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ABSTRACT 

WSNs have increasingly become part and parcel of the current and emerging 

communication systems, hence the need for solid measures to protect this 

critical infrastructure from evolving cyber threats. This research 

investigates the development of a Supervised Machine Learning-based IDS 

using MLP, SVM, and LR to increase the detection of network attacks for 

prevention purposes. A new method is proposed that entails the integration 

of an inter-dataset evaluation strategy that harmonizes two heterogeneous 

data structures and simultaneously aims to protect models and sensitive 

data. The conceived framework assesses the accuracy of a variety of machine 

learning metrics, such as accuracy, precision, recall, and the F1 score. As we 

can see from the results, detection efficiency was significantly improved with 

the incorporation of inter-dataset routing. MLP achieved a maximum 

accuracy of 99.1% with a recall of 100% in cross-dataset testing, showcasing 

its robustness in identifying all positive instances. SVM demonstrated a 

precision of 99.4% in certain scenarios, effectively minimizing false positives 

and enhancing classification confidence. Logistic Regression also showed 

stable precision values, contributing to consistent detection performance. 

These analyses stress how existing techniques for machine learning 

algorithms used in IDS designs cover a wide variety of purposive uses, with 

one being the prevention of distributed denial-of-service attacks. The 

practical implications of this research include the recommendation of the 

usage of proper algorithms justified for the desired security level in the 

networks to the administrators of the networks and security entailment 

specialists. The work done consolidating the result and outcome of this study 

points a way forward for subsequent studies on WSN security, with the view 

of providing a springboard for the development of intrusion detection 

systems, in view of the dynamic nature of cybersecurity. 

 

1. INTRODUCTION  

 In the digital environment of the contemporary world, people interact with users from 

different countries constantly due to the constant sharing of information. These scenarios 

demonstrate the preponderance of the connectedness of the users, in which case, security threats 

may affect scattered and diverse individuals. The availability of new WiFi devices and the evolving 

nature of the networks have greatly increased the possibility of a breach and unauthorized access. 

Regular preventive security approaches prove ineffective in countering innovation threats, thereby 

requiring higher visibility protection approaches like machine learning-based Intrusion Detection 

Systems (IDS). However, deploying a solid IDS designed for WNs is difficult, especially when relying 

on supervised machine-learning techniques [1], [2].  

Wireless networks, by nature, possess inherent architectural weaknesses: interception, 

interference, and spoofing due to the open communication environment. Other challenges that add 

to the difficulty of discriminating between a malicious practice and legal network use include 
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instability of signal strength, interference, and mobility. It is important to learn how to build an IDS 

that can accurately track all these subtleties if a wireless network is to be effectively protected [3], 

[4]. 

A limitation in the approach to implementing supervised machine learning for IDS is the 

difficulty in obtaining training and calibration datasets containing these labels. Labeling real-world 

wireless network traffic involving both normal and intrusive activities is both computationally 

expensive and time-consuming. Moreover, since new forms of cyberattacks are constantly 

emerging, the datasets need to be updated constantly with IO patterns. Thus making it difficult to 

achieve the perfect representation [5], [6].  

Feature selection is another critical issue in wireless network intrusion detection. In wired 

networks, the backbone is between only bandwidth and latency [7],  and in wireless networks, this 

range should include the signal strength, packet loss, and channel usage, which are important to 

detect intrusions accurately. The selection methods [8] and the use of these papers to optimize 

detection accuracy through feature selection are essential in dealing with this issue. We are given a 

wireless communication system, and that still features should be designed in terms of the system's 

properties. 

Among other issues, one can list the model performance comparison and the need to choose 

an algorithm out of many for the application. These intrusion detection models must be evaluated, 

considering the particularities of wireless networks and their ability to cope with noise and 

dynamic environments [9]. Effective evaluation ensures that the schemes can defend against 

having critical knowledge and messages controlled by an adversary. As a result, we need to develop 

complex and realistic models for evaluation, taking the nature of wireless networks into account 

[2], [10]. 

 

Figure 1: Overview of Wireless Sensor Network Vulnerabilities and Intrusion Detection 
Framework.   

