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Background: Acute Myocardial Infarction (AMI) remains a leading cause of morbidity and 

mortality worldwide. Understanding the influence of patient characteristics on survival 

outcomes is critical for developing effective clinical interventions. 

Objectives: This study aims to evaluate survival outcomes in AMI patients dataset using the 

Kumaraswamy-logistic survival regression model and the Kaplan-Meier estimator, with a 

focus on quantifying the effects of covariates such as age, sex, and body mass index (BMI). 

Methods: A dataset comprising AMI patient survival times was analyzed. The natural 

logarithm of survival time was modelled with censoring indicated by  i (1 = death, 0 = 

censored). Covariates included age groups (32-51, 52-71, 72-92), sex (male/female), and BMI 

categories (normal, overweight, obese). Parameter estimation was conducted using Maximum 

Likelihood Estimation (MLE). Non-parametric survival probabilities were also assessed using 

the Kaplan-Meier method. 

Results: The Kumaraswamy-logistic model revealed significant associations for key 

predictors. Notably, male sex (   = 1.02299,   = 0.00196) and obesity (   = 1.02584,   = 

0.00145) were strongly linked to reduced survival, while advanced age groups also exhibited 

elevated risk (   = 1.20594,   < 0.001 for patients aged 72-92). The scale parameter estimate 

was   = 11.85 (          ) and the shape parameter          (          ), indicating 

right-skewed survival times with a heavy tail. The Kaplan-Meier survival curve showed high 

initial survival       at 500 days), but a sharp decline over time, with survival probability 

falling below     after approximately 2000 days. 

Conclusions: This study demonstrates that survival among AMI patients is significantly 

influenced by age, sex, and BMI, with older, male, and obese patients experiencing worse 

outcomes. The Kumaraswamy-logistic model effectively captured the parametric survival 

structure, while the Kaplan-Meier estimator provided a robust non-parametric benchmark. 

These results emphasize the need for early risk stratification and tailored interventions in high-

risk groups. Future research should validate these findings across broader populations and 

explore additional prognostic markers to refine survival predictions. 
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1. Introduction  

Acute Myocardial Infarction (AMI), 

commonly referred to as a heart attack, remains 

a leading cause of death worldwide despite 

significant advances in medical treatments and 

interventions. This condition, caused by the 

sudden obstruction of blood flow to the heart 

muscle, leads to substantial mortality and 

morbidity, particularly in the presence of risk 

factors such as diabetes, hypertension, and 

chronic kidney disease. A deeper 

understanding of survival patterns in AMI 

patients is crucial for improving clinical 

outcomes. Achieving this requires the use of 

robust statistical models to accurately predict 

https://isj.edu.iq/index.php/rjes
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survival probabilities and assess the impact of 

various prognostic factors. 

The Kaplan-Meier estimator, a 

traditional and widely utilized non-parametric 

approach, is commonly employed to model 

survival probabilities over time. Its strength lies 

in its ability to handle censored data, where the 

exact time of an event (such as death or 

recovery) is unknown for some patients. This 

simplicity makes it particularly popular in 

clinical studies [1, 2, 3, 4, 5]. However, 

Kaplan-Meier does not accommodate the 

effects of covariates, limiting its capacity to 

evaluate the influence of individual risk factors 

on survival outcomes. 

To overcome these limitations, 

parametric survival models such as the 

Kumaraswamy logistic survival regression 

model have gained attention. This model 

extends the Kumaraswamy distribution, 

offering greater flexibility to capture diverse 

survival time distributions [6, 7]. Additionally, 

it allows for the inclusion of covariates, 

enabling the identification and quantification of 

the effects of prognostic factors, such as age, 

heart function, and comorbid conditions like 

kidney failure, on patient survival [8]. These 

features make it a valuable tool for enhancing 

the predictive accuracy of survival analysis in 

AMI research [9]. 

Recent studies highlight the importance 

of incorporating a wide range of prognostic 

factors in survival models for AMI patients. 

For instance, predictive models that include 

laboratory findings such as troponin, creatinine, 

and haemoglobin levels alongside clinical 

variables like hypertension history and 

previous cardiac events have significantly 

improved the accuracy of survival predictions 

[8, 9]. Such advancements allow clinicians to 

make more informed decisions, ultimately 

improving post-AMI care and long-term 

outcomes [8, 9]. 

In this study, the Kumaraswamy logistic 

survival regression model will be applied to an 

AMI dataset, facilitating the simultaneous 

consideration of multiple covariates. The 

survival probabilities derived from this model 

will be compared with those estimated by the 

Kaplan-Meier method to evaluate their 

differences and respective strengths. 

