the sine type 

II Topp-Leone exponential distribution [12], 

the sine Lomax-exponential distribution [13], 

the sine inverted exponentiated Weibull 

distribution [14], the sine Topp-Leone 

exponentiated exponential distribution [15], 

and the cosine inverse Lomax exponentiated 

Weibull distribution [16]. However, many of 

these trigonometric based distributions still 

exhibit limitations in modeling datasets with 

extreme skewness or varying tail behaviors, 

often requiring additional parameters or 

structural modifications to improve their 

adaptability. 

The cosine Lomax distribution [17] represents 

progress in this direction, offering improved 

modeling of heavy-tailed and right-skewed 

data in reliability and survival analysis. 

However, it still falls short when dealing with 

more complex data characteristics, especially 

in cases of strong asymmetry or heavier tails. 

To address this limitation, the exponentiated 

cosine Lomax distribution (ECLD) is proposed. 

By introducing an additional shape parameter 

through the exponentiated family, the ECLD 

offers greater flexibility, allowing it to 

accommodate a wider range of tail behaviors 

and skewed data patterns, while maintaining 

mathematical tractability. 

In this paper, we derive key statistical 

properties of the ECLD, including its moments, 

moment-generating function, quantile function, 

and hazard rate function. We estimate the 

model parameters using both the maximum 

likelihood estimation (MLE) and maximum 

product of spacings (MPS) methods, followed 

by a simulation study to assess the consistency 

and efficiency of the estimators. To 

demonstrate the practical utility of the 

proposed model, we apply it to two real-world 

datasets and compare its performance with 

existing distributions, including the traditional 

Lomax, cosine Lomax, and other competing 

models. Our results show that the ECLD 

provides a superior fit based on goodness-of-fit 

criteria, reinforcing its potential as a valuable 

tool in statistical modeling. 

 

2. Development of the Exponentiated Cosine   

    Lomax Distribution 

The cumulative distribution function (CDF) 

and probability density function (PDF) of the 

exponentiated-G family of distributions 

introduced by [18] are given by: 

 ( )  [ ( )]                                                                                                                                                    ( )  
 ( )    ( )[ ( )]                                                                                                                                       ( ) 

where     is a shape parameter, and  ( )      ( ) are the CDF and PDF of the baseline 

distribution, respectively. 

The CDF and PDF of the cosine Lomax distribution are given by: 
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where     is a shape parameter and     is a scale parameter. By substituting equations (3) and 

(4) into (1) and (2), respectively, we obtain the CDF and PDF of the new exponentiated cosine 

Lomax distribution (ECLD) as: 
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Figure 1 displays the PDF plot of the ECLD, illustrating its right-skewed behaviour. 
 

 
Figure 1: PDF plot of the ECLD 

Survival Function 
 

The survival function gives the probability that a random variable exceeds a specific value. For the 

ECLD, the survival function is given by: 
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Hazard Function 
 

The hazard function is a fundamental concept 

in survival analysis that describes the 

instantaneous risk of an event occurring at 

time x, given that the event has not yet 

occurred up to that point. For the ECLD, the 

hazard function is obtained as: 
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Figure 2 displays the hazard function plot of the ECLD, revealing an upside-down bathtub-shaped 

(unimodal) failure rate pattern. 
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Figure 2: Hazard function plot of ECLD 

Reverse Hazard Function 
 

The reverse hazard function of ECLD is given by:  
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Cumulative Hazard Function 

The cumulative hazard function of the ECLD is given by: 
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Quantile Function 

The quantile function of the ECLD is given by:  
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3. Mathematical Properties 

3.1 Linear expansion of the PDF  

The PDF of the ECLD cab be expanded using power series expansion as follows: 
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Applying binomial expansion to the last term of the pdf gives: 
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Therefore, equation (6) becomes: 
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The last part of equation (12) can be expanded using Taylor Series expansion as follows: 

[   [
 

 
[  (  

 

 
)

  

]] ]

 

 ∑
(  ) 

   

 

   

(
 

 
)
   

[  (  
 

 
)

  

]
   

                                                     

Therefore, equation (12) becomes: 
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Applying Taylor series expansion to the sine term gives; 
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Applying binomial expansion to the last term of equation (14); 
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The expression in equation (15) is the reduced form of the PDF of the ECLD. 