Conversely, IDS in delivery for wireless networks has an added challenge because its success 

depends on three factors: scalability, flexibility, and efficiency. Wireless traffic is station-type and 

involves high-speed as well as high-volume data flows that require fast and precise responses to 

threats. Increased confrontation levels, such as underperformance bottlenecks, network 

interference, and the appearance of new forms of attacks, pose a complexity in the development of 

IDS solutions that would contain flexibility and robustness. Supervised learning techniques are 

found to have a significant role in the accomplishment of extensive security and accuracy linked to 

intrusion detection[11], [12]. 
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The main objective of this research is to develop and evaluate a supervised machine learning-

based IDS framework that is capable of effectively detecting and classifying attacks in wireless 

sensor networks using an inter-dataset evaluation approach. This framework specifically integrates 

MLP, SVM, and LR algorithms to assess detection performance and generalization capabilities. 

The novelty of this study lies in the application of a dual cross-dataset strategy that tests 

algorithm robustness across heterogeneous datasets (KDD-Cup99 and NSL-KDD). Unlike previous 

works that rely solely on in-dataset validation, our approach evaluates how well models trained on 

one dataset perform on another, thus reflecting real-world deployment challenges. Enterprises 

include slow changes in signal strength, large data outputs, and unpredictability of attacks that 

require solutions tailored to the wireless environment. The diagram in Fig (1) shows the 

relationship between these elements, presenting a conceptual framework of wireless network 

security. 

2. RELATED WORKS  

 Wireless sensor networks (WSN) have been widely studied because of their great dependence 

on wireless communication and because new threats are emerging and attacks are more complex 

[13]. This section provides the literature with a summary of accomplishments and methods that 

have been carried out using supervised learning algorithms, followed by feature selection and real-

world datasets for IDS in wireless networks [14]. 

Several non-fragile publications deliberated over the use of heuristic learning approaches to 

optimize IDS functioning. For example, [15], an IDS based on Support Vector Machines (SVM) was 

suggested for the classification of flow traffic into benign and malicious. Therefore, their approach 

was very accurate in identifying the attacks and was able to minimize false alarms, especially in 

situations where the networks may encounter different types of attacks. Likewise, [16] looked at 

the application of MLP for anomaly detection in WSNs, where it was suggested that this type of 

model offers more dependable capacities for outlining decision boundaries while offering desirable 

detection rates. But at the same time, their work pointed out that the main obstacle is choosing the 

right compromise between the number of calculations required and the effectiveness of detecting 

intrusions. 

Feature selection has also been another important research area discussed in IDS research. In 

[17], to provide an effective weighting of features inherent to wireless technology, a new concept is 

introduced that focuses on signal strength, number of lost packets, and channel usage. Their results 

showed that the extension of these domain-specific features enhanced the efficiency of the intrusion 

detection and implemented rejection of extra baggage or unrelated data, determining low 

computational complexity. Moreover, at  [18], future research also proved the efficiency of 

dimensionality reduction methods like PCA for making the IDS model scalable in a high-dimensional 

wireless context. 

Availability of the dataset and annotation are important factors that are closely related to IDS 

development. As proposed in [19], the paper showed the challenges associated with data labeling 

to incorporate realistic traffic data, especially in emerging attacks. Their study suggested synthetic 

network traffic generation for the modeling of different kinds of intrusions. They similarly [20] 

pointed out the need for frequent updating of datasets due to dynamic and ever-changing attackers’ 

behaviors, knowledge of which was important as outdated data reduced the accuracy of machine 

learning-based systems. 

Some of the recent articles highlighted the capacity of employing supervised machine learning 

algorithms in real-time IDS for WSNs. At [17], the authors examined the application of LR together 

with SVM and MLP to distinguish between DDoS and botnet attacks. According to their findings, 

while the LR model offered a sufficient accuracy rate, the SVM model outperformed in precision, 

while they observed better recall rates using the MLP model. These results justify the adoption of 

composite frameworks where various algorithms are integrated and deployed to solve various 

security issues in wireless systems. 
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However, existing IDS approaches still face difficulties in real-time implementation and 

flexibility when facing dynamic conditions of a network [21]. In [22], it identified bottlenecks 

provoked by high-volume traffic in WSNs and developed architectures to manage intensive data 

rates. Further, [13] discussed the possibility of utilizing the lighter versions of learners in order to 

avoid challenges resulting from performance restrictions and still provide highly accurate 

detection.  

Table 1: Comparative Analysis of Supervised Machine Learning-Based Intrusion Detection Systems 
in Wireless Sensor Networks. 

