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Matrix-variate extension hyperbola distribution (m-vehd) belongs to the family of 

probability distributions with heavy tails. It is considered a mixed continuous 

probability distribution and a twisted probability distribution. It is the result of mixing 

the matrix-varite Gaussian variance-mean mixture distribution with the generalized 

inverse normal distribution (gind). And this distribution has wide applications in the 

field of economics. On this basis, the paper will study a multivariate compact 

regression model that follows a      (m-vehd). 

       Assuming that the shape parameters, scale matrix, and the twisted matrix are 

known, the parameters of the multivariate compact regression model will be estimated 

using the Bayesian technique depending on informative prior information. In addition, 

the smoothing parameter is selected by a normal distribution rule (rule of thumb) and 

the kernel function based on the Gauss kernel function and Quartic kernel function, 

and then finding Bayesian predictive distributions based on informative prior 

information and estimating the model parameters under balanced and unbalanced loss 

functions, and application to real data related by the reality of financial inclusion in 

Arab countries for the year 2014. The researchers concluded the superiority of the 

Bayes estimator under the balanced quadratic loss function at weight 57.0 and for 

Gauss kernel function. In addition, the predictive distribution of future observations is 

an uncommon distribution, but it is an appropriate distribution. 
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1. Introduction: 

Multivariate regression models are 

statistical models that have great importance in 

different areas of life, especially in economic 

fields. Among these models is the multivariate 

compact regression model. Most of the 

economic models are compact regression, as is 

known from their name, and they are a mixture 

of multivariate parametric (linear) regression 

model and multivariate nonparametric 

(nonlinear) regression model; the parametric 

part is the regression function that is supposed 

to be linear in the observations of its 

explanatory variables, which explains some 

important economic phenomena, while the 

nonparametric part is an unknown smoothing 

function and is a nonlinear function, the 

multivariate compact regression model 

provides an intermediate solution between the 

linear and nonlinear model.  

       Therefore, many  researchers have 

been interested in estimating multivariate 

compact regression models in which the 

random error follows a matrix-variate Gaussian 

distribution, but there are cases in which the 

random error follows a heavy tails distribution 

or the error observations are not independent 

https://isj.edu.iq/index.php/rjes
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and uncorrelated, in the two cases above, it is 

more appropriate to pay attention to alternative 

probability distributions than the matrix-variate 

Gaussian distribution, meaning that the mixture 

distributions are more fits as the (m-vehd). 

(Thabane & Haq, 2004) presented a 

generalization the multivariate extension 

hyperbola distribution to the (m-vehd) as a 

mixed distribution resulting from the 

distribution of the matrix-variate Gaussian 

variance-mean mixture with the matrix 

generalized inverse normal distribution. They 

also studied some of its properties and special 

cases. They studied the Bayesian approach of 

the multivariate Gaussian linear regression 

model, assuming that the prior distribution of 

the scale matrix is a matrix generalized inverse 

normal distribution. Found (Thabane & 

Kibria, 2007) the Bayesian prediction of the 

multiple general regression model in the case 

of equal correlation when the random error 

follows a extension multivariate transmuted 

Bessel distribution (symmetric multivariate 

extension hyperbola distribution), as it was 

assumed that the prior probability function for 

the scale parameter follows the generalized 

inverse normal distribution. The prediction 

distribution was obtained that follows a 

symmetric multivariate extension hyperbola 

distribution. This result contrasts the T-

distribution obtained using the prior inverse 

chi-square distribution for the scale parameter. 

Study (AL-Mouel & Mohaisen,2017)
 

Bayesian estimation based on the MCMC 

algorithm for the Gaussian multiple compact 

regression model represented by the Gaussian 

multiple compact linear regression model with 

the conditional ratio between the scale of the 

parametric part on the scale of the model error, 

and the scale of the nonparametric part on the 

scale of the model error. The weights matrix 

was the penalized spline and the statistical 

laboratory formation based on the criterion 

Bayes factor and the application of the findings 

to experimental data, two nonparametric 

functions. They concluded that the values 

generated from the data do not belong to a 

Gaussian society for different samples. 