3.2 Moments 

The     raw moment   
  of the ECLD is 

defined as: 
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3.3 Moment Generating Function (MGF) 

The moment generating function is defined as 

the expected value of the exponential function 

of a random variable. It provides a summary of 

the distribution and can be used to obtain all 

the moments of the distribution by 

differentiation. For the ECLD, the mgf is given 

by: 
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For the integral to converge, we set t<0, that is  

      so that, the integral becomes: 
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Substituting        we have 
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Therefore, the moment generating function of the 

ECLD is given by: 
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4. Parameter Estimation 

This section discusses the two methods used to estimate the parameters of the ECLD. 

4.1 Maximum Likelihood (ML) Method 

Let              be a random sample of size n from the ECLD. The log-likelihood function is given 

as: 
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The partial derivatives of the log-likelihood function with respect to the parameters are: 
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The maximum likelihood estimates (MLEs) of 

the parameters (     ) can be obtained by 

solving the system of equations formed by 

setting the above derivatives to zero. 
 

4.2 Maximum Product of Spacings Method 

The Maximum Product of Spacings (MPS) 

method provides an alternative to the MLE, 

particularly effective when dealing with small 

samples or heavy-tailed distributions. The MPS 

estimation is based on maximizing the 

geometric mean of the spacings between 

successive cumulative distribution function 

(cdf) values. The MPS method has been 

successfully applied in parameter estimation by 

several authors. For instance, it has been 

employed by [19], [20], [21], and [22] in 

estimating the parameters of different statistical 

models. To obtain the estimates of the 

parameters of the ECLD using this technique, 

the following function must be optimized:  
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where,  

  i:n i-1:n
I = F(x ) - F(x )

i i
x  

0:n n+1:n
F(x )=0 and F(x )=1.

5. Simulation Study 

This section presents a simulation study conducted to assess the performance of the Maximum 

Likelihood Estimation (MLE) and Maximum Product of Spacings (MPS) methods in estimating the 

parameters of the Exponentiated Cosine Lomax Distribution (ECLD). Two parameter settings were 

considered: (             ) and (                 ). For each setting, samples were 

generated for various sample sizes, specifically n = 20, 50, 70, 100, 150, 200, 250, 300, 350 and 400. 

For each combination of parameter values and 

sample size, 10,000 random samples were 

generated. The performance of the estimators 

was evaluated based on the mean estimates, 

bias, and mean squared error (MSE) of the 

estimated parameters. This simulation aims to 

investigate the consistency and accuracy of the 

MLE and MPS methods as the sample size 

increases. Tables 1 and 2 present the results for 

the first parameter set (             )  

using the MLE and MPS methods, 

respectively. Tables 3 and 4 report the results 

for the second parameter set (        
         ), also using MLE and MPS, 

respectively. 

Table 1: Simulation results using MLE for               

  Properties MLE 

      