Ref. Algorithm(s) Dataset Features 
Performance 

Metrics 
Key Findings 

[10] SVM NSL-KDD 
Packet size, 

protocol type 

Precision, 
Recall, F1-

Score 

Demonstrated high precision 
with reduced false positives; 

limited scalability in high-
dimensional datasets. 

[16] MLP 
UNSW-
NB15 

Signal 
strength, 

traffic volume 

Accuracy, 
Detection Rate 

Effective in modeling complex 
decision boundaries, 

computational overhead 
remains a challenge. 

[17] 
Feature 

Selection + 
SVM 

Real-world 
network 

traffic logs 

Signal 
strength, 

channel usage 

Feature 
Importance, 

Accuracy 

Improved efficiency by 
selecting domain-specific 

features unique to wireless 
networks; reduced data 

dimensionality. 

[23] PCA + SVM 
CIC-

IDS2017 
Reduced 

feature set 
Precision, 
Accuracy 

Demonstrated scalability in 
handling high-dimensional 

datasets; reduced model 
complexity without 

compromising detection 
accuracy. 

[10] 
Synthetic 
Dataset 
Creation 

Custom 
synthetic 
datasets 

Packet type, 
timing 

information 

False Positive 
Rate, Recall 

Proposed a method to 
generate synthetic datasets 

that cover diverse attack 
types, addressing real-world 

dataset limitations. 

[11] 
SVM, MLP, 

Logistic 
Regression 

NSL-KDD, 
CIC-

IDS2018 

Signal 
strength, 
latency 

Precision, 
Recall, F1-

Score 

SVM provided higher 
precision; MLP offered better 

recall for identifying true 
positives, highlighting the 
value of hybrid algorithm 

frameworks. 

[13], [22] 
Lightweight 

SVM 
IoT-23 

Lightweight 
traffic features 

Latency, 
Accuracy, and 

Scalability 

Developed lightweight models 
to balance resource 

constraints and detection 
performance in real-time 

environments. 
 

On the basis of the literature review, it can be concluded that the role of machine learning 

approaches, especially ones based on supervised learning, has yet to be fully utilized in improving 

the results of intrusion detection in WSNs. It is for this reason that problems like dataset quality, 

feature selection, and real-time usability remain some of the constraints with such systems. This 

current study extends such efforts by incorporating SVM into a sophisticated IDS model, 

overcoming these limitations, and contributing to the ongoing debate over wireless network 

security. Table 1 summarizes and analyzes the related works on IDS in WSNs based on supervised 

machine-learning techniques. These include the selection of the specific algorithm to be used, the 

type and size of the data set used, the features chosen, and most importantly, the evaluation 

measures and conclusions drawn from the study. 
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Hence, although several studies have explored the use of supervised machine learning in IDS 

for WSNs, key limitations persist, particularly in terms of model generalizability across datasets, 

feature selection specific to wireless environments, and real-time deployment under high-volume 

traffic. Moreover, most studies validate models using only single-dataset evaluations, limiting their 

applicability to real-world scenarios. This research addresses these gaps by introducing a dual 

cross-dataset evaluation strategy, integrating MLP, SVM, and LR, and applying wireless-specific 

features to enhance detection performance and scalability across heterogeneous WSN conditions. 

3. METHODOLOGY  

3.1 The Proposed Framework 

The proposed framework brings forward an inter-dataset evaluation strategy whose main 

purpose is to link and operate datasets in a complementary manner, minimizing individual 

weaknesses while leveraging mutual strengths. Based on this structure, a relational matrix is 

established between two datasets to enable a comprehensive evaluation of machine learning-based 

intrusion detection models across diverse scenarios. This approach avoids reliance on static, single-

dataset validation and simulates more realistic, heterogeneous WSN environments.  

The main workflow of the proposed approach is illustrated in Fig )2(, including the 

preprocessing and feature selection of the dataset, training and testing the model. It 

comprehensively consists of in-dataset and cross-dataset evaluations where models are trained 

and tested on the KDD-Cup99 and NSL-KDD datasets. The figure above illustrates a feedback loop 

for model optimization and shows that a cross-dataset training results in a stronger generalization 

ability and model robustness against diverse data distributions. 

 

Figure 2: Steps of the Proposed Methodology. 