Estimated (Hmood & Hassan, 2020) the 

multiple compact linear regression model when 

random error term is distributed normally with 

a mean of zero and variance    using two 

smoothing methods, namely, wavelet 

smoothing and kernel smoothing, which the 

researchers concluded through the 

experimental study and under different 

functions and sample sizes that show the 

wavelet smoother is better than the kernel 

smoother based on the (MASE) criterion. 

    The paper was divided into seven 

sections. First section included the 

introduction. Second section dealt with the 

description of the multivariate mixed compact 

regression model. The third section discusses 

some kernel functions and the smoothing 

parameter. Using Bayesian technique to 

estimate the parameters of a multivariate mixed 

compact regression model depending on 

informative prior information, and under 

different loss functions in the fourth section. 

Finding the Bayesian predictive distribution 

based on informative prior information in the 

fifth section. While the sixth section dealt with 

an applied study as the application was made 

on real data related by the reality of financial 

inclusion in Arab countries for the year 2014, 

and the study analysis process is carried out 

based on the MATLAB R2022a program. The 

seventh section shows the most important 

conclusions. 

 

2. Multivariate Mixed Compact Regression 

Model: 

Multivariate compact linear regression 

model is more important models symbolized by 

the symbol (MCLM), and it is considered a 

special case of additive models. It is one of the 

models that depend on linear parametric and 

nonparametric variables. Usually, the variables 

of this model are continuous. These linear and 

nonlinear variables affect the response variable. 

It is a generalization of standard linear 

regression techniques, so it is better than 

nonlinear models because it avoids the problem 

of dimensionality.  ) Przystalski, 2014( 
 

    The multivariate compact linear 

regression model is described according to the 

following equation :) You et al., 201 (3
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      (  )                         

                                  ( ) 

   Since   
    represents the linear part of 

the model, which    is estimated by one of the 

parametric methods, such as the method of 

ordinary least squares, the maximum 

likelihood, moments, or Bayes ..., and   (  ) 

represents the nonlinear part of the model, 

which is an unknown smoothing function that 

is estimated by one of the nonparametric 

methods, such as the Nadaraya-Watson 

smoother, Priestley-Chao, Gasser-muller 

smoother, kernel smoother, local linear 

regression smoother, spline smoother ....., It is 

possible to write the model defined in equation 

(1) in the form of matrices as follows: (AL-

Mouel & Mohaisen, 2017)
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    Where   is a Matrix of response 

variables of degree (n × k) and n represents the 

number of observations, and k represents the 

number of response variables.   is a non-

random matrix representing the observations of 

the parametric explanatory variables of degree 

(n ×  p ) and p represents the number of the 

parametric explanatory variables.   is a matrix 

of model parameters for the parametric (linear) 

part of the degree (p × k).   is a design matrix 

indicates the kernel weights. It can be taken 

with other weights such as the spline, wavelet, 

and k-nearest neighbor weights. It is of degree    

(n × s), and s represents the number of 

nonparametric explanatory variables, and 

  ( ) represents the kernel function and as 

follows: (Hmood ,2005) 

  ( )  
 

 
   (

 

 
) 

    And that this function is a real, 

symmetric, and continuous function and that h 

represent the smoothing parameter, they will be 

mentioned later.   is a matrix of parameters of 

the nonparametric (nonlinear) part (additive 

parameters) of degree (s × k).   is a matrix of 

random errors of degree (n × k). 

    It is possible to rewrite the form defined 

in Equation (2) as follows: (AL-Mouel & 

Mohaisen, 2017)
 

        (   ) (   )                      ( ) 

As:   [       ]                 *
 
 
+ 

    We assume that the matrix of random 

errors (ϵ) follows a (m-vehd), that is, the matrix 

of errors is distributed of a non-zero matrix 

mean. The probability density function of the 

matrix (ϵ) can be found using the concept of 

mixed distributions from the matrix-variate 

Gaussian variance-mean mixture distribution 

with the generalized inverse normal 

distribution and as follows: 

(Gallaugher & McNicholas, 2019) 

(Thabane & Haq, 2004)
 

 |         (          )      
     (     ) 

   As the probability density function of the 

matrix of random errors conditional by ( ) 

takes the following formula: 

 ( | )

 

. (
 
 )/

    

(   )
  
  | |

 
    

    
 

   
    (    ) (    )   

   ( ) 

   Equation (4) represents the matrix-variate 

Gaussian variance-mean mixture distribution, 

and the probability density function of the 

variable   defined in the following equation: 

