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In Bayesian estimation of the quantile regression parameters become more accurate 

estimate if the likelihood function equipped with learning rate parameter (safe 

Bayesian). Learning rate parameter can be se to solve the problem of overfitting of the 

estimated model. The amount of the data (likelihood) can be controlled by the learning 

rate parameter which reflects on the good conclusion that drawn.  Bayesian estimation 

under the likelihood with leaning rate parameter results the so called learning rate 

generalized posterior. Choosing the appropriate learning rate parameter is the key idea 

of this paper, simulation study has conducted based on suggesting that the learning 

rate parameter follows the multinomial distribution. New Gibbs sampler algorithm has 

developed beside the quantile regression. Real data analysis has done with the 

response variable that represents the creatinine in the blood along with some predictor 

variables. Based on the results of simulation study and real data we have conclude that 

the proposed model is perform well along with other different regression models.  
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1. Introduction  

Quantile regression model (QR) analysis is 

concerned in estimating of the quantiles of the 

conditional distribution (Y|X) and is the most 

popular robust regression that has applied in 

many scientific data fields. The median 

regression is a special case of quantite 

regression when the loss function is of absolute 

form, which is a robust estimated regression 

model. [1] introduced the quantile regression 

which is become increasable popular regression 

model, the QR in general gives an overall guess 

of the predictor variables effects with different 

quantiles levels (0<q<1). From a Bayesian 

perspective, [2] introduced the Bayesian 

quantile regression, for more information about 

on quanlite regression, see [3]. [4] proposed 

new technique to estimates the unknown 

parameters of the quantile regression from the 

Bayesian point of view. They developed new 

Gibbs Sampler algorithm based on new 

hierarchical prior distribution model. They 

used the skewed Laplace distribution as the 

distribution of likelihood of response variable. 

[5] Introduced employing of safe Bayesian 

parameter with the likelihood function to 

address the misspecification model of the 

response variable (likelihood) in classical 

Bayesian regression. The proposed method has 

applied to the multiple linear regression with 

the variable selection method, lasso. [6] 

Introduced the safe Bayesian estimation 

method along with penalized lasso variable 

selection procedure, in this paper the 

hierarchical model have developed the model 

that proposed by Park and Casella in 2008. 

Variable selection procedure under adaptive 

lasso quantile regression model has been 

intensively studied in [7]. Also, the variable 

selection procedure in quantile regression for 

improving the prediction accuracy and to 

improving the interpretability of the estimated 

quantile regression model has been investigated 

[8]. Tobit quantile regression studied to 

investigate the parameter estimation via 

https://isj.edu.iq/index.php/rjes
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Bayesian technique by utilizing g-prior 

distribution [9]. Bayesian estimation of the 

Tobit quantile regression model form a variable 

selection procedure with elastic met penalized 

method has studied [10]. The previous 

literature review articles assumed that the 

response variable (likelihood) follows normal 

distribution in Bayesian estimation of quantile 

regression model. The misspecification of 

likelihood distribution leads to poor prediction. 

To solve the misspecification problem, the safe 

Bayesian is the solution. In safe Bayesian the 

learning rate control the weight of the 

likelihood function to adjusted the 

misspecification problem of normal 

distribution.  We assumed that the learning rate 

parameter of safe Bayesian has uniform (0,1) 

random variable and then new hierarchical 

model and new posterior distribution have 

developed to implement the Gibbs sampler 

algorithm. 

2. Safe Bayesian Quantile Regression  

Quantile regression model (QRM) was 

proposed by [1].  QRM provides different 

models of the response variable based on qth- 

quantiles which is defined as Q(q ) =    (q ) = 

infmum {x: F(x) ≥ q } where F(x) =      
   is the CDF of random Variable X, and 

0<q<1, [11].  The QRM estimators are found 

by minimizing the weighted sum of the 

absolute residuals. Now suppose that QRM is 

defined as, 

     
                                         (1) 

where                  . The 

following optimization problem can be used to 

estimate  (q),  
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. Making inference about the quantile 

regression parameters can be followed by 

parametric approach if the error distribution 

       is specified. The skewed Laplace 

distribution is the commonly choice of error 

distribution; see [2], and [12] for more details. 