First. Interconnected Datasets: It interconnects the datasets where one could be a subset of 

the other, enabling interoperability in training and testing. This procedure improves model 

generalization as it evaluates the performance in different dataset contexts. 
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Second. A Workflow for Evaluation: Several steps are involved in the plan of action for 

evaluating nursing collaboratives: 

a) Preprocessing: Noise is removed, noise removed, features are scaled, and the dimension 
is reduced to make the model more efficient. 

b) Splitting the Dataset: The Data is divided into Training and Test sections. 

c) Model training: To determine the optimal performance, models are trained on the 
training data. 

Evaluation metrics used include accuracy, precision, recall, and F1-score, as shown in Equations 
(1), (2), and (3): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝑇𝑁 

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                         … (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                  … (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    … (3) 

Where TP, TN, FP, and FN are true positives, true negatives, false positives, and false negatives, 
respectively. 

Third. Cross-Dataset Protocol: One of the most important aspects of this work is the double 
cross-dataset evaluation procedure used instead of the classical single-dataset evaluation. 

a) Train on Dataset A → Test on Dataset B 

b) Train on Dataset B → Test on Dataset A 

This iterative process contributes to increased confidence in the adaptability of models and 
minimizes the likelihood of overfitting or overreliance on a single data set. 

Fourth. Cross-Dataset Strategy Dual Implementation: Achieving model robustness and 
generalization, we enforce both directions for dataset pairing. This double-stage approach 
improves the robustness of training (calibration) as well as the amount of overfit that can occur, 
while also offering some perception into the consistency of detection across datasets. 

3.2 Multilayer Perceptron (MLP) 

The framework comprises a class of ANN called MultiLayer Perceptron (MLP). MLP has 

several layers (input, hidden , and output), and neurons are completely connected between layers. 

It is good at learning complicated, non-linear mappings between data. Then, the forward progress 

of the MLP is presented as follows (4): 

𝑎(𝑙) = 𝜎(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙))                                      … (4) 

Where: 

• a(l) = Activations of layer l. 

• W(l)= Weight matrix for layer l 

• b(l)=  Bias vector for layer l. 

• σ= Activation function (e.g., ReLU, Sigmoid). 

Indeed, due to its capability of recognizing non-linear relationships and its expandability, MLP 

is suitable for intrusion detection problems. (Fig. 3( shows the structure of an MLP network 

employed in this work. It includes the input layer, which takes feature vectors in the dataset, one 

or more hidden layers learning non-linear patterns, and an output layer that does the classification. 

Every node (neuron) in a layer is connected to every node in the next layer. This structure enables 

the MLP to learn complex decision boundaries, and hence, it is suitable for detecting obscure and 

distributed intrusion patterns in WSN data. 
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Figure 3: Structure of a typical MLP network. 

We choose the MLP because it is powerful for modeling nonlinear relationships with high-

dimensional intrusion detection. 

3.3 Support Vector Machine (SVM) 

The second most significant algorithm in the framework is SVM. The SVM algorithm is 

implemented in a way that it finds the best boundary that discriminates the data points into two 

areas, regions. For two-class classification, equation (5) is the mathematical expression of the 

decision boundary: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏                                                    … (5) 

Where: 

• w: Weight vector defining the hyperplane's orientation. 

• x: Input vector. 

• b: Bias term determining the hyperplane's position. 

SVM, which separates hyper-planes in high-dimensional space and kernel functions that 
implicitly transform non-linear problems, is another reason why it can be used for intrusion 
detection. It was chosen due to its well-known accuracy and generalization capabilities even when 
the class boundaries are clearly separable. 

3.4 Logistic Regression (LR) 

We choose Logistic Regression (LR), which is a staple model for binary classification, as it has 

low computationally complexity and it can work effectively in a real-time binary classification 

scenario, which is required in low-resource wireless settings. Calculates the probabilities using 

equation (6) as follows: 

𝑃( 𝑦 = 1 ∣∣ 𝑥 ) =
1

1+𝑒−𝑧                                               … (6) 

Where  𝑧 =  𝑤𝑇𝑥 + 𝑏, LR provides a straightforward yet effective approach for intrusion 

detection tasks, particularly in resource-constrained environments. 