 ( )  
( )

 
      (   )

  ( )
 
    (    (  ))

     0 
 

 
 .(

 

 
)

   /1                     ( ) 
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 Whereas (   )are scale parameters and r 

is shape parameter.  ( ) is a represents the 

transmuted Bessel function of the third kind of 

order  , and its formula is as 

follows:(Gallaugher & McNicholas, 2019) 

(Mora & Mata, 2013)
 

  (    (  ))

 ∫  
  (   )

    (        (  )(     ))    

 

 

     (  )

                                                       ( ) 

       According to the concept of mixed 

distribution, the probability distribution of the 

unconditional error matrix is as follows: 

 ( )  ∫  ( | )  ( )      
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As: 

     : represent shape parameters. 

   twisted matrix of degree (n × k). 

 : scale matrix of degree (n × k). 

   Equation (7) represents the (m-vehd) for 

the random error matrix, which is described as 

follows: 

     ( )  
       (   ( )               ( )) 

   Since the matrix Y defined in equation (3) 

is a linear combination in terms of the matrix   

that follows the (m-vehd). Accordingly, the 

probability distribution of the response 

observations matrix Y follows the (m-vehd). It 

can be found in the same way as follows: 

(Thabane & Haq, 2004)
 

    The probability density function of the 

matrix of response variables conditional by   
( | ) that follows the matrix-variate Gaussian 

variance-mean mixture distribution is as 

follows: 

 ( | )
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   Depending on the concept of mixed 

distributions, the probability distribution of Y 

unconditional by   is as follows: 
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This distribution can be expressed 

descriptively as follows: 

   ( )  
       (   (  )               ( )) 

3. Kernel Functions and Smoothing 

Parameter: 

Kernel functions) are used to estimate 

regression, spectral and probability density 

functions, the kernel function has other names, 

including (shape, weight, and window 

function), and the kernel function is a real, 

symmetric, continuous, and definite function, 

and its integral is equal to one. That the method 

of selecting the smoothing parameter (h) is an 

essential part in estimating the nonparametric 

regression curve, and that choosing the 

smoothing parameter is more important than 

choosing the kernel function and there are 

several labels for this parameter, including 

(constraint capacity - bandwidth - 

concentration parameter - contrast parameter) 

and its properties are a non-random, 

symmetrical and positive boundary parameter. 

Table 1 shows the kernel functions used in the 

paper as well as the selection of the smoothing 

parameter based on the thumb rule method. 

 (Langrene & Warin, 2019) (Hmood, 2005)
 

Table 1:  Some Kernel Functions and 

Smoothing Parameter. 

   ̂  ( )    
 
  k(x) kernel 

 ( )       
 (| |
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(    ⁄ )(    )  
Quart
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 ( )       
 (| |
  ) 

(  )        (    )⁄  Gauss 

4. Bayesian Technique to Estimate of a 

Multivariate Mixed Compact 

Regression Model Under Different 

Loss Functions: 

     In this section, the parameters of the 

multivariate compact regression model defined 

by equation (3) are estimated when the random 

error follows a (m-vehd) based on informative 

prior information; that is, it has probability 

distributions that belong to the conjugate 

family and as follows: 

       Depending on mixed distributions, the 

posterior probability distribution of location 

matrix  ( )  unconditional of   is as follows: 

(Salih & Aboudi , 2022) 

    We know that the prior distribution of 

( |    ) has the following form: 

 ( |    )     (  
 

   
    (    )

    
  ( 

   ) 
  )               (  ) 

     The posterior probability distribution of 

the matrix ( |      )is the distribution 

resulting from merging the equation (8) with 

the equation (2.124),     by adding and 

subtracting the amount    ̂ |  and that   ̂ |  

represents the conditional maximum likelihood 

estimator: 

  ̂ |  (   )      (   )              (  ) 

And by making some mathematical 

simplifications, we get the following: 

 ( |     )   ( |    )  ( |     ) 

 ( |     )      [  
 

   
     (  

    )  [  
   (   )](  

    )   ]  (  ) 

  

 [  
   (   )]

  
[  

        

       ]                                     (  ) 

 ( |   )  ∫  ( |     )  ( )    
 

 

 

 ( |   )

 
(  )

(   ) 
 ( )

