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   This article investigates the factors influencing air quality in Baghdad using a 

restricted partially linear additive regression model. The study addresses challenges 

such as multicollinearity and outliers by employing robust ridge estimates and 

integrating the Generalized Least Squares (GLS) method to account for 

heteroscedasticity. The Least Trimmed Squares (LTS) method is utilized to handle 

outliers by trimming the data, which enhances the accuracy of estimates. The 

nonparametric component of the model is smoothed using the Local Polynomial 

Estimator, improving the model's robustness and predictive performance. 

Air quality data collected in the summer of 2023 was analyzed to assess the model's 

efficiency. Performance evaluation was conducted using the Mean Absolute Deviation 

(MAD) and Coefficient of Determination (R²), demonstrating the model's 

effectiveness in estimating air quality. The results highlight significant non-linear 

relationships between key pollutants, particularly PM10 (particulate matter with a 10-

micrometer diameter) and carbon dioxide (CO2), and the Air Quality Index (AQI). 

The findings underscore the crucial role of PM10 and CO2 in influencing air quality in 

Baghdad. The study emphasizes the importance of implementing preventive measures 

to protect public health, given the substantial impact of these pollutants. The 

integration of robust statistical methods offers a comprehensive understanding of the 

factors affecting air quality and provides valuable insights for future air quality 

management and policy development in the region. 
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1. Introduction 

   The most valuable asset a person possesses is 

health, as it serves as the foundation for daily 

activities and the achievement of personal 

goals. With the increasing environmental 

challenges in modern times, air quality has 

become a critical factor affecting human health 

and well-being. Air pollution is a serious 

environmental problem impacting millions 

worldwide, linked to rising cases of respiratory 

and cardiovascular diseases. Therefore, this 

research aims to highlight the importance of 

studying air quality and the impact of air 

pollutants through the application of advanced 

statistical models, to provide solutions and 

measures to enhance public health and mitigate 

the negative effects of environmental pollution. 

Semi-parametric regression models are 

characterized by their ability to integrate 

parametric and nonparametric components, 

offering greater flexibility compared to fully 

parametric models that require strict 

assumptions about the functional relationship. 

One of the challenges in these models is the 

selection of appropriate nonparametric 

functions, necessitating a delicate balance 

between bias, variance, and the complexity of 

the data. 

When estimating the parametric component, 

the least squares method is the most commonly 

used due to its efficiency and ease of use; 

however, it relies on assumptions that may be 

violated in the presence of outliers. Another 

issue is multicollinearity among explanatory 

https://isj.edu.iq/index.php/rjes
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variables, leading to inflated data and affecting 

the accuracy of estimates. 

Several robust estimation methods differ in 

their approaches but share the commonality of 

utilizing weight matrices to reduce the impact 

of outliers. Numerous studies have 

demonstrated the effectiveness of combining 

these methods with biased estimators to 

address both outlier issues and multicollinearity 

in regression models. Therefore, we will 

employ an integrative approach that combines 

robust estimators based on the LTS method 

with non-random constraints imposed on the 

parametric part of the model to obtain high-

efficiency estimates, facilitating the transition 

to estimating the nonparametric component of 

the restricted semi-parametric additive model, 

which has recently been studied by several 

researchers. 

(Zhang and Huang, 2014) proposed a variable 

selection method for partially linear additive 

models using penalized spline regression to 

identify significant variables in longitudinal or 

matched data. (Gai et al., 2015) examined 

similar models with errors in linear variables, 

offering semi-parametric estimation through 

predictive least squares with strong spatial 

properties. (Emami, 2016) focused on linear 

interference effects in restricted estimates via 

semi-parametric models, proposing new 

diagnostic techniques to detect influential 

observations. (Roozbeh, 2016) suggested 

robust estimators for shrinkage parameters 

using the Least Trimmed Squares (LTS) 

method to address outliers. (Yang and Yang, 

2017) introduced an effective method for 

estimating heteroscedasticity using local 

conditional regression in semi-parametric 

models. (Wu and Asar, 2017) developed a new 

restricted estimator based on a mixture of 

random estimation methods in partial linear 

models. (Jiang, 2017) created a robust 

estimator for partial models using an iterative 

algorithm and a generalized cross-validation 

method for parameter selection. (Roozbeh and 

Najarian, 2018) proposed a modified estimator 

using QR decomposition to handle 

multicollinearity in semi-parametric models. 

