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Segmented linear regression is one of the important statistical tools that is used to 

model and explain the behavior of some events in which changes gets suddenly or the 

behavior pattern of the event goes through transitional stages. The importance of this 

research lies in studying the proposal to employ the robust Laplace estimator within 

the method of estimating the parameters of the segmented linear regression model to 

give robustness to the estimation when there are outliers in the data. Then some 

updates were made to this method according to the iterative algorithm (IRWL) to get 

better robust estimates. On the practical side, the simulation experiment was conducted 

with several different sample sizes, and assuming several cases of pollution rates in the 

data (outliers) (15%, 10%, 5%, 0%), Then After implementing the simulation 

experiment and comparing the proposed methods with Muggeo's Maximum likelihood 

(ML) method using the (MSE) criterion, The experimental results showed the 

efficiency of the proposed methods when the data contains pollution ratios, and the 

iterative algorithm (IRWL) has proven its efficiency in obtaining the best estimate of 

the parameters compared to other methods. If there is no pollution in the data, the 

Muggeo's maximum likelihood (ML) method is the best for estimation. 
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1. Introduction  

The Regression analysis is one of the most 

important statistical methods used to study and 

interpret the relationship between variables and 

attempt to represent the phenomenon under 

study with a model that is as close as possible 

to reality. There are some phenomena in which 

changes happen suddenly. They may happen 

gradually or in the form of transitional stages, 

which can be graphically represented by a line 

segmented into several continuous sections. 

Therefore, segmented linear regression is used 

as a statistical tool to model and explain such 

cases. The concept of segmented linear 

regression is based primarily on the presence of 

specific points within the range of values of the 

explanatory variable (independent variable). 

These points represent the beginning of change 

in the behavior of the phenomenon or the 

beginning of the transition from one stage to 

another. Therefore, they are Shared, joint each 

transitional stage to the next stage. These 

points are called (join points[16]). So, these 

points are of great importance, as they 

represent the beginning of a transition or 

change in the pattern and behavior of the data. 

https://isj.edu.iq/index.php/rjes
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This model is called several names, including 

(segmented linear [9]), (multiple change points 

[16]), (multiphase [10]), (linear segment [15]). 

Some authors in the literature have referred 

to the study and importance of using segmented 

linear regression models in several places, 

including (Quandt, 1958[12]) (Gbur and Dahm, 

1985[8]), (Muggio, 2003[11]), (Kim, Fay, Yu, 

Barrett and Feuer, 2004[9]), and others. And 

some authors have interested on addressing the 

problem of data pollution, That is, the presence 

of outliers Values when using a segmented 

linear regression model, which can have an 

effect on the accuracy of estimating model 

parameters. So, many of them have tried to find 

robust methods to address this problem. 

Among them (Diniz, Milan, and Mazucheli, 

2003[7]) studied Bayesian inference in 

segmented linear regression as a robust method 

when assuming heteroscedastic random error 

variance. (Chen, Chan, So, and Lee, 2011[6]) 

suggested a Bayesian approach to studying 

observation classification and estimating 

segmented linear regression model parameters 

and join points. They demonstrated the 

accuracy of this methodology in an 

experimental study using the suggested Markov 

Chain Monte Carlo algorithm (MCMC). (Ali 

and Abbas, 2019[4]) studied a suggested robust 

estimator (IRWm) to estimate the parameters 

of the segmented linear regression and find the 

join point. The idea of this suggestion lies in 

employing the robust M-estimator method 

within the classical (Muggo) method. They 

have proven the efficiency of this method to 

address data pollution. (Acitas and Senoglu, 

2020[1]) presented an updated and robust 

alternative to the classical methods, in which 

they used the modified maximum likelihood 

(MML) methodology when the random error 

distribution of the model is symmetric (long-

tailed). They demonstrated, using simulations, 

the strength and efficiency of the suggested 

methodology, and demonstrated in the applied 

aspect that using the ordinary least squares 

method is not appropriate due to the data 

containing anomalous (distant) observations,  

 

and that the suggested method gave more 

accurate and reliable results.  

 In this research, a proposal was studied to 

employ one of the well-known robust methods 

(Laplace estimator) within the classical 

methods for estimating the parameters and join 

points of the segmented linear regression 

model to add robustness to the estimation, and 

also the possibility of adding some 

improvements to this proposal to obtain more 

accurate estimators according to the proposed 

algorithm (IRWL), and then a comparison is 

made between the proposed methods and the 

classical (Muggo) maximum likelihood method 

using simulation to determine the efficiency of 

the estimation methods and the optimal method 

among them. 

2. Theoretical Aspect  

2.1. Segmented Linear Regression Model: 

A Segmented linear regression model, 

which consists of continuous linear sections or 

stages, is often important for describing 

phenomena with multiple sections or 

directions. These sections are Connect by a 

Shared join point that joint each section to the 

next. These join points are important because 

they represent a change or transition in the 

behavior and direction of the data. Assuming 

the observations are: 

*(     ) (     )   (     )+            

and the response variable is [16]:  

    (  |  )                                ( )  

Where:    

 (  |  ) : is the expected value of the response 

variable. 

   : is the explanatory variable or (independent 

variable). 

   : is the random error with mean E(  )=0 and 

variance V(  )=σ^2. 

The segmented linear regression model 

imposes the adjective linearity on each section 

or segment of the model, That is: 

 ( | )                                                                                                           ( ) 

Where:  
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    :is the constant limit parameter for segment 

j.     : is the slope parameter for segment j. 

 

r : is the number of sections or segments in the 

model,   : is a value within the interval of 

values of x and it’s the join point between each 

segment with the next one. Therefore,  ( | ) 

is continuous within the interval ,     -. That 

is,    is the join point between segment j and 

j+1. The join point between the two segments, 

as in the following formula [16]: 

                                                                                                                       ( ) 

Since the response variable is continuous at the join points, the alternative formula for Model (2) is: 

 ( | )                (    )        (      )  

                      ∑  (    ) 

   

   

                                        
                                                    ( ) 

Where: 

  : is the difference between the two slope 

parameters (          ). 