3.5 Data Analysis and Data Collection 

The dataset component plays a critical role in training and evaluating IDS performance. Two 

well-known datasets were utilized: The KDD-Cup99 dataset, which forms one of the foundational 

benchmarks in intrusion detection research, comprises 42 features and categorizes data into five 

distinct classes: one representing normal traffic and four representing various types of network 

attacks. While it provides a comprehensive overview of network traffic behaviors, it has been widely 

criticized for its high redundancy and imbalanced distribution of records, which can lead to biased 
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model training. To address these limitations, the NSL-KDD dataset was introduced as a refined and 

enhanced version. NSL-KDD eliminates duplicate records, balances the dataset more effectively, and 

offers improved representativeness, making it more suitable for fair training and evaluation of 

machine learning-based intrusion detection systems. Table 2 presents classes in the dataset. 

Table 2: Classes in the Dataset 

Class Description 

DoS Denial of Service attacks target system availability. 

R2L 
Remote-to-local attacks aim to gain unauthorized access via techniques like password 
guessing. 

U2R User-to-root attacks escalate user privileges to the root/admin level. 

Probing 
Reconnaissance attacks are used to identify vulnerabilities through scanning tools like 
Nmap. 

3.6 Hyperparameter Tuning and Model Configuration 

To ensure optimal performance, each machine learning model was subjected to a 

hyperparameter tuning process using grid search with cross-validation. For the MLP, key 

parameters such as the number of hidden layers, neurons per layer, learning rate, and activation 

functions (ReLU, Sigmoid) were varied. The final model utilized two hidden layers with 8 and 6 

neurons, respectively, a learning rate of 0.01, and ReLU activation, which yielded the best 

convergence. For SVM, tuning focused on the choice of kernel (linear, polynomial, RBF), 

regularization parameter C, and kernel coefficient γ (gamma). The best performance was achieved 

using the RBF kernel, with C = 10 and γ = 0.1, providing a balanced trade-off between bias and 

variance. However, the cross-dataset results indicated sensitivity to data distribution, suggesting 

that more adaptive kernel selection or domain adaptation techniques may be needed for improved 

generalization. 

Logistic Regression was tuned using regularization strength C and solver selection. The model 

performed best with C = 1.0 and the ‘liblinear’ solver for binary classification tasks. All models were 

implemented within the Scikit-learn package with the additional use of 5-fold cross-validation for 

tuning to avoid fitting to the validation set. 

4. RESULTS 

We show the results of experiments with the application of the proposed type of 

categorization, here with emphasis on checking the performance gain achieved by using the 

supervised output of machine learning tools. Selection about the accuracy, recall, precision, and F1-

score of the results is conducted in different conditions (i.e., inter-dataset, cross-dataset test). 

Table 3: Performance Metrics for MLP Algorithm 

Algorithm Dataset Recall Precision F1 Accuracy 

MLP KDD-Cup99, KDD-Cup99 0.997 0.997 0.997 0.998 

MLP NSL-KDD, NSL-KDD 0.998 0.987 0.990 0.981 

MLP KDD-Cup99, NSL-KDD 1.000 0.991 0.990 0.991 

MLP NSL-KDD, KDD-Cup99 0.999 0.994 0.997 0.994 
 

4.1. Multilayer Perceptron (MLP) Results 

Table 3 shows the outcomes of the MLP algorithm experimented with different DSM pair 

combinations. The table consists of recall, precision, F1-score, and accuracy under in-dataset and 

Cross-dataset. The results in Table 3 show that, in the in-dataset/cross-dataset based evaluations, 

the MLP algorithm also performs stably well. Its stability and high recall in all cases, particularly the 

perfect recall of 1.000 when trained in KDD-Cup99 and tested in NSLKDD, indicate its better ability 
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to detect all positive intrusion examples. This means that MLP can be well applied in dynamic WSNs 

where it is important to generalize between different data distributions. 

4.2. Support Vector Machine (SVM) Results 

Table 4 shows the Metrics of the SVM algorithm under the same proportions in the dataset 

tables. The table also shows that the algorithm can do both within-dataset and between-dataset 

assessments, which aids the evaluation of the overall generality and stability of the algorithm. 