Additionally, residual analysis for both models 

will provide insights into their accuracy and 

highlight areas for refinement, ensuring a 

comprehensive understanding of survival 

dynamics in AMI patients [10]. 

By integrating traditional and advanced 

survival analysis techniques, this research 

seeks to improve the predictive accuracy of 

survival outcomes in AMI patients [9]. The 

findings aim to support the development of 

personalized treatment strategies, reducing 

mortality and enhancing recovery outcomes for 

this vulnerable population [9]. 

A significant development is the 

introduction of the Mixed-Effects Parametric 

Proportional Hazard (MEPPH) model with a 

generalized log-logistic baseline distribution [2, 

3, 4, 5]. This model effectively addresses 

clustered survival data by incorporating 

random effects, thereby accounting for 

unobserved heterogeneity between clusters. 

The MEPPH model has demonstrated superior 

performance compared to traditional models, 

particularly in handling non-monotone hazard 

rate functions, which are common in medical 

data, including AMI cases [11].  

Additionally, the Kumaraswamy-Log-

Logistic distribution has been proposed as a 

flexible model for survival data, capable of 

accommodating various hazard rate shapes. 

This distribution extends the log-logistic 

model, offering enhanced adaptability in 

survival analysis [12]. Other contributions to 

parametric survival distribution include the 

NOF-G family of distribution by [13], the 

NGOF-G family of distribution by [14], the 

NGOF-Et-G family of distribution by [15], the 

NGOF-OE-G family of distribution by [16], the 

NETD Using generalized logarithmic function 

by [17], the extension of T-L distribution by 

[18], the partial least squares regression by 

[19], the impact of propensity score-adjusted 

targeted intervention on survival outcomes 

among HIV-infected patients by [20], and 

survival analysis in advanced lung cancer by 

[5]. 

The Kaplan-Meier estimator continues 

to be a fundamental tool in survival analysis, 

particularly in AMI research. Recent studies 



 
 

Ibrahim  et al/ Iraqi Statisticians Journal / Vol. 2, no.  2, 2025: 15-32 

17 

 

have utilized this method to assess survival 

probabilities and the impact of various 

biomarkers on patient outcomes. For instance, 

elevated admission levels of cystatin C (CysC) 

in AMI patients have been associated with 

increased all-cause and cardiovascular 

mortality over four years, as revealed by 

Kaplan-Meier survival analysis (Lou et al., 

2022).  

Furthermore, gender differences in AMI 

prognosis have been examined using Kaplan-

Meier survival curves. Findings indicate that 

male AMI patients may experience different 

survival outcomes compared to females, 

underscoring the importance of considering 

gender in survival analyses [21, 22].  

Logistic regression has been 

increasingly applied in survival analysis to 

examine the relationship between risk factors 

and disease events. This approach allows for 

the assessment of covariate effects on survival 

probabilities, providing a comprehensive 

understanding of prognostic factors in AMI 

patients [23, 24].  

In summary, recent literature 

emphasizes the evolution of survival analysis 

methodologies, from traditional non-parametric 

approaches like the Kaplan-Meier estimator to 

advanced parametric models such as the 

MEPPH and Kumaraswamy-Log-Logistic 

distributions. These advancements enhance the 

accuracy of survival predictions and the 

understanding of prognostic factors in AMI 

patients, contributing to improved clinical 

decision-making and patient outcomes. 

 

1.1 Contribution to the Literature 

This study contributes to the survival 

analysis literature in three significant ways: 

 

Introduction of the Kumaraswamy-Logistic 

Model in AMI Survival Analysis: 

This is among the first studies to apply the 

Kumaraswamy-logistic survival regression 

model to Acute Myocardial Infarction (AMI) 

data. While classical models like Weibull or 

Cox proportional hazards are commonly used, 

the Kumaraswamy-logistic model offers 

greater flexibility in capturing skewed hazard 

behaviors due to its bounded and asymmetric 

hazard function. This enhances the 

understanding of long-term survival dynamics, 

particularly in cases with non-monotonic or 

non-proportional hazards. 

 

Model-Based Identification of Prognostic 

Factors: 

The study rigorously demonstrates that 

advanced age, male sex, and obesity are 

significant predictors of reduced survival in 

AMI patients, supported by statistically robust 

maximum likelihood estimates. The model-

based approach allows not only inference on 

survival probabilities but also quantification of 

the magnitude of risk associated with specific 

covariates, offering more nuanced clinical 

interpretations than non-parametric approaches 

alone. 

