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ABSTRACT 

Object discovery has advanced significantly with the emergence of deep 

learning models; however, existing algorithms often fail to deliver highly 

accurate and feature-focused detection, particularly in challenging visual 

environments. This study addresses the limitation by proposing a novel 

framework that integrates the high-level detection capabilities of YOLOv8 

with the precision-focused characteristics of SURF-based feature extraction 

(referred to here as "Surzet"). The proposed method leverages YOLOv8 to 

perform comprehensive object detection while utilizing Surzet to enhance 

the identification of fine-grained features and local properties, ensuring 

robustness to scale and rotation. Experimental evaluation on complex image 

datasets revealed that this hybrid model significantly outperforms YOLOv8 

alone, showing higher detection accuracy and a noticeable reduction in false 

positives. The initial results demonstrate that integrating YOLOv8 with 

Surzet creates a more reliable and precise object discovery framework. This 

approach holds great promise for high-level detection and detailed feature 

recognition applications. 

1. INTRODUCTION  

 Object detection, a fundamental aspect of computer vision, is how digital images and videos 

are analyzed to identify and locate individual objects. It transcends the capabilities of image 

classification by determining the presence, location, and type of multiple objects within the scene. 

The progression of object detection has been dramatically influenced by algorithm advancements, 

data availability, and computational power [1]. In the early beginnings, traditional object detection 

techniques were rooted in applying handcrafted features and classifiers. One such technique was 

the Viola-Jones face detection method introduced in 2011. The algorithm efficiently detected faces 

using Haar-like features and the AdBoost learning algorithm. It introduced the concept of the 

integral image and used a cascading process to quickly eliminate non-face regions, making it 

suitable for real-time face detection. The Shift to Machine Learning and the limitations of 

handcrafted features led to exploring machine learning techniques to learn these features 

automatically from data. The HOG (Histogram of Oriented Gradients) descriptor combined with the 

SVM (Support Vector Machines) classifier became popular for pedestrian detection. This 

represented an evolution from crafted features towards features learned through machine learning 

methods. The Revolution in Deep Learning. With the rise of DL, object recognition made a big step 

forward. CNNs stand for "convolutional neural networks. Inspired by the human visual system's 

hierarchical structure, researchers have demonstrated significant improvements in image 

classification tasks3. The success in image classification set the stage for their application to object 

detection. R-CNN (Regions with CNN features) was among the early methods that applied CNNs to 

object detection, where region proposals were first generated and then classified using CNNs [2].  

 While deep learning models like YOLOv8 have advanced object detection, they often fail to 

detect fine-grained features, especially in complex images with scale and rotation variations. 

Existing algorithms fail to provide a feature-focused approach for accurate object discovery in 

challenging visual conditions. 
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 This study aims to develop and evaluate a new object detection framework that integrates the 

strengths of YOLOv8 with a SURF-based feature extractor (referred to as Surzet), to enhance 

detection accuracy and reduce false positives in complex image scenarios. 

 This paper is structured as follows: The introduction provides an overview of the object 

detection. The related work section reviews existing approaches. The problem formulation section 

discusses the specific challenges addressed in this study. The proposed method section details the 

integrated framework that combines YOLOv8 with the Surzet algorithm. The experimental results 

section presents the evaluation metrics, dataset details, and comparative performance analysis. 

Finally, the conclusion summarizes the key findings and outlines directions for future research. 

1.1 Discovering Challenges and Confusing Things 

 Object detection has made significant strides over the years, largely thanks to advancements 

in computational capabilities and machine learning methodologies. However, while detecting 

distinct and well-defined objects has become increasingly accurate, detecting confusing objects — 

objects that closely resemble one another or are often obscured or distorted — remains a daunting 

challenge. This complexity is due to many factors, ranging from inherent ambiguities in the visual 

features of objects to the limitations of current detection algorithms. This article provides an 

introduction to some of these challenges [4]. 

- Visual Ambiguities and Resemblance: Many objects in the real world share similar visual 

characteristics. For instance, distinguishing between different breeds of dogs or between 

certain types of fruits like apples and pears from certain viewpoints can be challenging [5].  

- Occlusions: Detecting heavily occluded objects, especially when the visible portion is non-

distinctive, poses a severe challenge to object detection systems [6]. 

- Varied Illumination and Shadows: Changes in lighting conditions can alter the appearance of 

objects. Bright light can cause reflections, and low light can obscure details. Similarly, shadows 

can create deceptive visual cues that might lead detection algorithms astray [7]. 

- Deformations and Dynamic Changes: Objects are not always static. For instance, fabric in 

motion or a bent wire can take on numerous shapes and appearances. Objects with high 

degrees of flexibility and those that undergo dynamic changes present significant detection 

difficulties. 

- Scale and Perspective Variations: Depending on the distance and angle from the camera, 

objects can appear vastly different. Detecting objects across various scales and perspectives 

requires the model to recognize the same object under various visual manifestations.  

- Background Clutters and Overlaps: Objects may overlap in cluttered scenes, or the background 

might contain patterns and colors that confuse the detection algorithm. Distinguishing 

between the object of interest and visually similar background clutter remains a hurdle in 

many real-world detection tasks [8]. 

- Insufficient Training Data for Rare Objects: Machine learning models, intense learning-based 

ones, require vast amounts of annotated data. For everyday objects, there are ample datasets 

available. However, insufficient training samples for confusing or rare objects might lead to 

underfitting. 