(   ) 
  |  

      |
 
   (  (    (  )))

  

( )
(   ) 

 ( (
 
 
) )

(   ) 

 | |
(   )

         (   )     (  )   
 

    

     (   ) 
 

.√(            )(                     )/    

 (             )
   (   ) 

  ( 

                    )
    (   ) 

 (  ) 

As: 

    (   ) [  
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 (   )  ̂  ]          ̂ 

 (    )          

    [  
   (   )]

  
   

   Equation (10) represents the (m-vehd) 

and is described as follows: 

   ( )       (   )  (   ( )      (  
  

 (   ))
  

          (    (  ))) 

        The quadratic loss function is 

described according to equation below: 

 ( ̂   )     ( ̂   )
 
  ( ̂   )             (  ) 

  and under the assumption that the weight 

matrix ( ) is an identity matrix with dimension 
((   )  (   ))  Therefore; the quadratic 

loss function of the ( ) is written in the 

following formula: 

  ( ̂   )     ( ̂   )
 
  ( ̂   )         (  ) 

     As for the quadratic risk function of the 

matrix ( ), it is represented by the 

mathematical expectation of the quadratic loss 

function, and as follows: 

  ( ̂   )   [  ( ̂   )]

 ∫   ( ̂   )  ( | )   

 

                 (  ) 

      The Bayesian estimator for ( ) is 

found, which makes the quadratic risk function 

  ( ̂   ) at its lower limit, and after 

substituting equation (15) into equation (16), 

taking the partial derivative relative to ( ̂) and 

equal the derivative by zero, we get the 

following: 
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 ∫
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   ( ̂   )

  ̂ 
 ∫  (  ̂    )  ( | )   

 

 

After equality by zero, we get the Bayesian 

estimator: 

 ̂  ∫     ( | )   

 

 

 ̂    ( | )                            (  ) 

    We conclude from equation (18) that the 

Bayesian estimator under the quadratic loss 

function represents the mean of the posterior 

probability distribution of (θ). 

 ̂  [  
   (   )]
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)
     

 1  (  ) 

To find the quadratic risk function: 

  ( ̂   )  ∫    ( ̂   )
 
( ̂   )  ( | )   

𝜃

 

  ( ̂   )       *( ̂   )
 
 ( ̂   )+  (  ) 

    We notice from equation (20) that the 

quadratic risk function represents the variance 

of the posterior probability distribution of ( ). 

   The general form of the quadratic 

balanced loss function is known as: (Jozani et 

al., 2012  (  

   ( ̂   )      ( ̂    ̂ )
 
( ̂    ̂ )

 (   )    ( ̂   )
 
( ̂

  )   (  ) 

Whereas: 

  ̂   The unconditional maximum likelihood 

estimator is defined in equation below:  
  ̂  (   )      (   )        

 
    (√  )

  (√  )
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)
     

              (  ) 

   Weight value,        . 

The quadratic balanced risk function of the 

parameter matrix ( ) is as follows: 

   ( ̂   )   [   ( ̂   )]

 ∫    ( ̂   )  ( | )   

𝜃

         (  ) 

    The Bayesian estimator for ( ) is found, 

making the quadratic balanced risk function at 

a lower limit. We partially differentiate the 

equation (26) relative to ( ̂ ) and set it equal to 

zero, we get the following: 

    ( ̂   )
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 ∫
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    Solve the equation (
    ( ̂   )

  ̂   ) and 

doing the integration relative to ( ) we get the 

Bayes estimator under the quadratic balanced 

loss function, and as follows: 

 ̂       ̂   (   )  ( | )     (  ) 

To find the quadratic balanced risk 

function: 

   ( ̂   )  ∫ *    ( ̂    ̂ )
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As: 

  *( ̂   )
 
 ( ̂   )|  +  Variance of the 

posterior probability distribution of ( ). 

5. Bayesian Predictive Distribution: 

      The predictive distribution represents 

the probability density function for future 
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observations    that is conditioned by a set of 

current observations Y, so we have future 

observations ( ) for all response variables, 

which represent the matrix (  ). Depending on 

future observations, the multivariate compact 

regression model is as follows: (Thabane & 

Haq, 2004)
 

                             (  ) 

  Whereas     is a matrix of future 

observations ( ) has a dimension (   ×  ). 

   is a matrix with dimension (   × (  +   

)).   is a parameter matrix with dimension ((p 

+ s) × k).    is a matrix of future random errors 

of degree (    ). 