(Jiang et al., 2019) provided an effective 

method for semi-parametric models using 

squared exponential loss function. (El-Gohary 

et al., 2019) presented new estimators 

combining trimmed and spline estimates to 

tackle multicollinearity and outliers. (Abonazel 

and Gad, 2020) developed a robust version of 

the partial residual technique for estimating 

components of semi-parametric models. 

(Arzideh and Emami, 2022) proposed robust 

estimators using the LTS method with 

algorithmic enhancements to increase 

efficiency in the presence of outliers. (Kingsley 

and Fidelis, 2022) developed a new estimator 

combining M-estimation, principal 

components, and ridge estimation to resolve 

issues of multicollinearity and outliers. (Tang 

et al., 2022) discussed estimating non-

parametric and semi-parametric effects in 

additive partial models. (Dai and Wang, 2023) 

introduced a generalized Liu-type estimator to 

address multicollinearity in partial logistic 

regression models. (Raad and Yousif, 2023) 

studied the relationship between factors 

affecting stock prices using partially linear 

additive models, focusing on efficiency in 

small to medium-sized samples. (Kuran and 

Yalaz, 2023) proposed new mixed estimators 

for semi-parametric models with measurement 

errors using kernel approximation. 

(Ali & Kazem, 2023). This study applies the 

Weighted Least Trimmed Squares (WLTS) 

method to assess the impact of wastewater 

pollution on the Tigris River in Wasit 

Governorate. It focuses on Total Dissolved 

Solids (TDS) as the dependent variable, with 

covariates Sulphates, Chloride, and Phosphate. 

Data from 91 sites were analysed to inform 

environmental policies. 

1.1 Partial Linear Additive Model (PLAM) 

   Integrates both parametric and nonparametric 

components, offering more flexibility in 

capturing complex relationships that purely 

parametric or nonparametric models cannot 

handle. This model extends the multiple linear 

regression framework, with unknown, one-

dimensional nonparametric functions replacing 

linear terms to allow for both linear and 

nonlinear relationships. 
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A specific case of this model, the Semi-

Parametric Additive Partial Linear model, 

allows some additive functions to remain linear 

while others are modeled nonparametrically, as 

described by Opsomer and Ruppert (1998). 

This model, represented as 

      ∑   (  )    
                             (1) 

has become particularly valuable for managing 

datasets where explanatory variables exhibit 

both parametric and nonparametric behavior. 

For example, when D=1, the model simplifies 

to a partial semi-parametric model, as 

demonstrated by Speckman (1988), which is 

easier to study and apply. 

The nonparametric part of PLAM is estimated 

using kernel regression methods, where the 

weight matrix determines the importance of 

input data for the output. This weight matrix 

must satisfy several conditions, ensuring that it 

captures the relationship between variables 

efficiently and that the model can handle 

varying data dimensions without negative 

effects. 

2. Generalized Least Squares Estimators 

(GLSE)  

   They are employed for estimating the 

parametric component. GLSE is considered the 

best unbiased linear estimator when the model 

does not suffer from any issues (Kutner and et 

al,1996) (Roozbeh, 2016). 

Y=Xβ+                                                (2) 

E ( ) = 0,      var( ) = V. 

That is, the mean of the errors is zero, and their 

variance V is not necessarily an identity matrix 

(there may be a correlation between the errors 

or a difference in their variances). 

 ̂          ( ̃   ̃ )     ( ̃   ̃ )  (3) 

After simplifying the expression and taking the 

derivative and equaling it to zero 

 ̂    ( ̃     ̃) ̃     ̃ 

 ̂        ̃     ̃                              (4) 

where: 

   ̃     ̃. 

V: is the variance-covariance matrix of the 

errors. 

  ( ̂   )        . 

Where  ̃  ( ̃     ̃ )
  is the vector of the 

response variable with dimensions n*1. It is 

calculated based on the weight matrix 

    according to the following formula: 

 ̃      ∑ ∑    (   )  
 
   

 
          (5) 

In the case of studying only unmeasured 

variables, as we mentioned earlier, the formula 

is as follows: 

 ̃      ,∑    (   )   
 
   

 ∑    (   )  
 
   -                                       (6) 

As for  ̃  ( ̃     ̃ )
 it represents the 

explanatory variable vector and is calculated 

according to the following formula: 

 ̃      ∑ ∑    (   )  
 
   

 
            (7) 

 ̃      ,∑    (   )   
 
   

 ∑    (   )  
 
   -                                       (8) 

   (   )  

[

  (      )
 

 
  (      )

 
 

 
 

    
     (      )

]  

   (   )  

[

  (      )
 

 
  (      )

 
 

 
 

    
     (      )

]  

K (z) = Kernel function. 

h = Is (k×1) vector of bandwidth. (by Cross 

Validation). 