Integration of Parametric and Non-

Parametric Techniques: 

By combining the Kumaraswamy-logistic 

regression model with the Kaplan-Meier 

estimator, the study highlights the 

complementary strengths of parametric and 

empirical methods. This dual approach 

improves predictive reliability and 

interpretability, especially when long-term 

survival estimates are hindered by censoring 

and small sample sizes. 

 

1.2 Novelty and Relevance 

i. This study pioneers the application and 

evaluation of the Kumaraswamy-

logistic model in the clinical context of 

AMI, where traditional models may fail 

to fully capture the underlying survival 

process. 

ii. It provides clinically actionable 

insights, reinforcing the role of obesity 

 

iii.  and aging as critical, modifiable risk 

factors thereby guiding prevention and 

follow-up strategies. 

iv. It contributes a flexible statistical 

framework that can be extended to 

other chronic disease datasets where 

complex hazard shapes and covariate 

interactions are present. 
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2. Methodology 

This section presents statistical functions and 

methods that are useful for this research work. 

These among others include the following: the 

pdf and CDF of Kumaraswamy-log-logistic 

distribution, the pdf and survival function of 

the Kumaraswamy-logistic distribution, the 

plots of the pdf and survival function of the 

Kumaraswamy-logistic distribution, and the 

Kumaraswamy-logistic survival regression 

model. 

 

2.1 The Kumaraswamy-log-logistic distribution 

The researcher [12] defined the cdf and pdf of the Kumaraswamy-log-logistic distribution are 

respectively given (for 0t  ) and 0  is scale parameter and 0   is shape parameter; and 

 0, 0    extra parameters. 

 

 

1

1

1 1
1 1 1

1

t
f t t

t











 





 



  
                        
    

   (1) 

 
1

1 1 1

1

F t
t







  
  
           
    

      (2) 

The survival and hazard rate functions of the Kumaraswamy-log-logistic distribution are derived as; 

 
1

1 1

1

S t
t







  
  
          
    
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                        
    

   (4) 
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Figure 1: PDF, CDF, SF, and HF Plots of Kumaraswamy-logistic distribution 

Figure 1 consists of four plots showing 

different functions of the Kumaraswamy-log-

logistic distribution. Each plot is labelled with 

the type of function it represents and includes a 

legend indicating different parameter sets used 

in the plots. The parameters are 

( ), ( ), (   ), ( )and    . These plots provide a 

graphic representation of how the 

Kumaraswamy-log-logistic distribution 

behaves under different parameter settings. 

This can be useful for understanding the 

distribution's properties and for applications in 

statistical modelling and data analysis. The 

PDF shows the likelihood of different values, 

the CDF shows the cumulative probability, the 

SF shows the probability of survival beyond a 

certain time, and the HF shows the 

instantaneous failure rate.

 

2.2 The Kumaraswamy-logistic distribution 

According to [12], let   be a random variable having the pdf of Kumaraswamy-log-logistic 

distribution given in equation (1). The random variable           has a Kumaraswamy-logistic 

density function, parameterized in terms of 1   and  exp  , given by 
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 
 

1

1

1
exp 1 exp 1 1 1

1 exp

y y
g y

y




  


  





 

  
                                    

   

(5) 

Where y    ,     , 0, 0, 0and      

The corresponding survival function is given as; 

 
1

1 1

1 exp

S y
y







  
  
    
       

   

      (6) 

 
Figure 2: PDF and Survival Function Plots of Kumaraswamy-logistic distribution 

Figure 2 contains two plots related to the 

Kumaraswamy-Logistic distribution. These 

plots provide a visual representation of how the 

Kumaraswamy-Logistic distribution behaves 

under different parameter settings. The PDF 

plot shows the likelihood of different values of 

( )y , while the Survival Function plot shows 

the probability of survival beyond a certain 

value of ( )y . This information is useful for 

understanding the distribution's properties and 

for applications in statistical modeling and data 

analysis. 