The (SLD) have the following a probability 

density function 
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 [4] introduced a proposition that allows the 

SLD to be viewed as scale mixture of normal 

distribution, mixing with exponential 

distribution, 
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For employing the safe Bayesian procedure 

with quantile regression, we write down the 

generic posterior distribution, 
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where            is learning parameter,  

       is the posterior probability,         is 

the likelihood function, and      is the prior 

probability. The goal of this paper is to study 

the safe Bayesian quantile regression with lasso 

and adaptive lasso methods, therefore, 
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where     is the shrinkage parameters 

and ‖ ‖  is the L1-norm penalty function. See 

[13] for more information on lasso quantile 

regression.  [14] stated that in Bayesian 

framework one can assume that     can have 

Laplace distribution. 

Also, the Bayesian adaptive lasso quantile 

regression can be defined by,  
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Based on model (1) and  posterior 

distribution (2), the following is the hierarchal 

model, 
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the conditional distribution of       in lasso 

quantile regression model is 
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it is obvious that the last expression is a 

normal distribution with mean  

(   
          ) and variance ( 

          ).  
 

and the posterior distributions are as 

follows, the full conditional posterior 

distribution of    is, 
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Gaussian (GIG) distribution with 
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the full conditional posterior distribution of 

s is  

            
                        

   

     
 
 
  

again , recall the GIG distribution, can be 

viewed as GIG distribution. 

The full conditional posterior distribution  
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Then, we can say that    is the mean of    

and    is the variance of    , so    has the 

normal distribution with mean    and variance 

  . 

The full conditional distribution of     is  
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then, we can conclude that the distribution 

of    is inverse-Gamma with shape parameter 

 
          

 
  and scale parameter ,  
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 then it can be defined  as probability mass 

function of multinomial distribution , 

                       
 

Finally, we can write the full condition 

posterior distribution of    as fellows, 
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then,     has a Gamma distribution with 

shape parameter (p+c) and scale parameter 

(*
∑   
 
   

   
  +). 

 

It is worth to noting that the previous 

hierarchical model and the posterior 

distribution are applicable or both the lasso and 

adaptive lasso with easy assumption about the 

parameter (λ in lasso) to be (   in adaptive 

lasso), See [15] for more details for learning 

rate parameter and safe Bayesian. 

 

3. Simulation and Real Data Analysis 

This section we discuss the performance of 

the proposed model (SBALQ) and investigate 

the implementing of the Gibbs sampling 

algorithm in generating the samples of the 

interested parameters from the proposed 

posterior distributions. The obtained results are 

compared with quantile regression (QR) model, 

Bayesian quantile regression (BQR) model, 

and Bayesian adaptive lasso quantile regression 

(BALQR) model. In simulation study we 

discussed two examples under two sample 

sizes (n=50) and three quantile levels (0.25, 

0.5, 0.75), also we set 12000 iteration and 

burn-in the first 2000 iterations for stability 

purposes. Furthermore, We 

ran 200 replications to measure the quality 

of performance of the proposed model and 

other methods, The Bias, mean square error 

(MSE), and mean absolute error (MAE) have 

used  as quality criterions for coefficient 

estimates,  

       ̂    , 
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where   
                ,   

          

  ̂, and  ∑ is the variance- covariance matrix 

of  .  

 

3.1 Simulation example 1 

 

This example assumed the true vector of 

parameters estimates as follows, 

β = (3, 1.5, 0, 0, 2, 0, 0, 0( 

and the process of generating data are as 

follow, 

                                          (16) 
So, we have eight explanatory variables 

with assumed that the i-th and j-th explanatory 

variables have pairwise Correlation equal to 

∑          . We also set       and    . 

For computational purposes we standardized 

the covariates values and centered the response 

variable values. This example have discussed 

by [14]. Also, we use the posterior distribution 

of the learning rate parameter   to estimate the 

mean value and we obtained that (  
         ) for (n=50) and (          ) 

for (n=150). 

 the following are the results of simulation 

example one for (n=50) listed in some tables 

and figures. 
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Table 1:  Coefficient estimates with three quantile levels (0.25,0.5,0.75) for simulation example 1 (n=50) 