2.1. Cross Validation: 

The cross-validation method, also known 

as "Leave-One-Out," is a widely used approach 

for determining the optimal value of the 
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smoothing parameter. This parameter plays a 

crucial role in balancing bias and variance in 

estimation; bias tends to increase with a higher 

smoothing parameter value, while variance 

increases as the value decreases. The 

fundamental idea of this method is to exclude 

one data point at a time when estimating the 

parameters using the following formula: 

    (  )  
 

 
 ∑ ( ̃(  ) 

     ̃(  ) ̂(  ))          ( )  

Where  ̂(  )is calculated after excluding 

the observation (i) using estimated weights 

based on a Gaussian kernel. In the presence of 

multicollinearity or outliers, these estimates 

become ineffective, adversely affecting the 

accuracy of the nonparametric component 

estimation and increasing the mean squared 

error of the model. 

2.2 Generalized Restrictions Least Squares 

Estimators: (GRLS) 

The existence of non-random linear 

restrictions imposed on the model parameters is 

assumed, expressed as: (Roozbeh, 2016). 

     

Where R is a known matrix of rank (q×p) 

with q < p, its rows are full rank, and the 

number of rows equals the number of 

restrictions. The number of columns is equal to 

the number of model parameters. 

r is a known vector with dimensions q×1, and 

its elements represent the fixed boundaries in 

the restriction. 

The (GRLSE) can be expressed as follows: 

 ̂             ( ̃   ̃ )      ( ̃   ̃ )      (10)                                               

s.t        

It can also be represented as: 

 ̂      ̂         (      )  (  ̂   

  )                                   (  ) 

The variance-covariance matrix of the 

estimated parameters is calculated according to 

the GLS method: 

  ( ̂   )                                  (12) 

From equations (11) and (12), it is clear that 

the GLS estimators and their variance-

covariance matrix rely heavily on matrix C. If 

C does not meet variance minimization 

conditions, the estimators may become error-

prone, leading to statistically insignificant 

parameters and wide confidence intervals. To 

address this, resolving multicollinearity is 

essential. Common methods include Principal 

Component Analysis (PCA) and ridge 

regression. Ridge regression, in particular, is a 

key approach to mitigating multicollinearity in 

restricted partial least squares regression 

models. 

2.3 Ridge Generalized Least Squares 

Estimators (RGLS) 

   Ridge Regression, proposed by Hoerl and 

Kennard in 1970, addresses the issue of 

multicollinearity by adding a small positive 

constant K to the diagonal elements of matrix 

C. This adjustment is represented as: 

(Gibbons,1981) (Hoerl and Kennard, 2000) 

(Hoerl and et al, 1975) 

 

    ( )     
   ̃    ̃                           (13) 

 

where  
         

The estimator of the parameters for generalized 

least squares is obtained by adding a non-

negative value K ≥ 0. This value is selected to 

minimize the mean squared error (MSE), 

ensuring it is lower than the mean squared error 

obtained with generalized least squares 

estimators (GLS). K is referred to as the ridge 

parameter and can be estimated based on the 

actual data. 

Ridge estimators are the most suitable for 

solving the multicollinearity problem, but they 

have some drawbacks, including instability. 

The estimated parameters may become 

unstable and biased (Roozbeh, 2016). 

There exists an orthogonal matrix Γ such that  

           where        (      ) is a 

diagonal matrix representing the eigenvalues of 

matrix C. 
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Therefore, the model (2.6) will become in the 

following form: 

 ̃    ̃                                                  (14) 

 ̃     ̃         ,              
When the matrix C suffers from 

multicollinearity among its columns, the 

Generalized Least Squares Estimators (GLS) 

tend to have large variances (Hoerl and 

Kennard, 1970) (Hoerl, Kennard, and Baldwin, 

1975). 