- Real-time Processing Needs: The algorithms must be accurate and fast, often requiring a trade-

off between speed and accuracy.  

- Domain Shifts: The subtle differences between the training data and the real-world application 

can lead to significant detection errors.  

  Addressing these challenges demands an amalgamation of advanced model architectures, 

improved training strategies, and richer datasets. While significant progress has been made, the 

journey to perfecting the detection of confusing objects underscores the intricate interplay 

between technology and the vast complexities of our visual world. 
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1.2 Rationale For Combining Yolo V8 And Sift  

 In the continuously evolving domain of computer vision, there is a relentless pursuit of higher 

accuracy, robustness, and efficiency in object detection. With the advent of deep learning, models 

such as YOLO (You Only Look Once) have emerged as frontrunners, offering real-time object 

detection with impressive accuracy. On the other hand, traditional feature extraction methods, like 

the Scale-Invariant Feature Transform (SIFT), have maintained their relevance due to their 

resilience in handling variations in scale, rotation, and viewpoint. The rationale for combining YOLO 

v8, a cutting-edge version of the YOLO series, with SIFT stems from the pursuit of harnessing the 

strengths of both deep learning and classical computer vision methods [8]. 

 The YOLO architecture, specifically its latest iterations like v8, offers real-time object detection 

by viewing the detection problem as a regression problem. Unlike two-stage detectors that propose 

candidate regions and classify them, YOLO performs detection in a single shot. This streamlined 

approach significantly boosts processing speed. Additionally, with each subsequent version, YOLO 

has demonstrated improved accuracy in detecting objects of various sizes and dealing with 

overlapping objects[9].  

 SIFT is renowned for its ability to detect and describe local features in images. The keypoints 

detected by SIFT are invariant to image scale, rotation, and partially invariant to changes in 

viewpoint and illumination. Such attributes make SIFT exceptionally suitable for tasks like image 

matching, object recognition, and panorama stitching, especially in scenarios where the objects of 

interest transform or are viewed under different conditions [10]. While YOLO v8 is incredibly fast 

and generally accurate, it can sometimes miss out on smaller objects or objects that have undergone 

significant transformations. Integrating SIFT's feature extraction capabilities can offer a 

compensatory mechanism. SIFT's robust keypoint detection can potentially aid YOLO in recognizing 

objects that might otherwise be overlooked [11]. 

 YOLO's bounding box predictions and SIFT's descriptors can provide richer information about 

detected objects. While YOLO can rapidly identify and localize objects, SIFT can offer detailed 

descriptor information about the localized regions, further enhancing recognition [12]. By 

combining the deep learning process of YOLO v8 with SIFT's traditional feature extraction 

robustness, the fused system may better generalize across a broader range of scenarios. This is 

particularly pertinent when training data might not capture all the diverse transformations an 

object can undergo in real-world scenarios [12]. 

2. BACKGROUND AND LITERATURE REVIEW 

 With the evolution of CNN-based detectors, a broad categorization emerged: one-stage and 

two-stage detectors. While two-stage detectors like R-CNN and its variants first generate region 

proposals and then classify them, one-stage detectors, such as YOLO (You Only Look Once) and SSD 

(Single Shot MultiBox Detector), perform detection in a single pass. YOLO, for example, divides an 

image into a grid and predicts bounding boxes and class probabilities simultaneously [3]. The 

introduction would then delve into the motivation behind combining these two techniques. YOLO 

is known for its speed and efficiency in detecting objects in real-time, making it a popular choice for 

applications requiring rapid processing [13]. 

 On the other hand, SIFT excels in identifying and matching objects across different scales and 

orientations, providing robustness in varied scenarios. Combining these two methods aims to 

leverage the strengths of both: YOLO's speed and real-time capabilities with the detailed, scale-

invariant features captured by SIFT. This hybrid approach is beneficial for identifying objects that 

are 'confusing' or difficult to detect due to occlusion, varying scales, or complex backgrounds [14]. 

The introduction would also set the context by discussing the combined method's relevance and 

applications. It could be particularly beneficial in areas such as autonomous vehicles, surveillance, 

or robotic vision, where accurately identifying ambiguous objects quickly is crucial Finally the 

introduction would outline the structure of the review, indicating how the subsequent sections will 

explore existing literature on YOLO and SIFT individually, the rationale for their integration, the 

methodology used in the combination, the challenges faced, and the results achieved in comparison 

to other existing methods. This provides a roadmap for the reader to understand how the review 
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will dissect and analyze the effectiveness and innovation of combining YOLO and SIFT for detecting 

confusing objects in images. Object detection is a pivotal field in computer vision, which seeks to 

locate and classify objects within images [15]. Traditional feature extraction methods, such as SIFT 

(large-scale invariant feature transform), and deep learning-based methods, such as YOLO (You 

Only Look Once), have had a singular impact. However, integrating these techniques provides a 

promising means, especially for detecting confusing image objects. In previous traditional 

automated processes, YOLO and SIFT may be used separately to achieve specific goals in image 

processing. Still, there is an attempt to improve detection accuracy in this context. Objects, 

especially those that are confusing or difficult to distinguish, are identified by the two algorithms' 

power. Therefore, the addition attempts to take advantage of each algorithm's advantages and 

overcome their potential limitations when used individually to achieve better results in detecting 

objects in images [16]. 