20 Mean 2.3854 2.4143 2.1058 

Bias 1.3240 0.7908 0.8620 

MSE 2.1480 0.9836 1.0681 

50 Mean 2.2371 2.1929 1.8973 

Bias 1.1576 0.5695 0.6307 

MSE 1.7513 0.5094 0.6874 

70 Mean 2.2463 2.1520 1.8020 

Bias 1.0587 0.4792 0.5550 

MSE 1.5304 0.3716 0.5493 

100 Mean 2.2689 2.1487 1.7251 

Bias 1.0005 0.4489 0.4741 

MSE 1.4114 0.3249 0.4291 

150 Mean 2.1853 2.0941 1.6583 

Bias 0.8490 0.3743 0.3810 

MSE 1.0797 0.2290 0.2833 

200 Mean 2.1407 2.0814 1.6506 

Bias 0.7578 0.3287 0.3535 

MSE 0.8975 0.1770 0.2462 

250 Mean 2.1225 2.0619 1.6108 

Bias 0.6935 0.3024 0.3020 

MSE 0.7580 0.1476 0.1781 

300 Mean 2.1366 2.0751 1.5861 

Bias 0.6288 0.2752 0.2636 

MSE 0.6649 0.1319 0.1346 

350 Mean 2.1556 2.0774 1.5583 

Bias 0.5971 0.2603 0.2396 

MSE 0.6008 0.1196 0.1071 

400 Mean 2.0954 2.0506 1.5718 

Bias 0.5489 0.2402 0.2287 

MSE 0.5070 0.0973 0.0976 
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Table 2: Simulation results using MPS for               

  Properties MPS 

      

20 Mean 2.2122 1.9591 1.7829 

Bias 1.3022 0.6510 0.7932 

MSE 2.1420 0.6314 0.9020 

50 Mean 2.1589 1.9611 1.6669 

Bias 1.0611 0.5037 0.5601 

MSE 1.6248 0.3668 0.5322 

70 Mean 2.1788 1.9699 1.6105 

Bias 0.9497 0.4299 0.4877 

MSE 1.3830 0.2770 0.4141 

100 Mean 2.2234 2.0112 1.5761 

Bias 0.8869 0.4029 0.4319 

MSE 1.2696 0.2462 0.3377 

150 Mean 2.1494 1.9946 1.5424 

Bias 0.7315 0.3392 0.3392 

MSE 0.9656 0.1848 0.2116 

200 Mean 2.1119 2.0022 1.5543 

Bias 0.6382 0.2982 0.3100 

MSE 0.7878 0.1428 0.1845 

250 Mean 2.1099 1.9999 1.5284 

Bias 0.5759 0.2744 0.2725 

MSE 0.6657 0.1195 0.1384 

300 Mean 2.1166 2.0180 1.5165 

Bias 0.4913 0.2433 0.2319 

MSE 0.5750 0.1065 0.1025 

350 Mean 2.1234 2.0213 1.5028 

Bias 0.4640 0.2313 0.2141 

MSE 0.5155 0.0968 0.0828 

400 Mean 2.0735 2.0036 1.5183 

Bias 0.4146 0.2118 0.2035 

MSE 0.4247 0.0786 0.0750 

Table 3: Simulation results using MLE for                    

  Properties MLE 

      

20 Mean 1.1035 1.0766 1.1806 

Bias 0.9738 0.4815 0.7828 

MSE 2.2555 0.7211 1.6195 

50 Mean 0.7224 0.8153 0.7386 

Bias 0.4945 0.2174 0.3189 

MSE 0.6736 0.1294 0.4631 

70 Mean 0.6404 0.7668 0.6396 

Bias 0.3644 0.1551 0.2152 

MSE 0.3331 0.0586 0.2373 

100 Mean 0.5983 0.7462 0.5816 

Bias 0.2899 0.2899 0.1518 

MSE 0.1785 0.0327 0.1216 

150 Mean 0.5590 0.7266 0.5350 

Bias 0.2205 0.0971 0.0936 

MSE 0.0949 0.0184 0.0343 

200 Mean 0.5338 0.7208 0.5266 

Bias 0.1801 0.0800 0.0778 

MSE 0.0586 0.0111 0.0124 

250 Mean 0.5246 0.7127 0.5196 

Bias 0.1617 0.0716 0.0667 

MSE 0.0449 0.0086 0.0081 
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300 Mean 0.5289 0.7177 0.5155 

Bias 0.1491 0.0664 0.0591 

MSE 0.0409 0.0079 0.0061 

350 Mean 0.5314 0.7158 0.5096 

Bias 0.1367 0.0626 0.0526 

MSE 0.0331 0.0073 0.0047 

400 Mean 0.5195 0.7112 0.5123 

Bias 0.1252 0.0566 0.0504 

MSE 0.0263 0.0052 0.0043 

 