To make the matrix C free from 

multicollinearity issues, it is necessary to 

increase the values of the eigenvalues of the 

matrix (i.e., magnify them) by: 

 ( )                              

This is the same process as replacing    with 

(    )  This replacement helps counteract 

the detrimental effect of eigenvalues that are 

close to or equal to zero (Hoerl, Kennard, and 

Baldwin, 1975). Now, the parameter K can be 

estimated using Generalized Least Squares 

Estimators in the partially Restricted ridge 

regression model, as follows (Swamy, 1978): 

 ̂    
   ̂  

 

 ̂    
   ̂    

                                      (15) 

 ̂  
   

 

  (   )
 ( ̃    ̃  ̂    )

     ( ̃  

  ̃  ̂    )                                                    (16) 

The Ridge Regression estimator is obtained by 

minimizing the sum of squared residuals under 

linear restrictions, thereby transforming the 

partially restricted ridge regression model to 

address multicollinearity effectively. 

(Kaciranlar and et al ,2011). 

 

2.4. Ridge Generalized Restricted Least 

Squares Estimator:(RGRLS) 
   Another method has been developed to 

address the multicollinearity problem, which 

relies on combining the constraints imposed on 

the parameters with the ridge regression 

method to improve the performance of the 

estimators, (Roozbeh, 2016) and all of the 

following are: 

   ( ̃   ̃ )    ( ̃   ̃ ) 
s.t 

           

     
The results of the estimators are given by the 

following formula: 

 ̂    ( )  (    )   ̃     ̃  ( 
   )     ( ( 
   )    )  ( ( 
   )   ̃  

   ̃    

 ̂    ( )  
     ( )     

    (   
    )  (     ( )   )            

(17) 

The above estimator is referred to as the 

Restricted Generalized Least Squares Ridge 

Estimator (RGRLS), and it can be expressed in 

another formula as follows: 

 ̂    ( )  
(    

    (    
     )   )    ( )   

   
 (   

    )                                           (18) 

since (  
    (    

     )  )    
So, the generalized inverse of R, denoted as 

    can be expressed by the following formula: 

    (  
    (    

     )  ). 
Therefore, the equivalent equation to the 

equation (18) is: 

 ̂    ( )  (     ) ̂                    (19) 

Now it is easy to see that 

 ̂    ( )      ̂     are restricted estimators 

with the linear constraint Rβ = r, and when 

K=0, the Restricted estimators of the 

generalized ridge least squares will be equal to 

the Restricted estimators of the ridge least 

squares. 

 ̂    ( )    ̂     

2.4.1. Properties of Ridge Generalized 

Restricted Least Squares Estimator:  

   For any estimator, the Mean Squared Error 

(MSE) is computed as follows (Roozbeh, 2016) 

(Hassanzadeh and et al.,2011): 

   . ̂    ( )/   [( ̂   ) ( ̂   )] 

If β satisfies the linear restriction Rβ=r, the 

bias, variance, and mean squared error can be 

expressed as follows (M. Roozbeh, 2013) 

respectively: 

    . ̂    ( )/   { ̂    ( )   } 

                                                               (  ) 

   . ̂    ( )/

                                                             (  ) 

   . ̂    ( )/

        (     )
        

                           (  ) 
Where: 
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    (   
    )     

   

   ( )     
To calculate the risk function using Restricted 

optimization theory, the following formula is 

utilized (Roozbeh, 2016). 

 ( ̂  )   {( ̂   ) ( ̂   )} 

 (     ( )  )

   ∑
  (        )

 

(    ) 

 

   

   [
  (        )

(    ) 
]
 

                                 (  ) 

where:    represents the eigenvalues of the 

matrix C. 

       (   
    )       

   
  represents the diagonal elements of   . 

       (          )
  

2.5. Robust Approach: 
   The concept of "robustness," introduced by 

Box (1953) and expanded by Tukey (1960), 

addresses the limitations of traditional 

estimators like the arithmetic mean, leading to 

alternative robust measures. While robustness 

theory now applies to areas like regression, no 

single method excels in all cases. Key criteria 

for evaluating estimators include the 

breakdown point (the smallest proportion of 

outliers impacting the estimator, up to 50%), 

efficiency (measured by the mean squared error 

ratio, ideally 90%-95%), ease of computation 

(simplicity and convergence), and inference 

(testing the method's appropriateness and 

parameter significance). 

2.5.1. Least Trimmed Squares Estimator 

(LTS)  

    To address outliers, estimators like Least 

Trimmed Squares (LTS) minimize the sum of 

the first h ordered squared residuals, with 

  ,  (   )   -, where α\alphaα is the 

trimming proportion, as proposed by 

Rousseeuw (1984) and Jung (2005). Typically, 

h is restricted between n and n/2, giving LTS a 

high breakdown points of up to 50% 

(Rousseeuw and Leroy, 1987). However, it is 

criticized for being computationally difficult, 

especially with large samples, and can have 

low efficiency, sometimes as low as 8%. In the 

semi-parametric restricted regression model 

(SRRM), Zi  can be used as an indicator to 

assess observation quality and express trimmed 

squared residuals. 