2.1 Traditional Feature Extraction: The Rise Of SIFT 

 Lowe's introduction of SIFT in 2004 revolutionized the landscape of feature extraction and 

matching in computer vision. SIFT's design allowed it to detect and describe local features in images 

invariant to scale changes, rotation, and illumination variations [1]. The algorithm's robustness 

against these variations made it a preferred choice for many applications, including image stitching, 

3D reconstruction, and object recognition. Confusing objects in images—those with similarities in 

appearance, overlapping structures, or partially occluded objects—pose significant challenges for 

detection algorithms. While deep learning models like YOLO excel in many scenarios, their 

performance can be compromised when distinguishing between objects with subtle differences or 

cluttered scenes [2]. While robust against scale and rotation changes, traditional methods like SIFT 

may not always provide the semantic understanding needed to differentiate confusing objects. 

2.2 Detecting Objects 

 Object detection plays a crucial role in various computer vision tasks, such as identifying 

pedestrians, recognizing faces, and detecting objects. Object detection has primarily developed into 

two distinct categories: traditional machine learning methods and deep learning methods. In 

traditional machine learning techniques, the initial step involves setting up what's known as feature 

engineering [3]. This process typically involves manually specifying features and can be broadly 

categorized into three different methods. One noteworthy approach, dating back to 1981, is the 

General Hough transform introduced by Ballard D. This method is particularly adept at extracting 

geometric features from data. Another method, which emerged in 1988, is the Harris corner 

detector, which focuses on identifying key object features by pinpointing corners in images. To 

achieve this, the Harris corner detector analyzes two images, extracting corner features, and then 

computes the degree of correlation between the points to detect objects. The two methods 

mentioned above are pretty attuned to the specific characteristics of the image. In simpler terms, 

alterations such as changes in image size, rotation, or grayscale can impact the outcomes they 

produce. 

 Lowe introduced SIFT in 2004  [4]. SIFT is an algorithm designed to identify and describe 

unique features within images. What's neat about it is that it treats each feature as an independent 

entity, which means that alterations in rotation and scale of the image won't mess with the results 

it provides. One striking difference emerges when you look at deep learning versus traditional 

machine learning: deep learning methods often don't rely heavily on intricate feature engineering. 

Moreover, they outperform traditional machine learning techniques, especially when training on 

vast datasets. The last decade has seen a remarkable surge in the advancement of deep learning, 

and this wave has also swept over the realm of object detection.  In 2014, a pivotal moment occurred 

when Girshick and his colleagues introduced the R-CNN model[5]. This marked the first successful 

application of deep learning to object detection. In 2015, two significant advancements were made 

in computer vision. Fast R-CNN and Faster R-CNN  [6] emerged as improvements upon the original 

R-CNN, significantly boosting its efficiency in both computation and training.  Around the same time 

in 2015, a groundbreaking model known as YOLO was introduced. This model revolutionized real-

time object monitoring, allowing for instantaneous detection and tracking of objects.  In 2017, 
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computer vision was significantly developed with the release of YOLOv2, introduced in [7]. This 

version aimed to enhance the YOLO model, making it more accurate and efficient.  The following 

year, 2018, two notable advancements were made in the field. First, Mask R-CNN emerged as a 

refinement of the Faster R-CNN model. Second, YOLO version 3 was introduced to improve YOLO 

version 2. These developments marked essential milestones in the ongoing evolution of object 

detection and image segmentation techniques [8]. Fig. 1 compares three tasks in computer vision: 

classification, localization, and object detection. 

 

Figure 1: Common computer vision tasks 

2.3 Object Detection Techniques  

 A computer vision challenge entails identifying and locating goods inside an image or video. 

Object recognition techniques and algorithms can be predominantly categorized into two main 

approaches: traditional computer vision methods and deep learning techniques [9]. Conventional 

computer vision techniques depend on manually designed features, heuristics, and algorithms to 

identify objects in images. Individuals initially evaluate diverse geometric characteristics of things 

for detection purposes. The object's curvature is ascertained by determining the minimal second 

moment orientation [10]. The evolution of learning has significantly transformed object detection, 

resulting in considerable improvements in accuracy and resilience. These methods primarily 

depend on  CNN and have become the prevailing approach in recent years [11]. Prominent DL-based 

frameworks for object detection are comprised of: 

- R-CNN: Geographically focused Convolutional Networks execute an area search and 

classification to find things in pictures. In 2012, thorough search method replaced the 

selective search method [12]. Fig. 2 depicts the process of an R-CNN. 

 

Figure 2: Region-based (R-CNN) Framework. 

- Fast R-CNN: Fast Region-based Convolutional Network (Fast R-CNN) was established in 2015 

by R. It utilizes the complete image as input for the Convolutional Neural Network (CNN), in 

contrast to R-CNN, which necessitates individual evaluations for each region proposal [13].  

- Mask R-CNN, a Mask Region-based Convolutional Network, changed the field of computer 

vision when it came out in 2017. It could find bounding boxes and guess object masks, which 

was a big deal. In COCO challenges, this new method did better than others in identifying key 

points, bounding boxes, object instance identification, and object segmentation. R-CNN 
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Faster framework and the Mask R-CNN can be used together to make a mask for objects [14]: 

boundary box distances and category names. 