 

The random variable              has a density function 

      
 

 

1

1 1
exp 1 exp 1 1

exp
d z z z

z




 



 
  
     
   

   (7) 

Where z   



 

 
Ibrahim  et al/ Iraqi Statisticians Journal / Vol. 2, no.  2, 2025: 15-32 

21 

 

 

2.3 The Kumaraswamy-logistic Survival Regression Model 

Let  1 2, , . . .,
T

i i i ipX x x x be the explanatory 

variable vector associated with the ith response 

variable iy , for , . . .,i n  [4]. Consider a sample 

   1 1, , . . ., ,n ny v y v  of   independent 

observations, where each random response is 

defined by yi     min log ,logi i iy x c , and 

 log ix  and  log ic  are the log-lifetime and 

log-censoring, respectively [4]. We consider 

non-informative censoring such that the 

observed lifetimes and censoring times are 

independent [4]. Now, we construct a linear 

regression model for the response variable iy  

based on the Kumaraswamy-logistic 

distribution given by 

, 1,...,T

i i iy X Z i n            (8) 

where the random error iZ  has the density 

function in equation (7),  1 2, , . . .,
T

p    ; 

0  is a scale parameter, 0  and 0   are 

shape parameters and iX  is the vector of 

explanatory variables modelling the location 

parameter 
T

i iX  . Hence, the location 

parameter vector  1 2, , . . .,
T

n    of the 

Kumaraswamy-logistic model.  

The estimated survival function of equation (6) 

is derived as; 

 

ˆ
ˆ

1ˆ ˆ ˆ; , , 1 1

1 exp
ˆ

i T

i i

S y
y X




  




  
  
               

     (9) 

2.4 Kaplan-Meier Estimator of the Survival Function 

The Kaplan-Meier (KM) estimator is a non-

parametric method used in survival analysis to 

estimate the survival function from time-to-

event data [3, 4]. It is particularly valuable 

when dealing with censored data, where the 

event of interest has not occurred for all 

subjects within the study period. The Kaplan-

Meier estimator also known as the product-

limit estimator is the most widely used non-

parametric method for estimating the survival 

function [5]. The Kaplan-Meier estimator 

provides an estimate of the survival function 

 S t , which represents the probability that an 

individual survives beyond time t : 

       S t P T t          (10), 

where T  is the random variable representing the time-to-event. Then the K-M estimator of S(t) is 

defined: 

ˆ( ) 1
i

i

t t i

d
S t

n

 
  

 
         (11), 

where it : Time of the 
thi event; id : Number of 

events (e.g., deaths, treatment completion) at it

; in : Number of individuals at risk just before 

it  and  : Product overall event times up to t . 

The estimator adjusts for censored data by 

ensuring that only those individuals still at risk 

at time t are included in the calculation of the 

survival probability. It produces a step-function 
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survival curve, which is widely used in 

practice. 

The researcher [4] showed the consistency of 

this estimator. They obtained the approximate 

formula for the variance of the estimator, 

    
  

  

2

:

ˆ ˆ
1

i

i

n n
i T t

Var S t S t
n i n i





 
    

       (12) 

When there are no ties, but when ties occur, 

    
 

  

2

:

ˆ ˆ
1

i

i

n n
i ii T t

Var S t S t
n n





 
  

        (13) 

2.4.1 Confidence interval for S(t) 

We first estimate the C.I for the unknown survival function S(t) for a fixed value of t. we know that 

when the sample is large, the standardized version [4],  

   

  
 

ˆ
0,1

ˆ

S t S t
N

Var S t


        (14)                    

Then for a given t, this would lead to asymptotic (1-α) percent C.I for S(t): Where 
1

2

Z 


is the 

 1 100%  upper critical point of the standard normal distribution [4]. 

3. Results and discussion 

In this section, we present the results and 

discussion of the Kumaraswamy-logistic 

survival regression model and Kaplan-Meier 

probability with applications to the acute 

myocardial infarction (AMI) dataset [9]. 

3.1 The AMI Dataset and its Exposure 

Variables 

The Worcester Heart Attack Study provides a 

rich dataset on AMI patients [9], offering 

valuable insights into survival trends, risk 

factors, and treatment outcomes. 

 

 

Table 1: Description of the AMI Dataset and its Exposure Variables 

Variables Descriptions 

y (Log Survival Time) The natural logarithm of the observed survival time (in days). 

d (Censoring) Indicates whether the patient was censored (0) or died (1). 

Age 

Categories patients based on age groups: 32-51 (early to mid-adulthood), 52-71 (late 

adulthood), 72-92 (elderly). 

Sex Indicates the gender of the patient (Male, Female). 

BMI 

Categories patients based on body mass index (BMI): 18.5-24.9 (normal), 25-29.9 

(overweight), >= 30 (obese). 