Since the error matrix (  ) follows a (m-vehd) 

with the parameters (       
         ), we 

know that (   )is a linear combination in terms 

of the future error matrix, therefore 

(  ) follows a (m-vehd) of the parameters 

(         
         )  

    Using the Bayes theory, the predictive 

distribution of the future matrix     is defined 

by the following formula: 

 (  | )  ∫   (  |   )
 

  ( | )       (  ) 

      Due to the difficulty of finding a 

predictive distribution from equation (30), we 

use the concept of mixed distributions, that is, 

probability distribution conditioned by the 

random variable ( ). 
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                              (  ) 
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function for the conditional (   )is as follows: 
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( ) conditional by ( ) defined in equation 

below: 
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    Combined equation (33) and equation 

(26), we get the kernel of the predictive 

distribution of (  ) conditional by the random 

variable ( ), and as follows: 
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parentheses of the first term of ( ) and 

performing some of the algebraic operations 

we get: 
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 (  ) 
    We note that the predictive distribution 

of the matrix of future observations of the 

response variable    is not one of the known 

probability distributions, but it is an 

appropriate (proper) distribution. So the 

Bayesian prediction of the response variable Y 

is found using the following formula: 

 (  | )       | (  |    ) 

         

    [  
   (   )]

  
0  

        

      
    (√  )

  (√  )
(
 

 
)
     

 1  

    
    (√  )

  (√  )
(
 

 
)
     

    (  ) 

6. Application Side: 

   In this section, the application is made to 

real data related to the reality of financial 

inclusion in Arab countries for the year 2014, 

and the study analysis process is carried out 

based on the MATLAB R2022a program. 

https://jslem.journals.ekb.eg/article_182829_c0

1bc6098190b5bd2b70f785cdd0027f.pdf 

6.1 Determine study variables and prepare 

data: 

      Arab countries are still among the 

lowest in the world in terms of financial 

inclusion. According to an International 

Monetary Fund report, those who have bank 

accounts with financial institutions represent 

18% of the population, and this percentage 

drops to 13% for women. 

     On this basis, the paper studied the 

percentage of adults who borrowed males (  ) 

and females(  ), as response variables from 

financial institutions (  )and private lending 

(  ) as explanatory variables for the year 2014. 

The following figure shows the behavior of the 

percentage of male and female borrowers from 

financial institutions and private lending. 

 

 
Fig. (1): behavior of the percentage of male 

and female borrowers from financial 

institutions and private lending for year 2014. 

      Before the data matching process was 

carried out for the model, it was found that the 

data was skewed to the right, as the value of 

the skewness coefficient for males (  ) was 

(0.3843) and kurtosis (2.1287), and the value of 

the skewness coefficient for females(  ), as the 

value of the skewness coefficient was (0.5215) 

and kurtosis (2.2686). In the case of converting 

the matrix of response variables to a vector 

(vector operator), i.e. the process of stacking 

the matrix, the value of the skewness 

coefficient was (0.7400) and kurtosis (2.8539). 

       In order to know the suitability of the 

financial inclusion data for the compact model 

used, different sample sizes were used, and 

through the Chi-square test, and by assuming 

10 different samples for the shape parameters, 

it was found out that out of 10 samples, there 

were 7 samples that led to matching 

(suitability) of the data for the model used 

under a significance level of (α=0.05). Table 

below shows the values of the test. 
Table (1): Values of the Chi-square test for 

data matching 

Chi2-

tab.(α=0.05) 

 

Chi2-
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…. …. (       ) 

…. …. (       ) 

3.8415 1.9854 (       ) 
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3.8415 3.7741 (          ) 

3.8415 3.8010 (          ) 

      The sample data was divided into two 

parts, the first consisting of 16 observation 

(n=63), as this data was used in the estimation, 

and 4 observations (n=4) were used for the 

purpose of Bayesian prediction, represented by 

the countries (Tunisia - United Arab Emirates - 

Palestine - Yemen) as follows: 

6.2 Bayesian estimation of a multivariate 

mixed compact regression model: 

  In this section, Bayesian estimation will 

be performed when prior information is 

available and based on samples that led to 

matching under a significance level (α=0.05) 

and for the Gauss and Quartic kernel function 

and for the quadratic, balanced quadratic loss 

function at the weight (w=0.25, 0.75) in 

addition to using traditional methods to choose 

the initial values for the parameter matrix   as 

follows: 

   *
      
      

                  
                   

+
 

 

        ( )  , 
      Tables below show the MSE values for the 

multivariate mixed compact regression model. 