And: (    ) 
 {

                       

                         
 

The determination of model parameters (4) 

implicitly satisfies the continuity condition at 

the join points   . 

2.2. Estimation Methods for the Model: 

       In this research, the maximum likelihood 

(ML) method was used to estimate the 

parameters of the Segmented linear regression 

model and also some proposed methods as 

robust methods in estimation. 

2.2.1. Maximum likelihood using (Muggeo) 

Method: 

      The maximum likelihood method is an 

important method due to its wide applications in 

estimating parameters for statistical models, and 

because it has several properties such as 

consistency and Unbiased often. 

      The method (Muggeo, 2003[11]) was 

adopted to find the maximum likelihood (ML) 

estimator to the parameters of model (4), when 

Muggeo noticed non-differentiable the 

logarithm of the model’s likelihood function at 

the join points      , he proposed a 

linearization processing technique to solve this 

problem, after which it is easy to find the 

estimation of the parameters using the 

maximum likelihood method in addition to 

estimating the join points using a simple 

iterative method ( linear reparameterization). 

     The idea of using the linearization 

processing of the formula   (    ) 
in model 

(4) which is non-differentiable at the join 

points is lie in use the first order Taylor series 

to approximate the formula around the initial 

values   
( ) which must be as close as possible 

to the real values, as in the following 

formula[15]: 

(    ) 
 (    

( ))
 

 (  ) (    
( )) (     

( ))                                                                  ( )

Where:  

(  ) (    
( ))   is the first derivative of 

(    
( ))

 
with respect to   

( ),  (    
( )) : 

is equal to one if     
( ) and zero otherwise. 

 

This formula (5) is applied to all join points in 

the model, and the formula of the model (4) 

becomes after performing linearization 

processing  according to the formula: 
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 ( | )              ∑   ̅ 

   

 

 ∑   ̅ 

   

 

                                                                                         ( ) 

Where:      (     
( ))    and  

 ̅  (    
( ))

 
               ̅  (  ) (    

( ))                                                                                    ( )  

After completing the linearization processing , 

the parameters of the Segmented linear 

regression model can be estimated using  

 

the maximum likelihood method, and when the 

random error follows a known probability 

distribution, according to the simple iterative 

algorithm of Muggeo[11]. as follows:   

1- Set the initial values   
( ). at repeating s=0. 

2- Calculate   ̅ 
( )

,  ̅ 
( )

 from formula (7). 

3- Calculate the maximum likelihood (ML) estimators for model (6) assuming that the random error 

follows the normal distribution, according to the formula: 

 ̂(  )
( )

 (   )                                                                                                                                        ( ) 

Where:  

  (

  

 
  

)    (

            
( )    

( )      
( )

  
      

( )    
( )         

( )

                                                             

            
( )      

( )        
( )      

( )      
( )        

( )
)   ̂(  )

( )
 

(

 
 
 
 
 
 
 

 ̂ 
( )

 ̂ 
( )

 ̂ 
( )

 

 ̂   
( )

 ̂ 
( )

 

 ̂   
( )

)

 
 
 
 
 
 
 

 

4- Update and improve join points, according to the formula: 

 ̂ 
(   )  

 ̂ 

 ̂ 

   
( )                                                                                                                                      ( ) 

5- Repeat steps, (2) to (4). 

After improving the join points and replacing 

them with the initial values to S from repetitions 

when the parameter values converge. That is, 

when ( ̂   ). That’s means (  
( )

   
(   )

 

 ) and then we get the best estimate (ML) of the 

parameters and join points   . 

2.2.2. Proposed employment of a Laplace 

estimator using the weighted least squares 

method: 

       The Laplace method is one of the 

alternative robust methods for estimation in the 

presence of outliers in the data under study. 

This method depends on the absolute value of 

the residuals and aims primarily to reduce the 

random error (  ), according to the following 

formula[2],[14]: 

       ∑ |  |
 

 

   
                 (  ) 

Where:   

  : is residuals. 

u: is the optimal value that gives robust 

estimators.  

If the value of u = 1, the estimators are in the 

most robust direction, and if u = 2, they are 

equivalent to least squares estimators. 

The estimates are obtained using the weighted 

least squares (WLS) Technique[3]. So, this 

method will be employed within the Muggeo 

method to obtain robust estimates for the 
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parameters of the Segmented linear regression model, according to the following steps: 

1- Initialize the initial values of   ̂ 
( )

. at repeating s=0. 

2- vector calculation  ̅ 
( )

,  ̅ 
( )

 from formula (7). 

3- Calculating the robust Laplace estimators for model (6), as follows[3]: 

a- Calculate the initial parameter vector  ̂(   )
( )

 using the ordinary least squares (OLS) method for 

the parameters of model (6) according to the same method used in formula (8). 

b- Calculate the values of the residuals   
( ), according to the formula: 

  
( )           

( )        

( )    ∑     

( )  ̅ 

   

 

 ∑     

( )  ̅ 

   

 

                                                       (  ) 

c- Calculate the Laplace estimators  ̂(   )
( )

 using the weighted least squares (WLS) Technique, 

according to the formula: 

 ̂(   )
( )

 (    )                                                                                                                     (  ) 

Where:  

X: The matrix of explanatory variables, whose elements are given in Formula (8).  

Y: The observation vector (response variable). 

W: The diagonal matrix of degree (n×n), whose elements are given by the formula: 

   |  
( )|

   
                                                                                                                             (  ) 

The values (              ) were used as the optimal value for (u) to give robust 

estimates[3],[13]. 