       (   )  ( ̃   ̃ )   
 

    
 

 ( ̃   ̃ )   

(24) 

s.t 

     
      

    *   +      , i= 1, 2…, n. 

when Z is a diagonal matrix with elements 

  (          )
 and   (       )   

  

The resulting estimator is the Restricted Least 

Trimmed Squares Robust Estimator (RLTS) in 

the semi-parametric regression model, and it is 

expressed by the following formula: 

 ̂      ( )  
 ̂    ( )  

 ( )    (  ( )    )  (  ̂    ( )   )  
(25) 

where: 

 ( )    ̃   
 
      

 
  ̃ 

 ̂    ( )   ( )   ̃   
 

    
 

  ̃                  (26) 

Algorithm LTS: 

1- Specify the trimming percentage (α) 

between 0 and 1. This determines the 

percentage of values to be trimmed. 

2- Determine the number of observations 

to be trimmed (h) using the formula: h 

= [n(1-α) + 1] where n is the sample 

size. 

3- Calculate the ordered data in 

descending order. 

4- Identify the data to be trimmed based 

on the computed value of h. 

5- Use only the trimmed data to estimate 

the parameters using any appropriate 

estimation method (e.g., least squares 

estimation). 

6- Calculate the estimated parameters 

using only the trimmed data. 

7- Repeat steps 1-6 iteratively using 

different sets of estimated values (using 

different values for α) to evaluate the 

robustness and effectiveness of the LTS 

estimator across various datasets. 

2.5.2 Ridge estimates based on the robust 

approach 
   To address both outliers and multicollinearity 

in the semi-parametric restricted regression 
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model, it is essential to find robust regression 

estimates. The first step in applying the ridge 

regression method is to estimate the ridge 

parameter K using robust methods, which 

involves replacing    in the model to estimate 

K (Roozbeh, 2016; Qazaz and Saleh, 2015). 

The estimates  ̂ are obtained in two steps: first, 

by using the Truncated Least Trimmed Squares 

(LTS) approach to estimate K in the semi-

parametric restricted regression model 

(RSRM), referred to as RRLTS. The equations 

are as follows: 

 ̂     
   ̂   

 

 ̂    
 ( )   ̂    ( )

                              (27) 

 ̂   
  

 
 

  (   )
 ( ̃    ̃  ̂    ( ))

    
 

    
 

 ( ̃  

  ̃  ̂    ( ))   (28) 

 ̂      ( ̂     )   ̂    ( ̂     )  

 ( ̂     )
  

  (  ( ̂     )
    )  (  ̂    ( ̂     )  

 )                                                                 (29) 

where: 

C ( ̂     )   ( )   ̂     

 ̂    ( ̂     )   ( ̂     )
   ̃   

 

    
 

  ̃    (30) 

2.6. Local Polynomial Estimator: 

   The local linear regression is considered a 

good smoothing method because it has high 

efficiency compared to other smoothing 

methods. we take the model (1). (Li, 2007) 

(Speckman, 1988) (Liu and Yang,2010) (Raad, 

and Yousif, 2023). 

         (  )    (  )    
the additive functions can be written as 

follows: 

    *  (   )   (   )          (   )+
  

    *  (   )   (   )          (   )+
  

the backfitting algorithm is utilized for the 

model (1), assuming that      

        

 represent 

equivalent kernel functions for the local linear 

regression at        respectively. (Lexin Li and 

yin 2008). 

     

 

    
  (  

       )
    

                                    (  ) 

     

 

    
  (  

       )
    

                                   (  ) 

  
  (    ) 

       2
 

  
 .

      

  
/     

 

  
 .

      

  
/3  

       2
 

  
 .

      

  
/     

 

  
 .

      

  
/3  

where  ( ) represents the kernel function, 

      are the bandwidths, and       are design 

matrices with dimensions (    )defined as 

follows: 

    

[
 
 
 
        
 
 

 
 
 

       ]
 
 
 

         

[
 
 
 
        
 
 

 
 
 

       ]
 
 
 

  

      are smoother matrices representing or 

equating the kernel functions at the 

observations (          )
    (          )

 , 

respectively. 