- Faster R-CNN substitutes a RoIAlign layer on top of the main RoIPool layer, thereby 

improving localization precision. The second branch incorporates two convolutional layers, 

while the third branch is designated for object mask detection [15]. This procedure greatly 

enhances the accuracy of object localization and classification. 

2.4 YOLO (You Only Look Once) 

 The YOLO method detects objects in real time using a single evaluation model and a neural 

network. Using an SxS grid, it predicts the image's bounding boxes and their associated probability 

[16]. YOLO distinguished itself with its innovative methodology in object redefined, making it 

possible to identify in just one forward network hop, significantly enhancing efficiency  with its 

YOLO design, which has undergone numerous iterations and resilience. The following are the 

versions of YOLO models:  

- The YOLOv1 series originated in 2016 when Joseph Redmon and colleagues introduced the 

groundbreaking YOLO methodology [8]. YOLO conceptualizes the two-stage process (area 

recommendation followed by categorization) as a regression problem by rejecting 

conventional techniques that saw object identification. 

- YOLOv2, acknowledging the constraints of the initial architecture, the subsequent version, 

YOLOv2, sometimes referred to as "YOLO9000," implemented substantial enhancements. 

- YOLOv3, a further evolution, resulted in YOLOv3, which integrated nuanced enhancements 

and effectively addressed real-world difficulties. 

- YOLOv4 represents a significant advancement in the YOLO series, combining improved 

detection accuracy with exceptional speed. 

- YOLOv8 in January 2023, Ultralytics introduced YOLOv8, marking a substantial advancement 

in deep learning and computer vision. This is the most recent addition to the esteemed YOLO 

line of object identification algorithms. Ultralytics, renowned for its association with the 

YOLO series through the launch of YOLO-v5, has persistently advanced the frontiers of object 

identification. 

 Since its debut, YOLO has continually led in integrating speed with precision. Every iteration 

has sought to enhance its forerunner, pursuing real-time detection while maintaining the integrity 

of forecasts. The advent of YOLO-v8 has generated significant enthusiasm within the research 

community, as we anticipate the forthcoming study that will elucidate the advances and 

architectural modifications implemented. The architectural modifications will enhance the 

algorithm's scalability and adaptability [23]. Edge devices, like smartphones, smart cameras, and 

IoT gadgets, exhibit processing power and memory capacity limitations. Implementing deep 

learning models on these devices presents distinct problems. The model must be lightweight, 

efficient, and simultaneously effective. YOLO-v5 represented a substantial advancement in that 

regard. Preliminary evidence from Ultralights is pushing this limit even further, as shown by YOLO-

v8. YOLO-v8 could change applications that need to respond instantly to object detection by 

focusing on fast inference speed on limited hardware. These applications could include security 

systems that detect threats in real time and smartphone applications that use augmented reality  

contexts. 

3. THE PROPOSED SYSTEM 

 Our system utilises deep learning methodologies, notably, there are two algorithms: YOLO and 

SIFT. Regarding real-time object detection, YOLO is widely praised for its effectiveness. In contrast, 

SIFT is frequently used for the extraction of features and matching.  The integration of various 

methodologies possesses the capacity for precise and effective item classification and detection. The 

proposed system includes many phases and procedures, indicating a sequence of operations that 

data experiences. Fig. 3 represents the system's workflow.  
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Figure 3: General block diagram of the proposed. 

3.1. Data Collection  

 Pascal VOC 2012 is a widely adopted benchmark initially introduced for the Pascal (VOC) and 

builds upon its predecessors. Pascal VOC 2007 and 2010  comprise 20 prevalent object categories, 

including aeroplanes, bikes, birds, boats, bottles, automobiles, cars, dining tables, cats, and so on 

[28].  Moreover, specific object categories are accompanied by pixel-level segmentation masks, 

enabling more detailed object classification assignments  .The dataset is thoughtfully divided into 

groups for testing and training,  rendering it suitable for training object detection models and 

evaluating their performance. The training subset includes many images for model training, while 

the testing subset is designated for assessing model accuracy. Notably, the images contained within 

the Pascal VOC 2012 dataset encompass a wide range of scenes, backgrounds, ambient light, and 

the direction of the objects, presenting a formidable challenge for object detection algorithms.  

 The dataset consists of 17,112 photos, divided into test, validation, and training sets. Training 

and object detection system evaluation find their foundation in these image datasets. Training has 

used various pictures depicting twenty common object groupings with different forms. YOLO 

provides a mosaic zoom technique that amalgamates random segments from four photographs into 

a cohesive composition. YOLOv8, a YOLO model that uses a close mosaic, terminates this strategy. 

Providing the model with continually unrealistically impossible scenarios is not the goal. 

3.2 Model Architecture  

3.2.1 Convolutional Neural Network (CNN) 

  CNNs are a variant of deep feed-forward artificial neural networks frequently employed in 

computer vision tasks, including image classification. Convolutional Neural Networks (CNNs) differ 

from conventional multilayer perceptron (MLP) networks by incorporating convolutional layers, 

pooling operations, and nonlinear activation functions, such as the tanh, sigmoid, and ReLU types. 