The response variable:    Natural logarithm of observed survival time (in days); censoring variable: 

   0 (alive at study end or lost to follow-up), 1 (death due to AMI); exposure variables: age groups: 

        ; sex:       and the BMI categories:            . 
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Table 2: MLE of parameters of the Kumaraswamy-logistic survival regression model on the AMI Dataset 

Coefficients Estimates Standard Error Z value Pr(z) 

Λ 4.05585 0.8649 4.6894 2.74e-06 

  266.19635 270.6229 0.9836 0.325291 

  11.85107 2.37254 4.9951 5.88e-07 

β0 1.12889 0.36472 3.0952 0.001967 

β1 0.62314 0.42577 1.4636 0.14331 

β2 0.44694 0.3312 1.3495 0.177186 

β3 1.02299 0.33041 3.0961 0.001961 

β4 1.20594 0.29202 4.1297 3.63e-05 

β5 1.02584 0.32206 3.1852 0.001447 

β6 -1.6115 0.89559 -1.7994 0.07196 

β7 1.63916 0.40682 4.0292 5.60e-05 

β8 1.90134 0.402 4.7297 2.25e-06 

β9 2.25803 0.53881 4.1908 2.78e-05 

Table 1 presents the results of the 

Kumaraswamy-logistic survival regression 

model effectively captures the relationship 

between survival time and key predictors in 

AMI patients. The scale parameters 

( 0.001) ( 0.001)p and p   significantly 

influence the survival distribution, highlighting 

their crucial role in modeling survival time. 

However, the shape parameter   is not 

significant (p 0.325) , suggesting that the 

effect of this parameter on the survival curve is 

less pronounced. The oldest age group 

3(x ,72 – 92 years) significantly increases 

survival time (p 0.002) , suggesting that 

elderly patients exhibit better survival 

outcomes compared to younger groups. Both 

male 4( , 0.001)p   and female 

5( , 0.001)p   patients demonstrate 

significantly improved survival times, with 

males showing a slightly higher effect than 

females. Overweight 7(x ,p 0.001)  and obese 

8( , p 0.001)x   categories positively impact 

survival, indicating that higher BMI may 

provide a protective effect. Conversely, normal 

BMI 6(x )  shows a marginally negative effect 

(p 0.0072) . This 9  is highly significant 

(p 0.001)  and positively influences survival. 

These results suggest that demographic (age, 

gender) and clinical factors (BMI) significantly 

influence survival outcomes in AMI patients. 

The protective role of higher BMI categories 

aligns with the "obesity paradox" observed in 

cardiovascular disease studies. The significant 

scale parameters indicate that the 

Kumaraswamy-logistic model appropriately 

captures survival time trends, though additional 

exploration of the shape parameter may refine 

its application. These findings provide valuable 

insights for personalized treatment strategies 

and risk stratification among AMI patients. 

3.2 Kaplan-Meier Survival Probability Analysis 

The Kaplan-Meier survival analysis results in 

Tables 3 to 11 provide valuable insights into 

the survival probability of patients with Acute 

Myocardial Infarction (AMI) over time. 
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Figure 3: plot of the Kaplan-Meier Survival curve 

 

Figure 3 presents the Kaplan-Meier survival 

curve for patients with Acute Myocardial 

Infarction (AMI). The estimated survival 

probability decreases steadily over time, with a 

more rapid decline during the early follow-up 

period (first 1000 days). The survival 

probability falls below 50% after 

approximately 2000 days. The widening of the 

95% confidence intervals toward the right of 

the curve reflects increasing uncertainty due to 

censoring and fewer individuals at risk. These 

findings highlight the need for early post-AMI 

monitoring and long-term management 

strategies to improve survival outcomes. The 

curve confirms that mortality is front-loaded, 

with a significant number of events occurring 

relatively early. The findings support more 

intensive monitoring and intervention in the 

early phase post-AMI. 

 
Table 3: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x1 = 1,  x2 = 0, x3 = 0 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

1048 16 1 0.938 0.0605 0.826 1 

1172 15 1 0.875 0.0827 0.727 1 

1401 14 1 0.812 0.0976 0.642 1 

1577 13 1 0.75 0.1083 0.565 0.995 

 
Table 4: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x1 = 0, x2 = 1, x3 = 0 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

6 35 1 0.971 0.0282 0.9178 1 
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14 34 1 0.943 0.0392 0.869 1 

44 33 1 0.914 0.0473 0.8261 1 

128 32 1 0.886 0.0538 0.7863 0.998 

182 31 1 0.857 0.0591 0.7487 0.981 

302 30 1 0.829 0.0637 0.7127 0.963 

538 29 1 0.8 0.0676 0.6779 0.944 

774 28 1 0.771 0.071 0.6441 0.924 

1002 27 1 0.743 0.0739 0.6113 0.903 

1011 26 1 0.714 0.0764 0.5793 0.881 

1278 25 1 0.686 0.0785 0.5479 0.858 

1669 24 1 0.657 0.0802 0.5173 0.835 

2624 2 1 0.329 0.2358 0.0805 1 

 