 

 

Table (3): MSE of the estimated multivariate 

mixed compact regression model under the 

balanced quadratic loss function 

 

 

 

R 

a 

n 

k 

Quartic kernel 

function 

Gauss kernel function 

Samples 

  
      

 
      

 
      

 
      

3 4.9504 5.2512 4.7202 5.1136 (       ) 1 

5 4.9635 5.2638 4.7418 5.1353 (       ) 2 

1 4.888 5.1884  4.6507 5.0438 (        ) 3 

2 4.8929 5.1933 4.6867 5.0868 (          ) 4 

6 5.0491 5.3486 4.8351 5.2291 (          ) 5 

7 5.0676 5.3661 4.8575 5.2516 (          ) 6 

4 5.0000 5.2396 4.7399 5.1309 (          ) 7 

    From the results of table (2) and table (3), 

we notice that the balanced quadratic loss 

function outperforms the rest of the functions 

at weight (w=0.75) for all cases of samples and 

for Gauss kernel function. 

 ̂  

 *
      
      

                  
                   

+
 

 

7. Bayesian prediction: 

       This section includes prediction will be 

performed when prior information is available 

and based on samples that led to matching 

under a significance level (α=0.05) and for the 

Gauss and Quartic kernel function and for the 

balanced quadratic loss function at the weight 

(w= 0.75). Tables below show the MSE values 

for the prediction multivariate mixed compact 

regression model: 

Table (4): MSE values for the prediction 

multivariate mixed compact regression model 

under the balanced quadratic loss function 

 

 

 

 

 

 

 

 

 

 

 

R 

a 

n 

k 

Quartic kernel 

function 

Gauss kernel 

function 

Samples 

Informative prior Informative prior 

4 5.7505 5.7223 (       ) 1 

5 5.7638 5.744 (       ) 2 

1 5.6879 5.6528 (        ) 3 

2 5.693 5.6869 (          ) 4 

6 5.8499 5.8373 (          ) 5 

7 5.8687 5.8597 (          ) 6 

3 5.7309 5.7116 (          ) 7 
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Quartic kernel 

function 

Gauss kernel function Samples 

 

              

7.9604 7.9201 (       ) 1

1 

7.9645 7.9416 (       ) 2

2 

7.898 7.8505 (        ) 3

3 

7.9929 7.8864 (          ) 4

4 

8.0091 7.9753 (          ) 5

5 

8.0676 7.9975 (          ) 6

6 

8.0000 7.9396 (          ) 7

7 

 

We note from table (4) the superiority of 

the Gauss kernel function in finding the 

Bayesian prediction for the multivariate mixed 

compact regression model function through the 

MSE criterion, and the tables below show the 

real and predicted values of the reality of 

financial inclusion in Arab countries for the 

year 2014. 

 
Prediction Values Real Values  

 ̂    ̂          
7.21 10.243 6.2 9.9 1 
9.422 17.213 8.6 18.1 2 
3.112 5.074 2.8 5.7 3 
0.321 0.691 0.4 0.4 4 

 

 
 

 

8. Conclusion: 

     The researchers had reached the most 

important theoretical and practical conclusions 

of the multivariate mixed compact regression 

model, as follows: 

1. Posterior probability distribution of the 

matrix( ) when the matrix (Σ) is known 

follows a matrix-variate extension 

hyperbola distribution. 

2. Predictive distribution of the matrix of 

future observations of the response 

variable    is not one of the known 

probability distributions, but it is an 

appropriate (proper) distribution. 

3. Bayesian estimator for the matrix ( ) of 

the multivariate mixed compact 

regression model under the balanced 

quadratic loss function is better than the 

quadratic loss function at (w=0.75). 

Based on the criterion of the sum mean 

of squares error (MSE). 

4. Superiority of the Gauss kernel function 

when estimating the location matrix ( ) 

over the Quartic kernel function for all 

loss functions. 
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