The three-dimensional arrangement of neuron layers in CNN architectures—input and hidden 

layers—makes them ideal for processing large amounts of multi-channel picture data, making CNNs 

suitable for image acquisition. To reduce the amount of weights that need to be calculated and their 

redundancy, neurons in a layer are connected to only a brief segment of the layer before 

convolution, which is the spatial action on small parts of the input image. One type of neural network 

is the convolutional neural network, which uses feedforward architectures that excel in processing 

large datasets due to their convolutional function, which enables neurons to encompass peripheral 

units within the convolution kernel. A convolutional neural network comprises a fully connected 

layer integrated with a pooling layer and one or more convolutional layers. Convolutional neural 
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networks yield exceptional results in audio and image recognition. It requires fewer parameters 

than other deep neural networks. Convolutional neural networks are frequently employed deep 

learning models owing to their advantages. Presented herein is a succinct elucidation of the 

foundational architecture of convolutional neural networks. 

3.2.2 Primer on CNN's Architecture 

   Fig. 4 illustrates the fundamental architecture of the CNN system. Every output component in the 

fully connected layer is linked to the input. 

 

Figure 4: The architecture of CNN. 

 Utilizing a small square matrix, convolution is a way to pull out details from an input picture. 

A feature map is the x-y table that traverses the original image with the filter, where each neuron 

possesses identical weight parameters. Various filters applied to the same image can produce 

distinct feature maps, resulting in effects such as edge detection, sharpening, and blurring through 

the modification of filter parameters. Fig. 5 shows the result of applying a convolutional kernel, also 

known as a filter, on a CNN source layer. Convolution preserves spatial information from the input 

data, as seen in the example that computes a value of 5 at the corresponding location of the 

destination layer for a single kernel point. 

 
Figure 5: a process known as convolution [29]. 

  In CNN, this layer converts aggregated feature representations into more utilitarian forms, 

preserving critical information while eliminating superfluous features. It guarantees uniformity 

despite positional or lighting fluctuations, provides resilience against clutter, and yields a concise, 

interpretable representation. Feature maps have less detail because the pooled layer consolidates 

outputs from neighboring neuron groups, increasing their resilience to input distortions.  

𝑌𝑘𝑖𝑗 = max
(𝑝,𝑞)∈𝑅𝑖𝑗

𝑋𝑘𝑝𝑞 … (1) 

 In this context, ykij denotes the output of the pooling operator associated with the kth feature 

map. In contrast, xkpq refers to the element located at (p,q) within the pooling region Rij.  

A limited area surrounding the coordinates (i,j). The average pooling method utilises the arithmetic 

mean of the elements within each pooling region, as demonstrated in the equation. 2. This layer 

sorts the data by using traits found by earlier layers and filters to put them into groups. It connects 

every neuron in one layer to every neuron in the next layer, most of the time using a softmax 

activation function to give chances ranging from 0 to 1. 
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𝑌𝑘𝑖𝑗 =
1

|𝑅𝑖𝑗|
 ∑(𝑝, 𝑞) ∈ 𝑅𝑖𝑗  𝑋𝑘𝑝𝑞  … (2) 

 In neural networks, transfer functions compute the weighted total of inputs and biases, hence 

defining the activation of a neuron. They alter data by gradient processing, typically via descending 

a gradient, and make output based on the factors fed in. AFs change outputs in various uses, such as 

recognizing objects, categorization, and machine learning. The output layer generates the final 

predictions using information from the preceding phases. This layer generally utilises soft ax 

activation to transform the raw outputs from the previous layer into probability scores, reflecting 

the likelihood of each class in tasks such as picture classification. 

3.2.2 YOLO Algorithm 

 It uses a single review and a single neural network model to find bounding boxes and guess 

how likely they will happen. It's easier to use because it can make predictions in real time. The YOLO 

method takes the whole picture as input and breaks it into an SxS grid of cells. Bounding boxes and 

confidence numbers are in each cell of this grid. To get the confidence score, multiply the chance of 

finding an item by the value of the intersection over union (IoU) between the real boxes and the 

projected boxes.  The Google Net convolutional neural network, which includes the inception 

module, is used [17]. In the YOLO system, there are 24 convolutional layers in this module, followed 

by two fully connected layers. A 3x3 convolutional layer is added instead of the inception module. 

It comes after a dimensionality reduction layer and one of three filter sizes (1x1, 2x2, or 3x3). There 

are three versions of YOLO: v1, v2, and v3. The fastest one is v3, which has nine convolutional layers 

and a set number of filters. 

 

Figure 6: YOLO framework. 

 Along with the plan, the RoIAlign layer makes translation-equivariance and scale-equivariance 

easier. ResNet is used in this method and works on the picture input over 101 layers. The RoIAlign 

levels take care of the Regions of Interest found. This network has a fully connected layer that is 

added through one of the three branches. These branches look at the bounding box coordinates and 

predict the probability. In YOLO, the last layer that predicts each grid cell gives back S*S*(C+B*5), 

where S*S is the overall grid size, C is the expected probability for each class, and B is the number 

of anchor boxes per cell that are linked to confidence scores and four coordinates, Fig. 6.  

 The ImageNet dataset is utilised for classification, having been pre-trained with almost half of 

the Convolutional layers.  In contrast to previous methodologies, YOLO frequently produces many 

bounding box forecasts that lack objects. The Non-Maximum Suppression (NMS) technique is 

employed after the network to resolve this issue. NMS consolidates overlapping bounding boxes 

into a singular box for identical objects; yet, instances of false positives in detection may still occur. 