4- After calculating the Laplace estimators  ̂(   )
( )

, the join points are updated according to formula 

(9). 

5- Replace the updated join points  ̂ 
(   )

 with the initial  ̂ 
( )

 and repeat steps (2) to (4) to S from 

repetitions.  

The robust Laplace estimator  ̂(   )
( )

 is obtained 

when the values of the parameters  ̂  converge 

to zero, that is, when (  
( )

   
(   )

  ), and 

then we obtain the best estimate of the join 

points    as well [11]. 

2.2.3. Proposed iterative algorithm for 

weighted Laplace (IRWL) estimator: 

        In this method, some improvements will be 

made to the previous method (2-2-2) for the 

robust Laplace estimator by adding an iterative 

technique to find the best robust estimator for 

the Laplace estimator. This improvement will 

be in step (3) when calculating the robust 

Laplace estimators  ̂(   )
( )

 for model (6), which 

are as follows: 

a- Calculate the initial parameters vector  ̂
( )

 

at repeating  m=0 using the (OLS) method 

for the parameters of model (6) according to 

the same method used in formula (8). 

b- Calculate the values of the residuals   
( ) 

according to the same method used in 

formula (11). 

c- Calculate the Laplace estimators  ̂
(   )

 as 

in the previous method according to formula 

(12). 

d- Repeat steps (a) to (c) for m repeats  after 

replacing  ̂
(   )

 with the initial parameters 

 ̂
( )

, until the estimated parameters 

converge according to formula[4]: 

‖ ̂
(   )

  ̂
( )

‖
 

                      (  ) 

Where: 

‖ ‖      |  |  for all      . 

After convergence in the mth step, Then  

 ̂(   )
( )

  ̂
(   )

. 

Then, the remaining steps (4, 5) followed in 

the previous method (2-2-2) are completed. 

This method can be summarized according 

to the following Flowchart No.(1): 
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 Flowchart is the author's work. 

Yes 

Flowchart No. (1) of the proposed (IRWL) method 

No 

Yes 

No 

Start 

Initialize the initial values of  𝝉̂𝒋
(𝒔)

. at repeating s=0. 

Calculate the values of the residuals 𝒆𝒊
(𝒎) according to the formula (11) 

Input the Data X , Y 

Calculate the Laplace estimators 𝛃 ⬚
(𝒎 𝟏)

 according to formula (12). 

 𝜷 (𝒎 𝟏)  𝜷 (𝒎) 
 

 𝟏𝟎 𝟓 

If:  

Update and improve join points 𝝉𝒋
(𝒔 𝟏), according to the formula(9) 

γ̂𝑗    

If:  

 

   Print : ( 𝛃 (𝒍𝒂𝒑)
(𝒔)

, 𝛕(𝒔)  𝛕̂ ) 

End  

𝛃 (𝑙𝑎𝑝)
(𝒔)

 𝛃 ⬚
(𝒎 𝟏)

 

𝜏𝑗
(𝑠)  𝜏𝑗

(𝑠  ) 

Put 

 

vector calculation 𝑼̅𝒋
(𝒔)

, 𝑽̅𝒋
(𝒔)

 from formula (7) 

   Put: 𝜷 (𝒎)  𝜷 (𝒎 𝟏) 

Calculate the initial parameters vector 𝛃 ⬚
(𝒎)

 at repeating  m=0 using the (OLS) method for 

the parameters of model (6) according to the formula (8) 
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3. Practical experimental aspect: 

        Simulation is a process of representing the 

behavior of the real world under study by 

applying numerous experiments subject to 

certain conditions and assumptions, which are 

as close as possible to the real world. Its use 

saves researchers a lot of time and effort, 

especially when it is impossible to obtain 

accurate information data, or when the 

researcher needs to verify the results of the 

application of real data, or to Statement and 

knowledge of the best method for studying at 

the expense of other methods. 

The simulation experiment for this study was 

conducted with a number of scenarios using 

programming in the (Matlab) language, version 

(MATLAB R2017a), to evaluate the 

performance of the estimation methods 

mentioned in this research in paragraph (2-2), 

with knowing the best method among them, by 

generating data with different sample sizes and 

in the bing or not of pollution rates (outliers) in 

the data. 

3.1. Stages of the simulation experience:  

      The simulation experiments were conducted 

in this study as follows: 

1- Determine the sample sizes. Three different 

sample sizes were determined (n= 30, 60, 

120). The experiment was repeated for each 

of these sizes (R= 1000) repetitions. 

2- Generate the explanatory (independent) 

variable    according to the uniform 

distribution for the interval (a,b) [15]. 

          (   )                 (  ) 

The values of    were generated within the 

interval (a=0, b=12). 

3- Generate the random error    according to 

the normal distribution with mean (   ) 

and variance    using the method (Box and 

Muller, 1958[5]) as follows: 

- Generating random variables (U1,U2) 

according to the standard uniform 

distribution (0,1). 

- Perform a transformation of the 

variables (U1, U2) into independent 

random variables that follow the 

standard normal distribution according 

to the formula: 

   √           (    )   (  ) 

   √           (    )   (  ) 

- Generate the random variable    

according to the standard uniform 

distribution          (   ). 

- A random variable following the 

standard normal distribution    (   ) 

is obtained according to the formula: 

  {
                    
                     

               (  ) 

- Then we have the random variable e that 

follows the distribution    (    ) 

using the formula: 

                                          (  ) 
This study addressed several 

assumptions for generating random 

error, which are: 

 Assuming there are no outliers in the 

data, then:     (   ). 

 If we assume that there are outliers 

in the data, the random error follows 

the distribution     (    ) with a 

ratio of (1-p) and     (      ) 

with a ratio of p. That is, p is the 

pollution ratio (the ratio of outliers 

in the data) and is (0≤p≤1). 