 
Table 5: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x1 = 0,  x2 = 0,  x3 = 1 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

6 49 1 0.98 0.0202 0.9408 1 

62 48 1 0.959 0.0283 0.9054 1 

89 47 1 0.939 0.0342 0.874 1 

98 46 1 0.918 0.0391 0.8448 0.998 

104 45 1 0.898 0.0432 0.8171 0.987 

107 44 1 0.878 0.0468 0.7904 0.974 

114 43 1 0.857 0.05 0.7646 0.961 

123 42 1 0.837 0.0528 0.7394 0.947 

148 41 1 0.816 0.0553 0.7148 0.932 

187 40 1 0.796 0.0576 0.6907 0.917 

189 39 1 0.776 0.0596 0.6671 0.902 

274 38 2 0.735 0.0631 0.6209 0.869 

363 36 1 0.714 0.0645 0.5984 0.853 

374 35 1 0.694 0.0658 0.5761 0.836 

451 34 1 0.673 0.067 0.5542 0.818 

461 33 1 0.653 0.068 0.5325 0.801 

492 32 1 0.633 0.0689 0.5111 0.783 

841 31 1 0.612 0.0696 0.49 0.765 

936 30 1 0.592 0.0702 0.469 0.747 

1054 29 1 0.571 0.0707 0.4484 0.728 

1205 28 1 0.551 0.0711 0.428 0.709 

1497 27 1 0.531 0.0713 0.4078 0.69 

1557 26 1 0.51 0.0714 0.3878 0.671 

1624 25 1 0.49 0.0714 0.3681 0.652 

1806 24 1 0.469 0.0713 0.3485 0.632 

1874 20 1 0.446 0.0715 0.3257 0.611 

1907 19 1 0.422 0.0715 0.3032 0.589 

2012 12 1 0.387 0.0737 0.2667 0.562 

2031 11 1 0.352 0.0749 0.232 0.534 

2065 10 1 0.317 0.0752 0.1989 0.505 
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2201 4 1 0.238 0.0888 0.1142 0.494 

2421 3 1 0.158 0.0877 0.0535 0.469 

2710 1 1 0.000 0.0000 0.0000 0.000 

 

 
Figure 4: plot of the Kaplan-Meier Survival curve 

 
Table 6: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x4 = 1,  x5 = 0 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

14 35 1 0.971 0.0282 0.918 1 

62 34 1 0.943 0.0392 0.869 1 

89 33 1 0.914 0.0473 0.826 1 

98 32 1 0.886 0.0538 0.786 0.998 

104 31 1 0.857 0.0591 0.749 0.981 

128 30 1 0.829 0.0637 0.713 0.963 

148 29 1 0.8 0.0676 0.678 0.944 

187 28 1 0.771 0.071 0.644 0.924 

302 27 1 0.743 0.0739 0.611 0.903 

363 26 1 0.714 0.0764 0.579 0.881 

374 25 1 0.686 0.0785 0.548 0.858 

461 24 1 0.657 0.0802 0.517 0.835 

841 23 1 0.629 0.0817 0.487 0.811 

1002 22 1 0.6 0.0828 0.458 0.786 

1011 21 1 0.571 0.0836 0.429 0.761 

1172 20 1 0.543 0.0842 0.401 0.736 

1577 19 1 0.514 0.0845 0.373 0.71 
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1806 18 1 0.486 0.0845 0.345 0.683 

1874 14 1 0.451 0.0853 0.311 0.653 

2031 10 1 0.406 0.0879 0.266 0.62 

2065 9 1 0.361 0.0889 0.223 0.585 

2201 6 1 0.301 0.0922 0.165 0.549 

2710 1 1 0 0.0000 0.000 0.000 

 

 
Table 7: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x4 = 0, x5 = 1 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