3.2.3 SIFT Algorithm 

 It is a method developed by David Lowe in 1999. It has widespread applications in image 

processing and computer vision, particularly feature identification and alignment. SIFT is 

distinguished for its capacity to preserve precision despite variations in scale, rotation, illumination, 

and perspective. Consequently, it demonstrates significant use in object recognition, image mixing, 
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and reconstructing three-dimensional scenes.  Visual data can be used to get highly unique and 

consistent features using the SIFT method. SIFT aspects stay the same when scale, rotation, lighting, 

and viewpoint change [18]. Using SIFT-extracted features enables reliable matching of the same 

objects across different photos. When implementing SIFT on images, the fundamental 

computational procedures for creating a set of image features are as follows: 

- The preliminary SIFT phase entails a comprehensive search across several scales and 

image locations [19], effectively executed by the Difference of Gaussian (DoG) technique as 

depicted in Figure 7. 

 

Figure 7: DoG space [37]. 

 A comprehensive model is applied at each prospective site to ascertain the exact placement 

and magnitude[20]. Key points undergo a contrast and edge assessment to preserve the stable ones 

[21] Fig. 8. 

 

Figure 8: Histogram of dominant orientations. 

 A descriptor is generated to signify each key point based on the previously assigned 

orientation. The descriptor, which relies on the gradient histogram in the image, is computed as 

shown in Fig. 9. 

 

Figure 9: Key point descriptor [39]. 

3.3 Evaluation Metrics 

 Including both precision and recall in this metric is essential for judging how well object 

detectors work because it gives a complete picture of how well the model can spot things in images 

across multiple categories.  
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− Average Precision: is often used to check how accurate a model's forecasts are. It gives a 

number showing how well the model can find and identify items in an image. It usually judges 

how well a model balances accuracy and memory. 

− Precision: quantifies the proportion of projected positive cases that are true positives. It 

computes the proportion of accurate forecasts. 

Precision =  TP / (TP +  FP)          … (3) 

− Recall: Conversely, assesses the model's efficacy in identifying all genuine positive events 

within the dataset. It computes the proportion of true positives accurately detected by the 

model. 

Recall =  TP / (TP +  FN)           … (4) 

− Average Precision (AP): The measure is established by looking at the precision-recall curve 

for a particular class, which means figuring out the precision at different recall levels: 

thresholds (often from 0 to 1) and the area under this curve. AP thoroughly evaluates the 

model's capability to accurately recognize things within a specified category. 

AP =  
1

𝑛
 ∑ (𝑅𝑖 − 𝑅𝑖 − 1). 𝑝𝑖

𝑛

𝑖=1
          … (5) 

 
Where: AP Average Precision is denoted as AP, and n is the number of points on the curve for 
accuracy and recall. Ri is the recall at point i, Pi is the precision at point i, and Ri-1 is the recall 
at point i-1 that came before. 

− Map: An object identification model's overall performance over several classes is evaluated 

statistically by mean average precision. You construct mAP by independently computing the 

AP for every class, then averaging these AP values. This offers one value that captures the 

general performance of the model over all object types. 

4. RESULTS OF EXPERIMENTS 

 The range from inadequate to exceptional is contingent upon the degree of correspondence 

between the red-labeled anticipated boundary box and the blue-labeled actual one, where iou is the 

ratio of the overlapped area to the combined area of the two boxes, Fig. 10. 

 

Figure 10: Compute the Intersection Over Union (IoU). 

 The training step involves calculating the error in a loss function, with the primary metrics 

being box_loss and cls_loss: 

- Box_loss quantifies the mistake in bounding box detection. 

- Cls_loss measures the error in identifying object classes. 

 This differentiation facilitates a more nuanced comprehension of model efficacy. The model 

may successfully determine the exact location of the square surrounding an item whose category is 

wrongly defined. If the model learns from the data efficiently, you should see a gradual decrease in 

these values over time. Both box_loss and cls_loss decreased, as we observed.  

After training the model, the validation stage uses the validation dataset to evaluate the model's 

quality. Mean Average Precision (mAP50-95) is the most essential quality metric. Accuracy should 

increase from one iteration forward if the model improves and learning  in the subsequent one. We 

observed a progressive enhancement. 
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4.1 Training  

 The training and validation phases are the two main components of a training cycle. During the 

training phase, the "train" technique is used. It uses the training dataset to get a random selection 

of images, allowing for the specification of batch size. The model subsequently processes the photos, 

yielding boundaries for each object found and labeled with its class. The output is subsequently 

passed into the loss function, which evaluates it against the precise results extracted from the image 

annotation files. This function quantifies the degree of error. The loss function's output is 

subsequently transmitted to the optimiser, which appropriately modifies the model's weights to 

reduce mistakes in the following iteration. The default optimiser is SGD (Stochastic Gradient 

Descent); however, alternative options like Adam may be explored for potential enhancements. 

During the validation phase, the following operations are carried out by the train function the 

bounding boxes for each of these images are identified after the model processes them. The model's 

accuracy can be calculated by looking at the differences between the expected and actual results, 

which are acquired by comparing the generated results with the exact values from annotated text 

files. The model's learning and development from one epoch to the next is achieved by looking at 

the progress and results for each phase inside each epoch. 