4- Observation generation (response variable): 

The response variable    was obtained 

according to Model (6) based on the values 

of    and    generated in the previous two 

steps (2, 3).  

This study conducted a simulation of the 

segmented linear regression model (6) 

according to two scenarios[15] of the 

default values of the parameters, which are: 

Experiment (1):  

  (                     )   
  (    ). 

Experiment (2): 

  (                          )  
   (         ) 

5- Apply the estimation methods used in this 

study in paragraph (2-2) to the data 

generated in the previous steps, and then 

find the Mean and Mean Square Error 

(MSE) for the estimated model parameters. 



 
 

First Author, Second Author, Third Author/ Iraqi Statisticians Journal / Vol. 2, no. 2, 2025: 79-96 

86 

 

6- A comparison of applied estimation 

methods is conducted using the MSE 

comparison criterion to evaluate the 

estimation methods and determine the best 

method among them. This criterion is one of 

the most common criterion, as it calculates 

the extent of convergence and deviation of 

the estimated model parameters from the 

real values. The optimal method is selected 

based on the one with the lowest MSE.  This 

criterion is calculated using the formula 

[10]: 

     
 

 
∑(    ) 

 

   

     
 

 
∑( ̂   ) 

 

   

                      (  ) 

Where: 

 : repeatability value of the simulation 

experiment. 

  : parameters estimated in the experiment. 

 : real parameters. 

 ̂ : join points estimated in the experiment. 

  : real join points. 

3.2. Simulation experiment results:  

     The simulation experiment was 

implemented using the computer program 

(Matlab R2017a), and the procedures were 

carried out according to the two cases: 

Experiment (1):  

Assume that the generated data has a one join 

point. 

Experiment (2):  

Assume that the generated data has two join 

points. 

Several different sizes of data were generated 

(n= 30, 60, 120) with repetitions (R= 1000) , 

and with several assumptions for the random 

error values ei for the generated data, which 

are: 

- Assuming the data do not contain outliers 

(unpolluted), then: 

     (    ) 
- Assuming the data do contain outliers 

(polluted), then:  

The random error ei is generated according 

to the distribution     (      ) with a 

ratio of (1-p) and     (   ) with a ratio 

of p. where p takes the following 

proportions: (5%, 10%, 15%). 

After completing the data generation, the 

estimation methods for the segmented linear 

regression model that were discussed in 

paragraph (2-2) of the theoretical aspect were 

applied to know the performance of these 

methods, evaluate them, and determine the 

optimal method among them, after conducting 

the comparison process according to the 

(MSE). The results of this experiment were 

according to the following tables: 
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Table No. (1): Results of simulation experiment (1) with 1000 repetitions and an error distribution of 

    (    ). 

When the sample size is: n = 30 

Methods 
Parameter           

True value 5 0.01 0.1 2 

Muggeo (ML) 
 ̂    4.99616 0.05366 0.07918 2.02679 

MSE 0.18129 0.41249 0.05402 0.07267 

Lap1(U=1.5) 
 ̂    4.99970 0.05506 0.07984 2.02670 

MSE 0.18227 0.42317 0.05458 0.07316 

Lap2(U=1.8) 
 ̂    4.99961 0.05422 0.07979 2.02675 

MSE 0.18437 0.41727 0.05457 0.07292 

IRWL1(U=1.5) 
 ̂    5.00098 0.05638 0.07932 2.02734 

MSE 0.18946 0.44243 0.05743 0.07687 

IRWL2(U=1.8) 
 ̂    5.00031 0.05400 0.08003 2.02650 

MSE 0.18402 0.41952 0.05473 0.07299 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    5.00747 0.00573 0.09862 2.00543 

MSE 0.07940 0.16799 0.02181 0.02904 

Lap1(U=1.5) 
 ̂    5.00843 0.00523 0.09859 2.00549 

MSE 0.08334 0.17537 0.02292 0.02999 

Lap2(U=1.8) 
 ̂    5.00829 0.00500 0.09892 2.00510 

MSE 0.08051 0.17019 0.02205 0.02928 

IRWL1(U=1.5) 
 ̂    5.00772 0.00585 0.09796 2.00580 

MSE 0.08970 0.18929 0.02466 0.03159 

IRWL2(U=1.8) 
 ̂    5.00733 0.00597 0.09836 2.00549 

MSE 0.08134 0.17159 0.02232 0.02945 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    5.00453 0.01943 0.09855 2.00135 

MSE 0.04057 0.08679 0.01066 0.01374 

Lap1(U=1.5) 
 ̂    5.00336 0.01826 0.09861 2.00092 

MSE 0.04126 0.08772 0.01081 0.01406 

Lap2(U=1.8) 
 ̂    5.00340 0.01894 0.09846 2.00119 

MSE 0.04053 0.08691 0.01064 0.01381 

IRWL1(U=1.5) 
 ̂    5.00138 0.01820 0.09806 2.00117 

MSE 0.04286 0.09176 0.01126 0.01482 

IRWL2(U=1.8) 
 ̂    5.00348 0.01863 0.09856 2.00107 

MSE 0.04059 0.08716 0.01067 0.01385 
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Table No. (2): Results of simulation experiment (1) with 1000 repetitions and a polluted error 

distribution  

(95% following     (      ) and 5% following     (   )) 

When the sample size is: n = 30 

Methods 
Parameter           

True value 5 0.01 0.1 2 

Muggeo (ML) 
 ̂    5.00423 0.01703 0.09331 2.00976 

MSE 0.09666 0.26956 0.03029 0.03955 

Lap1(U=1.5) 
 ̂    4.99929 0.01675 0.09585 2.00473 

MSE 0.03089 0.10966 0.01219 0.01503 

Lap2(U=1.8) 
 ̂    5.00263 0.01534 0.09529 2.00653 

MSE 0.05763 0.18404 0.02034 0.02614 

IRWL1(U=1.5) 
 ̂    4.99908 0.01488 0.09785 2.00196 

MSE 0.01289 0.05442 0.00590 0.00705 

IRWL2(U=1.8) 
 ̂    5.00158 0.01667 0.09487 2.00680 

MSE 0.05205 0.16889 0.01883 0.02391 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    4.99509 0.02087 0.09211 2.01100 