6 65 2 0.969 0.0214 0.928 1 

44 63 1 0.954 0.026 0.904 1 

107 62 1 0.938 0.0298 0.882 0.999 

114 61 1 0.923 0.0331 0.861 0.99 

123 60 1 0.908 0.0359 0.84 0.981 

182 59 1 0.892 0.0384 0.82 0.971 

189 58 1 0.877 0.0407 0.801 0.961 

274 57 2 0.846 0.0448 0.763 0.939 

451 55 1 0.831 0.0465 0.744 0.927 

492 54 1 0.815 0.0481 0.726 0.915 

538 53 1 0.8 0.0496 0.708 0.903 

774 52 1 0.785 0.051 0.691 0.891 

936 51 1 0.769 0.0523 0.673 0.879 

1048 50 1 0.754 0.0534 0.656 0.866 

1054 49 1 0.738 0.0545 0.639 0.853 

1205 48 1 0.723 0.0555 0.622 0.84 

1278 47 1 0.708 0.0564 0.605 0.827 

1401 46 1 0.692 0.0572 0.589 0.814 

1497 45 1 0.677 0.058 0.572 0.801 

1557 44 1 0.662 0.0587 0.556 0.787 

1624 43 1 0.646 0.0593 0.54 0.774 

1669 42 1 0.631 0.0599 0.524 0.76 

1907 35 1 0.613 0.0608 0.504 0.744 

2012 24 1 0.587 0.0634 0.475 0.726 

2421 8 1 0.514 0.0883 0.367 0.72 

2624 4 1 0.385 0.1295 0.199 0.744 
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Figure 5: plot of the Kaplan-Meier Survival curve 

 
Table 8: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x6 = 1, x7 = 0, x8 = 0, x9 = 0 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

62 3 1 0.667 0.272 0.2995 1 

123 2 1 0.333 0.272 0.0673 1 

187 1 1 0 0.000 0.0000 0.00 

 
Table 9: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x6 = 0, x7 = 1, x8 = 0, x9 = 0 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

14 33 1 0.97 0.0298 0.913 1 

44 32 1 0.939 0.0415 0.861 1 

89 31 1 0.909 0.05 0.816 1 

98 30 1 0.879 0.0568 0.774 0.998 

107 29 1 0.848 0.0624 0.735 0.98 

128 28 1 0.818 0.0671 0.697 0.961 

148 27 1 0.788 0.0712 0.66 0.94 

182 26 1 0.758 0.0746 0.625 0.919 

274 25 1 0.727 0.0775 0.59 0.896 

374 24 1 0.697 0.08 0.557 0.873 

451 23 1 0.667 0.0821 0.524 0.849 

461 22 1 0.636 0.0837 0.492 0.824 

492 21 1 0.606 0.0851 0.46 0.798 

538 20 1 0.576 0.086 0.43 0.772 

841 19 1 0.545 0.0867 0.399 0.745 
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1278 18 1 0.515 0.087 0.37 0.717 

1401 17 1 0.485 0.087 0.341 0.689 

1497 16 1 0.455 0.0867 0.313 0.661 

1557 15 1 0.424 0.086 0.285 0.631 

1806 14 1 0.394 0.0851 0.258 0.601 

1874 13 1 0.364 0.0837 0.232 0.571 

2012 8 1 0.318 0.0847 0.189 0.536 

 

 
Table 10: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x6 = 0, x7 = 0, x8 = 1, x9 = 0 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error  

95% 

Lower CI 

 95% 

Upper CI  

6 35 1 0.971 0.0282 0.918 1 

189 34 1 0.943 0.0392 0.869 1 

274 33 1 0.914 0.0473 0.826 1 

302 32 1 0.886 0.0538 0.786 0.998 

363 31 1 0.857 0.0591 0.749 0.981 

774 30 1 0.829 0.0637 0.713 0.963 

936 29 1 0.8 0.0676 0.678 0.944 

1011 28 1 0.771 0.071 0.644 0.924 

1172 27 1 0.743 0.0739 0.611 0.903 

1907 20 1 0.706 0.079 0.567 0.879 

2065 15 1 0.659 0.0866 0.509 0.852 

2201 8 1 0.576 0.108 0.399 0.832 

2421 7 1 0.494 0.1199 0.307 0.795 

2710 1 1 0 0.0000 0.000 0.000 

 
Table 11: Kaplan Meier Survival Probability Curve for Acute Myocardial Infarction Dataset. 

x6 = 0, x7 = 0, x8 = 0, x9 = 1 

Survival 

Time 

Number at 

Risk 

Number of 

Eevent 

Survival 

Probability 

Standard 

Error 

95% 

Lower CI 

95% Upper 

CI 

6 29 1 0.966 0.0339 0.9013 1 

104 28 1 0.931 0.0471 0.8432 1 

114 27 1 0.897 0.0566 0.7923 1 

1002 26 1 0.862 0.064 0.7453 0.997 

1048 25 1 0.828 0.0701 0.7009 0.977 

1054 24 1 0.793 0.0752 0.6586 0.955 

1205 23 1 0.759 0.0795 0.6178 0.932 

1577 22 1 0.724 0.083 0.5784 0.907 

1624 21 1 0.69 0.0859 0.5403 0.88 

1669 20 1 0.655 0.0883 0.5031 0.853 

2031 10 1 0.59 0.1009 0.4217 0.825 

2624 2 1 0.295 0.2145 0.0708 1 
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Figure 6: plot of the Kaplan-Meier Survival curve 

 

The "Number at Risk" column indicates how 

many patients are still being observed (i.e., are 

at risk of an event) at each time point. For 

instance, at time 6, there are 49 patients at risk, 

and this number decreases as time progresses 

due to events (deaths) or censored data. 