4.2 Evaluation and Results Metric 

 The model's generated images and accompanying predicted bounding boxes show satisfactory 

performance, according to the evaluation measures. Prediction plots show that F1 scores for all 

classes are between 0.68 and 0.40, precision is between 1.00 and 0.99 across all classes, recall is 

always 0.70, and the recall curve is 0.88 as the model successfully identified all images of persons, 

cars, and dogs. Nonetheless, there are accuracy concerns, as the program occasionally produced 

duplicate predictions for the same three individuals or the identical vehicles, and the cause may be 

the lateral perspective of individuals, vehicles, or canines. The model achieves a commendable mAP 

score, a commonly utilised statistic for object identification models. Based on using the physical 

truth notes that come with the validating pictures, the model guesses the size of the box that shows 

a significant intersection over the union time required to prepare each image in the given 

dimensions (1, 3, 480, 640) is 45.7 ms, inference is 207.4 ms, and post-processing is 7.7 ms. 

4.3 Confusion Matrix 

 Making a Matrix of Confusion: Both models will be used to make predictions for each test 

picture YOLOv8 will give you predicted SIFT may provide you with feature descriptors and 

occasionally, object classes, in contrast to bounding boxes and object classifications Determine each 

model's similarity score or confidence score result should be Because these limits can be changed 

the balance between precision and recall can be adequately managed Setting up correspondences 

It is necessary to line up YOLOv8's predictions with SIFT's forecasts for each expected item to make 

a confusion matrix The matching could be based on how the items are classified where the bounding 

boxes meet or a mix of the two. Constructing the confusion matrix produces: 

- True Positives: Both YOLOv8 and SIFT accurately identify the object as ambiguous. 

- False Positives: YOLOv8 identifies the item as ambiguous; however, SIFT does not. 

- False Negatives: YOLOv8 fails to identify the item; however, SIFT recognises it as ambiguous. 

- True Negatives: YOLOv8 and SIFT accurately ascertain that the object is unambiguous. 

To determine how well the combined YOLOv8 and SIFT method works, take the numbers from 

the conflation grid and use them to figure out several assessment measures, such as accuracy, 

precision, recall, and the F1-score. For your reference, the reason behind the confusing matrix is 

shown below: 

- Accuracy:  assesses the overall accuracy of the predictions. 

- Precision:  assesses the precision of affirmative forecasts 

- Recall:  assesses the capacity to identify all good events. 
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- F1-Score: The F1-score provides a happy medium between recall and precision using a 
harmonic mean calculation. 

The confusion matrix shows that "Actual Confusing" items are hard to understand, while "Actual 
Not Confusing" items are easy to understand. The model's predictions are used to fill in the matrix 
cells. 

 

Figure 11: Confusion matrix for all classes. 

 Fig. 11 shows a confusion matrix. It shows how well the model has predicted different classes 

by comparing the accurate labels (along the horizontal axis) with the predictions made by the model 

(along the vertical axis). The diagonal numbers represent correct predictions, while off-diagonal 

numbers indicate misclassifications. The larger numbers on the diagonal, the better the model's 

performance. Table 1 shows a performance table for an object detection model, listing various 

classes of objects and the corresponding metrics to evaluate the model's predictions: Accuracy, 

Precision, Recall, and F1-Score. Each metric is given as a decimal, which can be interpreted as a 

percentage (e.g., 0.99 is 99%). Based on the supplied data, the average percentages for the metrics 

are as follows: Precision: 93.45%, Recall: 93.60%, F1-Score: 93.55%. The model's overall accuracy 

is 96.09%.  

Table 1: The performance table for an object detection model 

 precision recall f1-score support 

aeroplane 1 1 1 148 

bicycle 1 1 1 99 

bird 1 1 1 133 

bus 1 1 1 115 

car 1 1 1 363 

cat 1 1 1 700 

chair 1 1 1 296 

motorbike 1 1 1 763 

person 1 1 1 2403 

background 1 1 1 937 

accuracy 1 1 1 1 

macro avg 1 1 1 5957 

weighted avg 1 1 1 5957 

 Fig. 12 shows person1, person2, car1,car2, and dog object detection that was trained for only 

25 epochs, and then no error in weight and stopped the pre-trained Yolov8n model. 
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Figure 12: Trained stage for only 25 epochs. 

 

Figure 13: Instances of object detection in images utilizing the proposed technique. train_batch_0 

4.4 Validation 

 Fig. 13 and Fig. 14 depict the system's outputs for detecting objects. They give you pictures 

with boxes around the objects you pointed out. Every container is designated with a numerical or 

categorical identification, potentially signifying the detected object type (e.g., "14" for individuals or 

"7" for vehicles), and select boxes feature confidence scores, representing the model's assurance 

over the detection. These photos illustrate the model's capacity to identify and discern various items 

inside an individual image or throughout a sequence of images. 

 

Figure 14:  Instances of object detection in images utilizing the proposed technique. train_batch1. 
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4.5 Testing  

 The goal is to use the YOLO model to recognize objects and make predictions, usually using a 

model that has already been trained. We set a confidence level for identification at 0.25. Objects 

with confidence scores below that level may be thrown away. After that, we gave the picture file we 

wanted to recognize, "V8.jpeg." Parts of the identified objects are also cropped from the image, with 

the chosen objects enclosed by bounding boxes. Combining the "Image" and "Display" functions 

allows you to show YOLO detection data that includes images with edges. After that, we list folders 

inside the "detect_dir" directory. Each one could represent a different prediction or YOLO execution. 