MSE 0.03992 0.07563 0.01035 0.01354 

Lap1(U=1.5) 
 ̂    4.99781 0.01350 0.09745 2.00344 

MSE 0.00744 0.01704 0.00216 0.00288 

Lap2(U=1.8) 
 ̂    4.99811 0.01552 0.09593 2.00612 

MSE 0.01786 0.03777 0.00488 0.00650 

IRWL1(U=1.5) 
 ̂    4.99924 0.01033 0.09932 2.00104 

MSE 0.00272 0.00671 0.00084 0.00111 

IRWL2(U=1.8) 
 ̂    4.99675 0.01590 0.09575 2.00584 

MSE 0.01553 0.03252 0.00434 0.00566 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    5.00516 0.00722 0.09985 2.00250 

MSE 0.01968 0.03984 0.00492 0.00616 

Lap1(U=1.5) 
 ̂    5.00252 0.00814 0.10053 2.00030 

MSE 0.00364 0.00830 0.00098 0.00128 

Lap2(U=1.8) 
 ̂    5.00246 0.00850 0.09998 2.00112 

MSE 0.00772 0.01714 0.00210 0.00265 

IRWL1(U=1.5) 
 ̂    5.00082 0.00937 0.10033 1.99975 

MSE 0.00114 0.00284 0.00033 0.00043 

IRWL2(U=1.8) 
 ̂    5.00250 0.00844 0.10018 2.00080 

MSE 0.00614 0.01394 0.00170 0.00216 
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Table No. (3): Results of simulation experiment (1) with 1000 repetitions and a  polluted error 

distribution  

(90% following     (      )and 10% following     (   )) 

When the sample size is: n = 30 

Methods 
Parameter           

True value 5 0.01 0.1 2 

Muggeo (ML) 
 ̂    5.00678 0.01337 0.09289 2.01086 

MSE 0.14766 0.35135 0.04262 0.05393 

Lap1(U=1.5) 
 ̂    4.99424 0.01298 0.09384 2.00620 

MSE 0.05180 0.13657 0.01834 0.02177 

Lap2(U=1.8) 
 ̂    5.00095 0.01107 0.09450 2.00690 

MSE 0.08747 0.23254 0.02857 0.03549 

IRWL1(U=1.5) 
 ̂    4.99740 0.01045 0.09770 2.00211 

MSE 0.02142 0.06735 0.00803 0.00968 

IRWL2(U=1.8) 
 ̂    5.00011 0.01059 0.09495 2.00612 

MSE 0.07740 0.21091 0.02587 0.03211 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    4.99907 0.03197 0.08919 2.01450 

MSE 0.07638 0.16027 0.01976 0.02490 

Lap1(U=1.5) 
 ̂    4.99974 0.01535 0.09699 2.00433 

MSE 0.01534 0.03976 0.00444 0.00571 

Lap2(U=1.8) 
 ̂    4.99917 0.02191 0.09369 2.00868 

MSE 0.03784 0.08676 0.01040 0.01307 

IRWL1(U=1.5) 
 ̂    4.99883 0.01080 0.09886 2.00143 

MSE 0.00543 0.01443 0.00164 0.00205 

IRWL2(U=1.8) 
 ̂    4.99935 0.01969 0.09463 2.00756 

MSE 0.03132 0.07496 0.00883 0.01116 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    5.00070 0.01235 0.09651 2.00527 

MSE 0.03891 0.07437 0.00990 0.01292 

Lap1(U=1.5) 
 ̂    5.00123 0.00808 0.10018 2.00029 

MSE 0.00752 0.01564 0.00202 0.00268 

Lap2(U=1.8) 
 ̂    4.99943 0.01000 0.09835 2.00231 

MSE 0.01790 0.03469 0.00474 0.00612 

IRWL1(U=1.5) 
 ̂    5.00068 0.00853 0.10045 1.99964 

MSE 0.00233 0.00509 0.00067 0.00089 

IRWL2(U=1.8) 
 ̂    4.99953 0.00957 0.09874 2.00178 

MSE 0.01460 0.02903 0.00397 0.00514 
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Table No. (4): Results of simulation experiment (1) with 1000 repetitions and a polluted error 

distribution  

( 85% following     (      ) and 15% following     (   )) 

When the sample size is: n = 30 

Methods 
Parameter           

True value 5 0.01 0.1 2 

Muggeo (ML) 
 ̂    5.02734 0.04771 0.08134 2.03084 

MSE 0.27286 0.59086 0.08399 0.10055 

Lap1(U=1.5) 
 ̂    5.00410 0.04430 0.08310 2.02133 

MSE 0.11224 0.33486 0.04700 0.05267 

Lap2(U=1.8) 
 ̂    5.01848 0.04383 0.08356 2.02502 

MSE 0.17936 0.45420 0.06244 0.07360 

IRWL1(U=1.5) 
 ̂    5.00119 0.03446 0.08808 2.01425 

MSE 0.05890 0.21712 0.03109 0.03414 

IRWL2(U=1.8) 
 ̂    5.01269 0.04553 0.08294 2.02380 

MSE 0.15893 0.42764 0.05872 0.06885 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    5.01428 -0.00723 0.10058 2.00482 