    

[
 
 
 
      

 
 

     ]
 
 
 

                    

[
 
 
 
      

 
 

     ]
 
 
 

  

When {  
   (      ⁄ )  } denotes the 

centered smoothing matrix for   and {  
  

 (      ⁄ )  } denotes the centered 

smoothing matrix for   . 

1 a unit vector of dimension (n×1)" refers to a 

vector consisting of n rows, each having a 

value of 1. 

Using the backfitting algorithm for the partially 

linear additive linear model to estimate both the 

parametric and non-parametric components is 

as follows: 

 ̂ 
( )

    
  .     ̂     

(   )/

 ̂ 
( )

    
  .     ̂     

(   )/
   }        (  )  

 ̂ 
( )

 and  ̂ 
( )

 represent the estimators in the 

    stage of the backfitting algorithm. as a 

result, the non-iterative estimators for β take 

the form: 

 ̂  *  (     ) +
    (     )        (34) 

Where:  

     2  (       
    

  )
  

 (       
  ) 3  

2  (     
   

 )
  

(     
 )3                     (  )  

To ensure that  ̂  is a consistent estimate of the 

root of n within the necessary smother by 

removing the restriction using the likelihood 
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form procedure, the basic idea can be described 

as follows: 

Let  ̂ (    )   ̂ (    )be the backfitting 

estimates for   (   )     (   ) respectively, as 

in formula (33), except replacing 

 ̂          ( ̂    ̂ )can be expressed as 

follows: 

 ̂ ( )    {
   (       

    
  )

  

 (        
  ) 

} (     )

 ̂ ( )    {
   (       

    
  )

  

 (        
  ) 

} (     )
}
 
 

 
 

(  ) 

Now, substituting  ̂ ( ),  ̂ ( ) into model (1) 

and using the least square method, we obtain 

estimates based on the β formula of the form: 

 ̂   *  (     )(        )
   +     ( 

    )(        )
               (  ) 

as discussed by Hastie and Tibshirani (1990), 

Opsomer and Ruppert (1999), centering each 

[  
      

 ] is necessary to ensure the 

convergence of the algorithm and the estimator 

 ̂ , and is well defined by the assumption that 

∑   (   )
 
     ∑   (   )

 
       

usually, the optimal bandwidth is(     ⁄ ). This 

means that the estimator  ̂ is consistent for √ .  

2.7 Real Data: Air Quality and Public 

Health Impact 

   Air quality is deteriorating globally, 

especially in Iraq, due to rising emissions. The 

WHO reports that 98% of the 

global population is exposed to air pollution, 

causing around 7 million deaths annually. Air 

pollution is linked to major health issues like 

stroke, heart disease, respiratory disorders, and 

cancer, while also harming ecosystems and 

economies. (Reports from the world health 

organization (WHO). 

Air quality data for Baghdad was collected 

over 46 days in the summer of 2023 from 

platforms like AccuWeather, Tomorrow.io, and 

IQAir. These measurements, including PM10 

and PM2.5, were sourced from the Global 

Burden of Disease project and other regional 

networks. Government of the United Arab 

Emirates (2021). 

2.8. Description of data 

 PM10: Particles up to 10 micrometers in 

diameter. 

 PM2.5: Fine particles up to 2.5 

micrometers. 

 CO2: Carbon dioxide. 

 CO: Carbon monoxide. 

 NO2: Nitrogen dioxide. 

 O3: Ozone. 

 Temperature: Ambient temperature. 

These pollutants are essential for calculating 

the Air Quality Index and assessing health 

impacts, as noted by the UAE National Air 

Quality Agenda 2031. 

2.9. Data modelling: 
   To model the data in a semi-parametric 

regression model, model (1). the variables are 

defined as follows: The Air Quality Index 

(AQI) is the response variable (Y), and the 

explanatory variables include (PM10, PM2.5, 

CO2, CO, NO2, O3, Temp), because the 

difference in measurement units between the 

data of the parametric variables, we converted 

the data to the standard format and to 

determine which explanatory variables are 

parametric variables or non-parametric, we 

draw the variables to see if their relationship is 

linear with the response variable. if the 

relationship is linear, it means that the variable 

is a parametric variable, as shown in Figure (1) 

indicates that each of the variables (PM10, 

PM2.5, CO2, CO, Temp) has a somewhat linear 

relationship with the response variable, and 

therefore, they are considered parametric 

variables. 
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Figure (1): illustrates the type of relationship and correlation between each of (PM10, PM2.5, CO2, CO, Temp) with the 

response variable (Y). 