Table 4: Simulation results using MPS for                    

  Properties MPS 

      

20 Mean 1.0303 0.8249 0.8207 

Bias 0.8447 0.3346 0.4987 

MSE 1.8089 0.3308 0.8499 

50 Mean 0.7113 0.7190 0.5789 

Bias 0.4394 0.1817 0.2053 

MSE 0.5276 0.0734 0.2155 

70 Mean 0.6413 0.6986 0.5334 

Bias 0.3297 0.1346 0.1483 

MSE 0.2567 0.0358 0.1001 

100 Mean 0.6083 0.6991 0.5124 

Bias 0.2724 0.1140 0.1140 

MSE 0.1535 0.0229 0.0518 

150 Mean 0.5696 0.6938 0.4983 

Bias 0.2109 0.0923 0.0817 

MSE 0.0878 0.0148 0.0226 

200 Mean 0.5434 0.6952 0.4991 

Bias 0.1730 0.0760 0.0704 

MSE 0.0542 0.0093 0.0084 

250 Mean 0.5341 0.6921 0.4974 

Bias 0.1554 0.0699 0.0614 

MSE 0.0425 0.0076 0.0062 

300 Mean 0.5377 0.7001 0.4967 

Bias 0.1439 0.0637 0.0548 

MSE 0.0393 0.0069 0.0049 

350 Mean 0.5383 0.7008 0.4938 

Bias 0.1323 0.0594 0.0503 

MSE 0.0317 0.0060 0.0040 

400 Mean 0.5267 0.6974 0.4977 

Bias 0.1210 0.0551 0.0477 

MSE 0.0254 0.0047 0.0036 

As expected, both estimation methods improve 

with increasing sample size, with MPS 

generally yielding lower bias and MSE across 

both parameter settings. This confirms the 

consistency of the estimators and highlights the 

potential of the MPS method in providing more 

efficient estimates in small to moderate sample 

scenarios. 

6 Real Life application 

This section illustrates the practical utility of 

the proposed Exponentiated Cosine Lomax 

Distribution (ECLD) by applying it to two real-

world datasets. To assess its empirical 

performance, the ECLD is compared with 

several existing models, including the Odd 

Fréchet Lomax Distribution (OFLD) [23], Half 

Logistic Lomax Distribution (HLD) [24], 

Cosine Lomax Distribution (CLD) [17], Lomax 

Distribution (LD) [25], and Sine Lomax 

Distribution (SLD) [7]. The evaluation is 
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conducted using several well-known statistical 

criteria: Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), 

Corrected Akaike Information Criterion 

(CAIC), Hannan–Quinn Information Criterion 

(HQIC), Kolmogorov–Smirnov (KS) statistic, 

and the associated p-value. In this context, 

lower values of AIC, BIC, CAIC, HQIC, and 

KS indicate better model fit, while a higher KS 

p-value suggests stronger agreement between 

the empirical and theoretical distributions. 

First Data Set: 

The first dataset, originally presented by [26], 

contains 30 observations of March 

precipitation (in inches). The data values are: 

0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 

2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 

0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 

0.96, 1.89, 0.9, 2.05 

The estimated parameters and goodness-of-fit 

measures for each competing model are 

summarized in Table 5. The fitted probability 

density function (PDF) and cumulative 

distribution function (CDF) plots of each 

model for the first dataset are shown in Figures 

3 and 4, respectively. 
Table 5: Goodness-of-fit statistics for the first dataset 

MODEL MLE LL AIC BIC CAIC HQIC KS P value 

ECLD           
          
          

                         
 

        
 

        
 

              
 

OFLD            
         00 
          

         
 

                        
 

        
 

       
 

       
 

HLD             
           

         
 

        
 

        
 

        
 

        
 

              
 

CLD α= 15891091 

β= 19928877 

-39.8980 

 

83.7960 

 

86.5984 

 

84.2404 

 