MSE 0.11584 0.25323 0.03030 0.04028 

Lap1(U=1.5) 
 ̂    5.00279 0.00289 0.09939 2.00233 

MSE 0.03176 0.07871 0.00989 0.01243 

Lap2(U=1.8) 
 ̂    5.00945 -0.00327 0.10065 2.00295 

MSE 0.06398 0.14859 0.01823 0.02376 

IRWL1(U=1.5) 
 ̂    5.00004 0.00512 0.09958 2.00124 

MSE 0.01261 0.03202 0.00426 0.00518 

IRWL2(U=1.8) 
 ̂    5.00642 -0.00101 0.09955 2.00350 

MSE 0.05664 0.13192 0.01668 0.02131 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    5.00900 0.02486 0.09537 2.00683 

MSE 0.06543 0.12270 0.01618 0.02061 

Lap1(U=1.5) 
 ̂    5.00244 0.01543 0.09902 2.00094 

MSE 0.01240 0.02640 0.00339 0.00443 

Lap2(U=1.8) 
 ̂    5.00575 0.01962 0.09757 2.00351 

MSE 0.03094 0.06006 0.00787 0.01000 

IRWL1(U=1.5) 
 ̂    5.00058 0.01312 0.09955 2.00017 

MSE 0.00362 0.00847 0.00106 0.00142 

IRWL2(U=1.8) 
 ̂    5.00557 0.01857 0.09809 2.00286 

MSE 0.02523 0.05046 0.00658 0.00842 
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Table No. (5): Results of simulation experiment (2) with 1000 repetitions and an error distribution of 

    (    ). 

When the sample size is: n = 30 

Methods 
Parameter                   

True value 4 9 0.01 0.1 7 -9 

Muggeo (ML) 
 ̂    4.03846 8.95930 -0.03045 0.13291 7.03542 -9.00508 

MSE 0.03583 0.05218 0.62561 0.12985 0.20464 0.69631 

Lap1(U=1.5) 
 ̂    4.03936 8.95736 -0.03091 0.13510 7.03201 -8.99555 

MSE 0.03691 0.05445 0.65298 0.13411 0.21352 0.72358 

Lap2(U=1.8) 
 ̂    4.03952 8.95677 -0.03268 0.13475 7.03400 -8.99458 

MSE 0.03692 0.05344 0.64330 0.13340 0.21006 0.71766 

IRWL1(U=1.5) 
 ̂    4.03977 8.95536 -0.03223 0.13587 7.03141 -8.98925 

MSE 0.03933 0.05638 0.70260 0.14361 0.22449 0.75351 

IRWL2(U=1.8) 
 ̂    4.03895 8.95671 -0.03117 0.13405 7.03413 -8.99457 

MSE 0.03621 0.05390 0.64227 0.13140 0.20874 0.72360 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    4.00888 8.99585 -0.02618 0.11735 6.99244 -9.00413 

MSE 0.00990 0.00771 0.24125 0.04870 0.06766 0.13951 

Lap1(U=1.5) 
 ̂    4.00703 8.99497 -0.02004 0.11293 6.99695 -9.00304 

MSE 0.01012 0.00783 0.24975 0.05019 0.06894 0.14344 

Lap2(U=1.8) 
 ̂    4.00833 8.99466 -0.02379 0.11570 6.99491 -9.00233 

MSE 0.00989 0.00784 0.24378 0.04881 0.06759 0.14034 

IRWL1(U=1.5) 
 ̂    4.00695 8.99297 -0.01828 0.11170 6.99972 -9.00066 

MSE 0.01049 0.00859 0.26131 0.05215 0.07156 0.15414 

IRWL2(U=1.8) 
 ̂    4.00839 8.99483 -0.02393 0.11579 6.99470 -9.00282 

MSE 0.00986 0.00781 0.24446 0.04894 0.06767 0.14095 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    4.00173 8.99666 0.01384 0.10143 7.00236 -9.00371 

MSE 0.00438 0.00306 0.10871 0.02084 0.02919 0.05762 

Lap1(U=1.5) 
 ̂    4.00174 8.99649 0.01172 0.10166 7.00265 -9.00404 

MSE 0.00443 0.00309 0.11081 0.02113 0.02937 0.05884 

Lap2(U=1.8) 
 ̂    4.00177 8.99648 0.01266 0.10164 7.00244 -9.00355 

MSE 0.00438 0.00308 0.10949 0.02094 0.02919 0.05787 

IRWL1(U=1.5) 
 ̂    4.00209 8.99541 0.01033 0.10183 7.00383 -9.00260 

MSE 0.00470 0.00341 0.11700 0.02240 0.03095 0.06226 

IRWL2(U=1.8) 
 ̂    4.00181 8.99644 0.01226 0.10174 7.00243 -9.00359 

MSE 0.00439 0.00309 0.10964 0.02097 0.02925 0.05815 
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Table No. (6): Results of simulation experiment (2) with 1000 repetitions and a polluted error 

distribution  

(95% following     (      ) and 5% following     (   )) 

When the sample size is: n = 30 

Methods 
Parameter                   

True value 4 9 0.01 0.1 7 -9 

Muggeo (ML) 
 ̂    4.01528 8.98151 -0.02310 0.11583 7.01746 -9.00500 

MSE 0.01585 0.02048 0.40711 0.07113 0.11389 0.29246 

Lap1(U=1.5) 
 ̂    4.00904 8.98555 -0.00880 0.10972 7.01209 -8.98960 

MSE 0.00661 0.01400 0.19963 0.03319 0.06193 0.24029 

Lap2(U=1.8) 
 ̂    4.01302 8.98256 -0.01807 0.11349 7.01627 -8.99695 

MSE 0.01135 0.01792 0.30279 0.05174 0.08826 0.30187 

IRWL1(U=1.5) 
 ̂    4.00631 8.98691 -0.00404 0.10773 7.00801 -8.97847 

MSE 0.00413 0.01138 0.12261 0.01963 0.04135 0.18614 

IRWL2(U=1.8) 
 ̂    4.01292 8.98273 -0.01773 0.11365 7.01549 -8.99602 

MSE 0.01061 0.01744 0.28469 0.04843 0.08328 0.29591 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    4.00584 8.99620 0.00461 0.10234 7.01009 -9.01108 