As for the variables (NO2, O3), they are non-

linear variables, as shown in figure (2), 

indicating the type of relationship between 

them and the response variable, they are 

considered non-parametric variables. 

 

 

 

 

 

 

 

 

 

 
Figure (2) shows the type of relationship and dispersion between both (NO2, O3) variables and the response variable (Y). 

 

Therefore, the dataset is modeled using the 

partial least squares regression model. 

(   )    (    )    (     ) 
   (   )    (  ) 
   (    )    (   ) 
   (  )                          (  ) 

2.10. Multicollinearity and Outliers test: 

    The correlation matrix revealed strong 

multicollinearity among variables, as in table 

(1), confirmed by the eigenvalues of the 

information matrix, with a Condition Number 

of 33.49, in table (2) indicating a significant 

issue. 
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Table 1: Correlation Matrix 

 Temp PM2.5 PM10 CO2 CO 

Temp 1 0.83213 0.65980 0.80386 0.82244 

PM2.5 0.83213 1 0.86159 0.77529 0.90963 

PM10 0.65980 0.86159 1 0.84527 0.77484 

CO2 0.80386 0.77529 0.84527 1 0.87506 

CO 0.82244 0.90963 0.77484 0.87506 1 

 

Table 2: Eigenvalues of the Information Matrix (   ) 

λ1 λ2 λ3 λ4 λ5 

192.018496 15.7154723 10.1684286 6.7552805 0.1711613 

 

    √
    

    
 √

          

         
           

The Variance Inflation Factor (VIF) values also 

showed high multicollinearity, with PM2.5 

having a VIF of 49. as in table (3), To address 

this, ridge regression and non-random 

restrictions to improve estimator efficiency. 
Table 3: Values of the Variance Inflation Factor (VIF) 

for Independent Variables 

Temp PM2.5 PM10 CO2 CO 
11.22382 49.22341 25.42113 31.33400 28.43729 

An F-test was conducted to verify the imposed 

restrictions, with the calculated F value of 

3.0084, which is lower than the tabulated value 

of 3.23, leading to the acceptance of the null 

hypothesis (       ). 

  0
     
     

1    0
 
 
1  

   
,(  ̂     )

 
(    

   ̃  ̃  )
  

(  ̂     )-  

 ̂   

where:  ̂    ̂   
  ( ̃  ̃)   

   
       

   
 = 3.0084 

      (         )      . Since the calculated 

value is smaller than the tabulated value,    is 

accepted. 

Outlier detection using Studentized Deleted 

Residuals (SDR) identified four outliers, 

representing 8.7% of the sample. Therefore, 

robust estimation methods, such as partial least 

squares regression with imposed restrictions, 

should be used to achieve optimal estimates 

and a well-fitted model. 

2.11. Estimation: 
   Perform the smoother process after finding 

the parameter estimates for the parametric part 

of the model, we use Local polynomial 

estimator (LPE). Which is the best smoother 

because it combines the flexibility of non-

parametric methods with the properties of least 

squares method parametric. All this is done 

using (R4.3.2) programming with ready-made 

functions and packages. 

 

 

Table (4) Model estimates using parametric methods, the Local polynomial method, and comparison criteria. 

Methods                

GLS 0.357 0.369 0.513 0.350 0.056 

GRLS 0.618 0.532 0.689 0.275 0.190 

RGLS 0.236 0.107 0.336 0.442 0.022 

RGRLS 0.558 0.395 0.644 0.225 0.222 

RRLTS 0.579 0.441 0.662 0.243 0.213 

 

Table (4) presents the parameter estimates for 

the semi-parametric restricted partially additive 

regression model using various methods. The 

parametric part was estimated using several 

approaches: Generalized Least Squares (GLS), 

Generalized Restricted Least Squares (GRLS), 

Ridge Generalized Least Squares (RGLS), 

Ridge Generalized Restricted Least Squares 

(RGRLS), and Ridge Restricted Robust Least 

Trimmed Squares (RRLTS). For example, the 

estimates for    range from 0.23663 (RGLS) to 
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RGLS                              GRLS                                GLS 

RGRLS  RRLTS  

 

0.61821 (GRLS), illustrating how different 

methods impact the parameter estimates. 

2.12. Comparison Criteria: 

   For the non-parametric part, Local 

polynomial estimator (LPE) was used, the 

Gaussian kernel function was employed, and 

the bandwidth was chosen using cross-

validation. (Härdle,1994). 