Based on its timestamp, the subfolder that has been changed the most recently is chosen, and the 

directory with the newest predictions is found. After that, we make the file path to the "V8.jpeg" 

picture in this newest subfolder, representing the most recent YOLO forecast. The results are finally 

shown using the Image and View functions. They show the results of YOLO object identification with 

boxes around the identified items. The "height = 600" argument sets the height of the image to 600 

pixels. Using YOLO to find objects in an image called "V8.jpeg," saving the results, and then showing 

the image with the found objects outlined by boxes that highlight the most recent YOLO forecasts is 

what the process involves. 

4.6 Testing Results of The Sift Algorithm 

 Upon identifying things inside the image, it subsequently displays it featuring these recognized 

objects. Furthermore, it uses the SIFT (Scale-Invariant Feature Transform) technique to identify key 

points between two photos. The method entails the examination of a singular image titled "V8.jpeg," 

identifying various items, including person1, person2, person3, car1, car2, and a dog. Furthermore, 

it offers insights into the duration allocated to several phases, including preceding, inferring, and 

subsequent processing. 

 

Figure 15: A Single image detects person1, person2, person3, car1, car2, and dog. 

Fig. 15 shows the test outcomes of an artificial intelligence model for finding objects: 

- Person: The person was identified with a confidence of 0.85. This means the model is 85% 
sure that the object is a person. 

- Person: The person was identified with a confidence of 0.90. This means the model is 90% 
sure that the object is a person. 

- Person: The person was identified with a confidence of 0.90. This means the model is 90% 
sure that the object is a person. 

- Car: The car was identified with a confidence of 0.75. This means the model is 75% sure that 
the object is a car. 

- Car: The person was identified with a confidence of 0.76. This means the model is 76% sure 
that the object is a car. 

- Dog: The dog was identified with a confidence of 0.92. This means the model is  92% sure that 
the object is a dog. 

 The findings reveal that the model comprises 168 layers, totaling 3,151,904 parameters, with 
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no gradients (indicative of the inference phase rather than training). In the photograph, the model 

identifies one person1, one person2, one person3, one car1, one car2, and one dog. The model offers 

a detailed breakdown of the time allocation throughout the object detection process: 

Preprocessing consumes 3.0 ms for image preparation. The core object detection process, known 

as inference, demands 114.1 ms. Post-processing, entailing result refinement and storage, requires 

89.1 milliseconds. These timings pertain to the input image, characterized by the format (1, 3, 480, 

640), representing a single image with three RGB color channels and a resolution of 480x640. The 

procedure initiates by loading two images, 'V8.jpeg' and 'V82.jpeg,' through OpenCV's ‘cv2.imread’ 

function. It proceeds to exhibit the 'V8.jpeg' image using 'cv2_imshow' and showcases the image 

"V82.jpeg" using the same method. 

  

Figure 16: Use the key points and descriptions of two pictures to find matches between them. 

 Fig. 16 and Fig. 17 show an image of the discovered universe, which is cropped from the 

original image so that we get a cropped image of the game. Subsequently, it generates a SIFT  object 

using OpenCV's ‘cv2.xfeatures2d. SIFT is an algorithm designed for detecting and describing 

features, primarily used in image matching and object recognition. 

 

Figure 17: Put the resultant picture up as the img3 with the lines drawn between the important 

 SIFT is employed on both the 'V8.jpeg' image and the 'V82.jpeg' template image to obtain key 

points ('kp1' and 'kp2') and descriptors ('des1' and 'des2') for each image. These key points and 

descriptors are pivotal for locating matches between the two images. The next step involves the 

creation of a Brute-Force Matcher ('bf') using OpenCV's 'cv2.BFMatcher This matcher is utilized to 

identify the top matches between the descriptors of the two images using the 'knnMatch' function, 

with a parameter 'k=2' signifying the return of the two best matches for each keypoint. A ratio test 

is applied to the matches to filter and retain the most reliable matches. This test checks whether the 

distance of the best match is less than 0.5 times the distance of the second-best match. If this 

condition is met, the match is categorized as "good" and stored in the "good" list. Finally, using 

cv2.imshow, the model displays the findings on the V8.jpeg picture, generating a visualization of 

these good matches. The final image, with all the lines drawn to indicate the essential spots, is saved 

as the variable img3 spots. 
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5. CONCLUSION  

 Integrating YOLO and SIFT techniques represents an innovative stride in object detection 

within images, especially with elements that are difficult to distinguish. Merging YOLO's rapid 

detection framework with the detailed feature analysis of SIFT creates a robust system for 

identifying objects under challenging conditions. However, this combination introduces 

computational complexity, highlighting the need for optimization to ensure real-world applicability. 

Despite its promise, this fusion may not be universally optimal. Identifying scenarios where this 

combined approach yields the most significant advantages is an active area of research. Ultimately, 

the synergy between YOLO's deep learning prowess and SIFT's precise feature extraction 

exemplifies the dynamic advancements occurring in computer vision, as researchers seek to refine 

and adapt these methods to diverse and complex visual tasks. 
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