MSE 0.00421 0.00339 0.09209 0.01865 0.02804 0.05808 

Lap1(U=1.5) 
 ̂    4.00189 8.99978 0.00815 0.10084 7.00297 -9.00729 

MSE 0.00102 0.00088 0.02441 0.00512 0.00746 0.01618 

Lap2(U=1.8) 
 ̂    4.00294 8.99873 0.00813 0.10034 7.00665 -9.01000 

MSE 0.00221 0.00177 0.05011 0.01043 0.01525 0.03348 

IRWL1(U=1.5) 
 ̂    4.00103 8.99997 0.00783 0.10097 7.00087 -9.00402 

MSE 0.00040 0.00033 0.01017 0.00209 0.00299 0.00615 

IRWL2(U=1.8) 
 ̂    4.00266 8.99890 0.00826 0.10034 7.00600 -9.00939 

MSE 0.00191 0.00156 0.04370 0.00916 0.01332 0.02966 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    4.00035 8.99931 0.00501 0.10107 6.99866 -8.99469 

MSE 0.00205 0.00140 0.05173 0.01046 0.01425 0.02847 

Lap1(U=1.5) 
 ̂    4.00000 8.99963 0.00875 0.10040 6.99916 -8.99668 

MSE 0.00041 0.00027 0.01050 0.00213 0.00288 0.00573 

Lap2(U=1.8) 
 ̂    3.99997 8.99954 0.00763 0.10046 6.99896 -8.99571 

MSE 0.00090 0.00059 0.02332 0.00480 0.00638 0.01315 

IRWL1(U=1.5) 
 ̂    3.99973 8.99973 0.00983 0.09989 6.99971 -8.99802 

MSE 0.00013 0.00009 0.00371 0.00070 0.00098 0.00202 

IRWL2(U=1.8) 
 ̂    3.99991 8.99961 0.00803 0.10037 6.99901 -8.99604 

MSE 0.00074 0.00049 0.01926 0.00399 0.00531 0.01101 
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Table No. (7): Results of simulation experiment (2) with 1000 repetitions and a polluted error 

distribution 

(90% following     (      ) and 10% following     (   )) 

When the sample size is: n = 30 

Methods 
Parameter                   

True value 4 9 0.01 0.1 7 -9 

Muggeo (ML) 
 ̂    4.03737 8.95763 -0.05223 0.13556 7.05394 -9.01563 

MSE 0.03756 0.03532 0.55488 0.11614 0.31318 0.43836 

Lap1(U=1.5) 
 ̂    4.02525 8.96951 -0.03077 0.12365 7.04037 -9.00811 

MSE 0.02325 0.02457 0.29350 0.06421 0.24374 0.33374 

Lap2(U=1.8) 
 ̂    4.03128 8.96398 -0.03936 0.12903 7.04733 -9.01305 

MSE 0.02982 0.02969 0.42155 0.09057 0.27990 0.37880 

IRWL1(U=1.5) 
 ̂    4.01743 8.97709 -0.01462 0.11446 7.03431 -9.00528 

MSE 0.01714 0.01860 0.17559 0.03912 0.20534 0.28190 

IRWL2(U=1.8) 
 ̂    4.03072 8.96470 -0.03853 0.12887 7.04578 -9.01216 

MSE 0.02847 0.02891 0.39525 0.08510 0.27265 0.37025 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    4.01005 8.99017 0.01140 0.10290 7.01640 -8.99967 

MSE 0.00976 0.00641 0.21522 0.04207 0.05607 0.12210 

Lap1(U=1.5) 
 ̂    4.00224 8.99645 0.01316 0.09843 7.00805 -8.99965 

MSE 0.00206 0.00200 0.06177 0.01108 0.01539 0.04317 

Lap2(U=1.8) 
 ̂    4.00454 8.99378 0.01450 0.09872 7.01246 -8.99910 

MSE 0.00459 0.00384 0.12422    0.02322 0.03181 0.07840 

IRWL1(U=1.5) 
 ̂    4.00055 8.99848 0.01136 0.09876 7.00405 -9.00057 

MSE 0.00077 0.00084 0.02506 0.00443 0.00595 0.02071 

IRWL2(U=1.8) 
 ̂    4.00397 8.99428 0.01441 0.09857 7.01159 -8.99880 

MSE 0.00397 0.00342 0.10924 0.02037 0.02783 0.07043 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    3.99990 8.99609 0.01404 0.09479 7.01172 -9.00265 

MSE 0.00386 0.00306 0.09455 0.01891 0.02913 0.05594 

Lap1(U=1.5) 
 ̂    3.99911 8.99929 0.01185 0.09756 7.00333 -9.00043 

MSE 0.00077 0.00070 0.01998 0.00409 0.00611 0.01334 

Lap2(U=1.8) 
 ̂    3.99925 8.99798 0.01231 0.09643 7.00655 -9.00110 

MSE 0.00181 0.00152 0.04550 0.00925 0.01406 0.02920 

IRWL1(U=1.5) 
 ̂    3.99931 8.99955 0.01116 0.09856 7.00181 -8.99992 

MSE 0.00026 0.00023 0.00692 0.00143 0.00203 0.00442 

IRWL2(U=1.8) 
 ̂    3.99919 8.99828 0.01202 0.09673 7.00574 -9.00092 

MSE 0.00152 0.00128 0.03847 0.00786 0.01183 0.02503 
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Table No. (8): Results of simulation experiment (2) with 1000 repetitions and a polluted error 

distribution  

( 85% following     (      ) and 15% following     (   )) 