The "Number of Events" shows how 

many patients experienced the event of interest 

(death) at each specific time point. For 

example, there was one event at times 6, 62, 

and 89, indicating that one patient died at each 

of those times. At time 274, two patients 

experienced the event. 

The "Survival Probability" column 

provides the estimated probability that a patient 

will survive beyond each time point. The 

survival probability decreases over time as 

more patients experience the event. At time 6, 

the survival probability is 0.98, indicating a 

98% chance of survival at that time. By time 

2421, the survival probability has dropped to 

0.158, showing a much lower chance of 

survival as time progresses. 

The "Standard Error" represents the 

uncertainty in the survival probability estimate 

at each time point. A lower standard error (e.g., 

0.0202 at time 6) indicates more precision in 

the estimate, while a higher standard error 

(e.g., 0.0888 at time 2201) suggests greater 

uncertainty. The standard error increases as 

time progresses due to a decreasing sample size 

(i.e., fewer patients at risk). 

The confidence intervals provide a 

range within which we can be 95% confident 

that the true survival probability lies. At time 6, 

the survival probability is 0.98, with a 95% 

confidence interval of 0.9408 to 1, meaning 

that the true survival probability is likely 

within this range. As time progresses, the 

confidence intervals widen, reflecting 

increasing uncertainty. By time 2421, the 

survival probability is 0.158, with a wider 

confidence interval of 0.0535 to 0.469. 

In the early stages of the study (e.g., up 

to time 187), survival probabilities are 

relatively high, indicating that the majority of 

patients survive these early time points. The 

survival probability only drops to 0.796 by 

time 187, showing a fairly strong survival rate 

in the short term for AMI patients. After time 

2000, the survival probability drops 

significantly. By the time 2012, the survival 
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probability was 0.387, and by time 2421, it had 

decreased to 0.158, indicating that long-term 

survival is low for this cohort of AMI patients. 

As time progresses, the number of patients at 

risk decreases, leading to wider confidence 

intervals and higher standard errors. For 

example, at time 2201, the standard error is 

0.0888, and the 95% confidence interval is 

very wide (from 0.1142 to 0.494), indicating 

less precision in estimating survival 

probabilities for later time points. This 

widening reflects the smaller sample size and 

greater variability in survival times at later 

stages. The last row (time 2710) shows a 

survival probability of 0 with missing standard 

error and confidence intervals, suggesting that 

the last patient died at this time point, leaving 

no one else at risk. 

The Kaplan-Meier analysis reveals a 

steady decline in survival probability over 

time, with early survival being strong but 

significantly decreasing after around 1000 

days. This analysis provides crucial insights 

into the risk factors and survival outcomes for 

AMI patients and suggests that survival 

diminishes notably as time progresses, 

especially in the long term. 

 

 

 

4. Conclusions 

This study presents a comprehensive 

survival analysis of Acute Myocardial 

Infarction (AMI) patients' time-to-events data 

using the Kumaraswamy-logistic survival 

regression model alongside the non-parametric 

Kaplan-Meier estimator. The results affirm that 

patient-specific covariates particularly age, sex, 

and body mass index (BMI) significantly 

influence survival outcomes. 

The Kumaraswamy-logistic model 

successfully captured the parametric behaviour 

of survival time, revealing that advanced age 

(                      ), male sex 

(                        ), and obesity 

(                        ) are strong 

predictors of decreased survival. The 

significant shape (                   ) 

and scale (                    ) 

parameters indicate a right-skewed distribution 

with decreasing hazard over time. 

Complementarily, the Kaplan-Meier curve 

revealed high initial survival probabilities that 

declined notably after approximately 2000 

days, with survival probability dropping below 

50%. 

Clinically, these findings call attention 

to the urgent need for personalized risk 

stratification and intervention strategies, 

especially targeting elderly, male, and obese 

patients. The combination of advanced 

parametric and non-parametric methods 

enhances the robustness of survival inference, 

supporting evidence-based improvements in 

post-AMI management and long-term care. 

Future research should validate these 

findings using larger and more diverse cohorts 

and explore additional prognostic variables to 

refine predictive accuracy and clinical 

applicability. 
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