Table 4: Performance Metrics for SVM Algorithm 

Algorithm Dataset Recall Precision F1 Accuracy 

SVM KDD-Cup99, KDD-Cup99 1.000 0.995 0.998 0.995 

SVM NSL-KDD, NSL-KDD 1.000 0.984 0.992 0.983 

SVM KDD-Cup99, NSL-KDD 1.000 0.993 0.992 0.990 

SVM NSL-KDD, KDD-Cup99 0.522 0.994 0.658 0.457 

While SVM demonstrates strong performance in in-dataset settings, its recall drops 

significantly to 0.522 in the cross-dataset case where training was done on NSL-KDD and testing on 

KDD-Cup99. The overall accuracy also declines to 0.457, indicating a sharp decrease in the model's 

ability to detect positive cases when applied to a differently distributed dataset. This performance 

drop is likely due to the mismatch in feature distributions, data representations, and underlying 

statistical patterns between the datasets. KDD-Cup99 is more redundant and imbalanced, whereas 

NSL-KDD is cleaner and balanced, making cross-generalization for SVM more difficult. 

Despite this, SVM maintains a high precision (0.994), meaning that when it does predict a 

positive case, it is almost always correct, suggesting its usefulness in high-security contexts where 

false positives must be minimized. 

4.3. Logistic Regression (LR) Results 

In more detail, the performance of the Logistic Regression (LR) algorithm is shown in Table 5 

below. To determine its applicability in intrusion detection tasks, this algorithm is tested on the 

same dataset configurations. 

Table 5: Performance Metrics for Logistic Regression Algorithm 

Algorithm Dataset Recall Precision F1 Accuracy 

LR KDD-Cup99, KDD-Cup99 0.997 0.996 0.954 0.997 

LR NSL-KDD, NSL-KDD 0.977 0.974 0.857 0.983 

LR KDD-Cup99, NSL-KDD 0.714 0.759 0.814 0.974 

LR NSL-KDD, KDD-Cup99 0.001 0.001 0.822 0.918 

 Logistic Regression performs well in in-dataset configurations with high accuracy and 

reasonable precision. However, in the cross-dataset test where the model is trained on NSL-KDD 

and evaluated on KDD-Cup99, recall and precision drop drastically to 0.001, which indicates the 

model's inability to detect intrusions in unfamiliar data environments correctly. This supports the 

interpretation that LR, though useful as a lightweight baseline model, is not suitable for adaptive 

intrusion detection where datasets differ in structure and distribution. 

4.4. Summary and Practical Implications 

Among the three algorithms, MLP stands out for its high stability and strong generalization 

capability across datasets. It demonstrates impressive recall and accuracy in intra-dataset and 

inter-dataset scenarios and is an appropriate algorithm for real-time detection of dynamic and 
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uncategorized wireless networks. The high precision of SVM would suggest that it is indeed useful 

in cases where false alarms need to be minimized, such as critical infrastructure protection. 

Nevertheless, its decrease in recall in some cases indicates not good robustness without further 

fine-tuning or feature alignment. Although Logistic Regression is simple and fast, it is not stable 

between datasets, which demonstrates its poor extension for practical WSN applications. 

These findings demonstrate the significance of dataset quality, distribution adaptation, and 

test setting for IDS research and development. These results also suggest that hybrid or ensemble 

methods exploiting the strengths of MLP (high recall) and SVM (high precision) would offer a more 

balanced and robust solution to real-world WSN security problems. 

5. DISCUSSION  

The proposed experiment results validate the importance of using supervised machine 

learning algorithms such as MLP, SVM, and LR to perform intrusion detection in WSNs. In this 

section, we discuss their implications, compare them with existing results, and point out possible 

practical usages. 

The introduced approach was compared with two recent approaches on intrusion detection. 

For example, in [24], the authors used SVM and Decision Tree algorithms, and in [16], MLP and 

Random Forest with the KDD-Cup99 dataset were studied. A comparative study was carried out 

with the help of performance measures, accuracy, precision, recall, and F1-score under the cross-

dataset evaluation situation. 

Table 6: Comparative Performance Analysis 

Algorithm Dataset Metric Our Study Ref. [15] Ref. [16] 

MLP KDD-Cup99, NSL-KDD Accuracy 0.991 - 0.965 

MLP KDD-Cup99, NSL-KDD Precision 0.991 - 0.960 

MLP KDD-Cup99, NSL-KDD Recall 1.000 - 0.962 

MLP KDD-Cup99, NSL-KDD F1-Score 0.990 - 0.961 

SVM NSL-KDD, KDD-Cup99 Accuracy 0.457 0.621 - 

SVM NSL-KDD, KDD-Cup99 Precision 0.994 0.690 - 

SVM NSL-KDD, KDD-Cup99 Recall 0.522 0.551 - 

SVM NSL-KDD, KDD-Cup99 F1-Score 0.658 0.612 - 

LR NSL-KDD, KDD-Cup99 Accuracy 0.918 - 0.855 

LR NSL-KDD, KDD-Cup99 Precision 0.001 - 0.850 

LR NSL-KDD, KDD-Cup99 Recall 0.001 - 0.858 

LR NSL-KDD, KDD-Cup99 F1-Score 0.822 - 0.856 
 

Table 6 shows a comparison of the accuracy, precision, recall, and F1-score of MLP, SVM, and 