When the sample size is: n = 30 

Methods 
Parameter                   

True value 4 9 0.01 0.1 7 -9 

Muggeo (ML) 
 ̂    4.05127 8.94827 -0.04608 0.14124 7.06645 -9.02264 

MSE 0.06225 0.05687 0.93816 0.20594 0.43366 0.79813 

Lap1(U=1.5) 
 ̂    4.03141 8.96317 -0.02116 0.12285 7.05197 -9.00940 

MSE 0.03825 0.03749 0.58677 0.12801 0.32472 0.60309 

Lap2(U=1.8) 
 ̂    4.04061 8.95928 -0.03011 0.13112 7.05701 -9.02297 

MSE 0.04919 0.04449 0.74184 0.16567 0.37294 0.68085 

IRWL1(U=1.5) 
 ̂    4.02124 8.97209 -0.01264 0.11564 7.03795 -8.99929 

MSE 0.02278 0.02768 0.42444 0.08702 0.27057 0.48733 

IRWL2(U=1.8) 
 ̂    4.03911 8.95978 -0.02893 0.12984 7.05610 -9.01967 

MSE 0.04727 0.04339 0.70834 0.15791 0.36186 0.66708 

When the sample size is: n = 60 

Muggeo (ML) 
 ̂    4.01126 8.98979 -0.02447 0.11200 7.01042 -9.01386 

MSE 0.01414 0.01039 0.34412 0.06790 0.09812 0.19167 

Lap1(U=1.5) 
 ̂    4.00405 8.99784 -0.00970 0.10604 7.00156 -9.01025 

MSE 0.00386 0.00355 0.12139 0.02273 0.03278 0.08013 

Lap2(U=1.8) 
 ̂    4.00633 8.99408 -0.01409 0.10664 7.00785 -9.01196 

MSE 0.00826 0.00663 0.21432 0.04110 0.06126 0.13233 

IRWL1(U=1.5) 
 ̂    4.00195 8.99928 -0.00277 0.10384 6.99961 -9.00525 

MSE 0.00150 0.00175 0.05377 0.00950 0.01379 0.04026 

IRWL2(U=1.8) 
 ̂    4.00625 8.99455 -0.01406 0.10717 7.00640 -9.01126 

MSE 0.00718 0.00605 0.18950 0.03562 0.05436 0.12169 

When the sample size is: n = 120 

Muggeo (ML) 
 ̂    4.00607 8.99592 0.00874 0.10581 7.00041 -8.99914 

MSE 0.00615 0.00482 0.14110 0.02706 0.03985 0.07982 

Lap1(U=1.5) 
 ̂    4.00142 8.99892 0.01208 0.10147 6.99890 -8.99710 

MSE 0.00132 0.00121 0.03280 0.00623 0.00945 0.02152 

Lap2(U=1.8) 
 ̂    4.00338 8.99752 0.01137 0.10318 6.99956 -8.99684 

MSE 0.00300 0.00244 0.07157 0.01375 0.02056 0.04383 

IRWL1(U=1.5) 
 ̂    4.00032 8.99955 0.01204 0.10035 6.99923 -8.99743 

MSE 0.00043 0.00040 0.01099 0.00210 0.00314 0.00760 

IRWL2(U=1.8) 
 ̂    4.00282 8.99829 0.01194 0.10269 6.99913 -8.99782 

MSE 0.00251 0.00215 0.06077 0.01170 0.01752 0.03847 
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3.3. Analysis of simulation results:  

      From the previous tables, the following was 

noted: 

1- The results, as shown in Table No. (1), (5), 

that in the absence of outliers  in the data 

(unpolluted), that is, when the error follows 

the distribution     (    ), the (ML) 

method of (Muggeo) obtained the lowest 

value for the (MSE) for estimating the 

parameters and join points in the two 

experiments (1, 2) and at all different 

sample sizes. 

2- The results in Tables No. (2), (3), (4), (6), 

(7), (8) also showed that in the case of the 

presence of outliers  in the data (pollution), 

the proposed method of employing the 

Laplace estimator (Lap) and the proposed 

iterative algorithm (LRWL) and at the 

optimal values (u1, u2) obtained (MSE) 

values lower than the (ML) method of 

(Muggeo) in experiments (1, 2) and at all 

different sample sizes. 

The proposed iterative algorithm (LRWL) at 

the optimal value (u1=1.5) obtained the 

lowest value of (MSE) compared to the 

Other methods, followed by the proposed 

method of employing the Laplace estimator 

(Lap) at the optimal value (u1=1.5). 

4. Conclusions and Recommendations: 

4.1. Conclusions:  

       Based on the above and the results 

achieved after application in the practical 

experimental aspect using simulation, the 

following conclusions were drawn: 

1- Muggeo's (ML) method excelled the 

methods proposed in this study when there 

are no outliers  in the data (unpolluted), at 

all different sample sizes considered in this 

study, and at all cases of multiple join 

points applied in the experiment (1, 2). 

2- The proposed iterative algorithm for the 

weighted Laplace (IRWL) estimator 

excelled  the other methods applied in this 

study at the optimal value (u1=1.5) when 

there are outliers  in the data (pollution) at 

a rate of (5%, 10%, 15%) and at all 

different sample sizes and at all cases of 

multiple join points applied in the 

experiment (1, 2). 

4.2. Recommendations:  

       Based on the conclusions reached from the 

numerical results of this study, some 

recommendations can be made: 

- Using Muggeo's (ML) method to estimate 

the parameters of a segmented linear 

regression model when the data are 

unpolluted (no outliers). 

- The iterative weighted Laplace (IRWL) 

estimator algorithm can be adopted at the 

optimal value (u1=1.5) as a robust method 

for estimating the parameters of a 

segmented linear regression model when the 

data are pollution (presence of outliers). 
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