Gaussian kernel function:   ( )  
 

√  
    (   )       I (| |   ). 

Model estimation methods were compared 

using the coefficient of determination (R-

squared) and Mean Absolute Deviation 

(MAD). MAD was utilized to assess the 

sensitivity of the mean square error metric in 

the presence of outliers in the response 

variable. The formulas are as follows  : ( 

Rousseeuw,1987). 

    
 

 
 ∑ |    ̂ |

 
                                 (  )  

Table (5): Represents the comparison criteria for the 

model using the LPE approach. 

Methods GLS GRLS RGLS RGRLS RRLTS 

MAD 0.53069 0.51278 0.51551 0.48117 0.42279 

The results in Table (5) demonstrate the 

effectiveness of the integrative approach that 

combines the robust ridge estimator based on 

the LTS method with the non-random 

constraints imposed on the parameters. The 

positive characteristics of the parameters were 

reflected in the smoothing results, making the 

calculations more efficient and reducing the 

time required to obtain the results. 

By examining the estimated parameters for the 

parametric part, it is evident that the second 

independent variable, PM2.5, has an inverse 

relationship with the response variable. 

Additionally, the variable PM10, representing 

particulate matter with an aerodynamic 

diameter of up to 10 Micrometer, has a more 

pronounced impact on air quality than other 

variables. Furthermore, there are noticeable 

nonlinear effects of non-parametric variables. 

To ensure the suitability of the estimation 

methods used for the parametric part in finding 

the parameters of the non-parametric part, this 

was illustrated through Figure (3), which shows 

the dispersion between the two non-parametric 

variables (O3, NO2) and the response variable 

(AQI). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) Represents the behaviour of the two non-parametric variables (O3, NO2) with the response variable.  
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Figure (4) Represents the behaviour of the two non-parametric variables (O3, NO2) with the estimated imputation 

functions in (LPE) 

 

Figure (3) and (4) demonstrate that the method 

combining non-random restriction and robust 

ridge regression was more suitable than the 

other approaches when using its estimates to 

find smoother function estimates. The model 

estimates was also suitable for the observed 

phenomenon data, as shown by the estimated 

values of the model and their consistency with 

actual observations, as depicted in Figure (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5) illustrates the estimated values of the model using the Local polynomial estimator (LPE). 

 

3. Discussion of results 

   The results indicate that the Ridge Restricted 

Robust Least Trimmed Squares (RRLTS) 

method outperformed all other approaches in 

parameter estimation, achieving the lowest 

Mean Absolute Deviation (MAD) of 0.42279. 

These findings suggest that the RRLTS method 

effectively addresses the issues of 

multicollinearity and outliers, leading to greater 

accuracy in the estimates. 

Conversely, the Generalized Least Squares 

(GLS) method exhibited the poorest 

performance, with the highest MAD of 

0.53069, indicating its inadequacy in handling 

complex data characterized by multicollinearity 

and outlier effects. 

Other methods, such as Ridge Generalized 

Restricted Least Squares (RGRLS), 

demonstrated acceptable performance with a 

MAD of 0.48117, but they did not reach the 

efficiency levels of RRLTS. This underscores 

the advantage of employing robust estimators 

with non-random restrictions, as evidenced by 

the superior results obtained from the RRLTS 

approach in this context. 

4. Conclusions 

   The study on air quality in Baghdad, utilizing 

the restricted linear partial additive model, 

revealed that the air quality index (AQI) 

contained outliers, with 4 out of 46 

observations classified as outliers, constituting 

8.7% of the sample. 

Graphical analysis demonstrated that PM10, 

PM2.5, CO2, CO, and Temp followed a linear 

relationship with AQI, while NO2 and O3 

exhibited non-linear behavior. 
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Using Mean Absolute Deviation (MAD) as 

evaluation criteria, the study identified the 

integrated approach combining the robust 

estimator based on the Least Trimmed Squares 

(LTS) with non-random restrictions imposed 

on the parametric portion of the model as the 

most effective.  

Furthermore, the PM10 variable had the most 

significant impact on air quality, followed by 

CO2 emissions from vehicles. A non-linear 

relationship was observed between O3 and NO2 

with AQI, particularly during the summer, 

posing significant health risks. 

These findings enhance the understanding of 

the complex dynamics affecting air quality in 

Baghdad and underscore the importance of 

employing robust modeling techniques that 

integrate robust estimators with non-random 

restrictions for accurate analysis and policy 

recommendations.
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