LR-based approaches of this work to other works. The comparison shows that the proposed 

approach obtains good results on both settings: in-dataset and cross-dataset. 

From this analysis, it can be inferred that the MLP classifier used in this article is better than 

the ones proposed by [13], particularly for the cross-database experiment. The model always 

detected all positive samples with high precision and recall, and thus it's suitable for detecting 

intrusion at large-scale(heterogeneous) data. But there were some possible limitations. SVM's 

recall and accuracy were considerably reduced on multi-dataset tests to the point that, specifically 

from NSL-KDD to KDD-Cup99, the impact was substantial, indicating that it is sensitive to bias in 

distribution and feature difference across datasets. This may indicate that differences might inhibit 

the generalization ability of SVM in data quality, noise, and feature scaling. 

To alleviate this issue, a domain adaptation method or transfer learning could be applied in 
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future work to align the feature spaces across datasets. Furthermore, kernel function optimization 

and robust feature selection schemes (e.g., Recursive Feature Elimination or PCA) might increase 

SVM’s cross-domain performance. Another restriction comes from the generalization capacity of 

Logistic Regression on datasets. Despite high in-dataset performances on LR, recall and precision 

were not preserved across distributions. This reiterates the requirement of regularization, better 

hyperparameter optimization, and thematically considering the ensemble in order to increase the 

reliability of the latter. 

In conclusion, we have demonstrated the potential for supervised learning for WSN-IDS and 

identified the potential for improvement in its generalization, scalability, and real-time 

deployment. The findings further support the significance of complementary dataset evaluations to 

expose the limitations of algorithms, which may not be apparent in single-dataset testing. 

6. CONCLUSION  

 This work introduced a solution aiming to enhance the performance of intrusion detection 

systems (IDS) in wireless sensor networks (WSNs) based on Supervised Machine Learning (SML) 

techniques, including Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Logistic 

Regression (LR). We proposed a novel approach, which consisted of an inter-dataset evaluation 

model and a dual cross-dataset strategy for robust performance evaluation across different test 

conditions. The experimental results demonstrated that MLP achieved better recall, precision, F1-

score and overall accuracy compared to other models, for both in-dataset and cross-dataset 

evaluations. SVM showed very high precision, but underperformed in recall across datasets with 

different distributions, highlighting its sensitivity to domain shifts. LR was used as a relatively 

computationally efficient baseline with a good performance on in-dataset setups but with low 

capacity to generalise to unseen data, especially on cross-evaluation scenarios. The proposed 

model was also successful at reducing overfitting and model bias by implementing feature selection 

procedures, multiple rounds of evaluation, and making a clear division between training and test 

domains. 

Furthermore, the study raised the importance of cross-dataset evaluation as a more pragmatic 

baseline for IDS performance compared with traditional in-dataset validation. Although having 

various strong points, the study also has a few drawbacks, e.g., the difficulty of generalizing SVM 

within different data backgrounds, the sensitiveness of the model to the data unbalance, and finally, 

the scant real-time response. Dealing with these limitations is crucial for practical applications, e.g., 

resource-constrained or high-speed WSN deployments. It will be in the interest of future work to 

build ensemble and hybrid systems, which capitalize on the advantages of several models, such as 

complementing MLPs’ good recall and CI DTOs with SVM’s hyper precision. 

Furthermore, incorporating adaptive models that can learn in real time and self-automatically 

update themselves to current threats will increase system robustness. Extensions of such a 

framework to other, more representative datasets and applicability to real WSN deployments will 

also support validation of its practical relevance. In summary, our work represents an important 

contribution to the current discussions on intelligent security by presenting a scalable, efficient, and 

generic method for IDS in WSN. Insights obtained in this research provide an important base for 

the development of future secure directed wireless communication systems for the dynamic 

situation of the cyber-attack. 
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