84.6925 

 

0.1247 

 

0.7398 

 

LD            
             

         
 

        
 

                
 

        
 

       
 

       
 

SLD            
           

         
 

        
 

        
 

        
 

        
 

       
 

       
 

 

 
Figure 3: Fitted PDF plots of each model for the first dataset 
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Figure 4: Fitted CDF plots of each model for the first dataset 

 

Among all the considered models, the ECLD 

attained the lowest AIC, BIC, CAIC, and 

HQIC values, alongside the smallest KS 

statistic and highest p-value (0.9982), 

indicating an excellent fit to the precipitation 

data. Moreover, the fitted PDF and CDF plots 

clearly show that the ECLD aligns more 

closely with the empirical distribution than the 

competing models. This demonstrates the 

ECLD’s superior ability to model the dataset 

compared to the other distributions. 

Second Dataset:  
The second dataset, discussed in [27], contains 

annual maximum flood discharges (in 1000 

cubic feet per second) of the North 

Saskatchewan River at Edmonton over a period 

of 47 years. The data values are: 

19.885, 20.940, 21.820, 23.700, 24.888, 

25.460, 25.760, 26.720, 27.500, 28.100, 

28.600, 30.200, 30.380, 31.500, 32.600, 

32.680, 34.400, 35.347, 35.700, 38.100, 

39.020, 39.200, 40.000, 40.400, 40.400, 

42.250, 44.020, 44.730, 44.900, 46.300, 

50.330, 51.442, 57.220, 58.700, 58.800, 

61.200, 61.740, 65.440, 65.597, 66.000, 

74.100, 75.800, 84.100, 106.600, 109.700, 

121.970, 121.970, 185.560 

The estimated parameters and model selection 

criteria are presented in Table 6. The fitted 

probability density function (PDF) and 

cumulative distribution function (CDF) plots of 

each model for the second dataset are shown in 

Figures 5 and 6, respectively. 

 
Table 6: Goodness-of-fit statistics for the second dataset 

MODEL                                     
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HLD            
           

         
 

         
 

         
 

         
 

         
 

       
 

       

CLD           
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Figure 5: Fitted PDF plots of each model for the second dataset 

 
Figure 6 Fitted CDF plots of each model for the second dataset 

 

In the case of the second dataset, the ECLD 

achieved the lowest values across all 

information criteria, the smallest KS statistic, 

and the highest p-value (0.9799), suggesting 

the best fit among all considered models. This 

conclusion is further supported by the PDF and 

CDF plots, where the ECLD shows the closest 

alignment with the observed data. Thus, the 

ECLD exhibits superior ability to model the 

dataset compared to the competing models. 
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7. Conclusion 

In this study, we introduced a new probability 

distribution, the Exponentiated Cosine Lomax 

distribution (ECLD), by combining the 

exponentiated family with the cosine Lomax 

distribution. The proposed model offers greater 

flexibility in modeling skewed, heavy-tailed, 

and complex real-world data. We derived 

essential statistical properties, including 

moments, moment-generating function, and 

hazard rate, which are crucial for reliability 

analysis and risk assessment. The parameters 

of the ECLD were estimated using both the 

maximum likelihood estimation (MLE) and 

maximum product of spacings (MPS) methods, 

and a simulation study confirmed the 

consistency and efficiency of the estimators. 

The practical applicability of the ECLD was 

demonstrated through two real-world datasets, 

where it outperformed several competing 

models, including the standard Lomax, cosine 

Lomax, odd Fretchet Lomax, half logistic 

Lomax and sine Lomax distributions, based on 

goodness-of-fit measures. The superior 

performance of the ECLD suggests its potential 

as a valuable tool in actuarial science, survival 

analysis, and reliability engineering. Future 

research may explore Bayesian estimation 

methods, regression modeling based on the 

ECLD, and its application in other domains 

such as finance and engineering. Additionally, 

bivariate or multivariate extensions of the 

ECLD could be investigated to model 

dependent data structures. 
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