True parameters 3 1.5 0 0 2 0 0 0 

Quantiles Metods B1 B2 B3 B4 B5 B6 B7 B8 

0.25 QR 2.68469 1.79879 0.23676 -0.09336 2.32150 -0.67356 -0.17293 -0.23385 

 
BQR 2.76381 1.68071 -0.03631 0.01092 2.42359 -0.14793 0.11575 -0.03346 

 
BALQR 3.17801 1.59240 0.00357 -0.08165 2.17809 -0.26892 0.15751 -0.02704 

 
SBALQ 3.10837 1.51302 0.00278 0.00267 2.06093 -0.03371 0.13587 0.00134 

0.5 QR 2.79558 1.66124 -0.12127 -0.02138 2.19287 -0.10568 0.12302 -0.01766 

 
BQR 2.85902 1.68141 -0.03797 0.00146 2.81306 -0.15681 0.12383 -0.03727 

 
BALQR 2.89899 1.63731 0.02249 -0.00762 2.22607 -0.15008 0.13853 -0.00728 

 
SBALQ 3.03667 1.56381 0.00565 0.00080 2.13395 -0.00765 0.08522 0.00013 

0.75 QR 2.83549 1.71965 -0.16288 0.10580 1.91538 -0.07855 0.13692 0.01528 

 
BQR 2.85902 1.68141 -0.03797 0.00146 2.13131 -0.15681 0.12383 -0.03727 

 
BALQR 2.78192 1.65303 -0.17532 0.04015 1.87931 -0.09141 0.05420 0.00997 

 
SBALQ 2.97201 1.56484 0.01915 -0.00051 1.93058 -0.19779 0.00950 0.00454 

 
Table 2:  Bias values with three quantile levels (0.25,0.5,0.75) for simulation example 1 (n=50) 

Quantiles Metods B1 B2 B3 B4 B5 B6 B7 B8 

0.25 QR 0.31531 0.29879 0.23676 0.09336 0.32150 0.67356 0.17293 0.23385 

 
BQR 0.23619 0.18071 0.03631 0.01092 0.42359 0.14793 0.11575 0.03346 

 
BALQR 0.17801 0.09240 0.00357 0.08165 0.17809 0.26892 0.15751 0.02704 

 
SBALQ 0.10837 0.01302 0.00278 0.00267 0.06093 0.03371 0.13587 0.00134 

0.5 QR 0.20442 0.16124 0.12127 0.02138 0.19287 0.10568 0.12302 0.01766 

 
BQR 0.14098 0.18141 0.03797 0.00146 0.81306 0.15681 0.12383 0.03727 

 
BALQR 0.10101 0.13731 0.02249 0.00762 0.22607 0.15008 0.13853 0.00728 

 
SBALQ 0.03667 0.06381 0.00565 0.00080 0.13395 0.00765 0.08522 0.00013 

0.75 QR 0.16451 0.21965 0.16288 0.10580 0.08462 0.07855 0.13692 0.01528 

 
BQR 0.14098 0.18141 0.03797 0.00146 0.13131 0.15681 0.12383 0.03727 

 
BALQR 0.21808 0.15303 0.17532 0.04015 0.12069 0.09141 0.05420 0.00997 

 
SBALQ 0.02799 0.06484 0.01915 0.00051 0.06942 0.19779 0.00950 0.00454 

 
Table 3:  MES and MAE values with three quantile levels (0.25,0.5,0.75) for simulation example 1 (n=50) 

Quantiles Methods MSE MAE 

0.25 QR 1.14450 0.90623 

 BQR 0.96664 0.68844 

 BALQR 1.16697 0.84866 

 SBALQ 0.89856 0.56029 

0.5 QR 1.01219 0.70341 

 BQR 0.96317 0.68849 

 BALQR 0.91329 0.67290 

 SBALQ 0.73764 0.55007 
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0.75 QR 1.21445 0.75564 

 

BQR 0.96317 0.68849 

 

BALQR 1.25521 0.79354 

 

SBALQ 0.81077 0.64128 

 

 

 
Figure 1. Trace plots of estimators values under quantile level (0.25) for simulation example 1 with n=50 

 

 
 

Figure 2. Histograms of estimators values under quantile level (0.25) for simulation example 1 with n=50 

From tables 1-3, we can see that the 

proposed method (SBALQ) produced fairly 

closer estimates to the true vector over all 

quantile levels. Also, we can see that the 
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proposed model performed well as competitive 

model comparing with the result of other 

models. Also, From figures 1-2, we can see 

that Gibbs sampling algorithm have good 

convergence and well mixing and that 

obviously from the trace plots and the  

histograms shows that the generated samples o 

the regression parameters estimates follows the 

normal distribution under all the quantile 

levels. 

3.2 Real Data Analysis 

 

In this subsection, the researcher analyzed 

real data represented by the level of creatinine 

in the blood (response variable) and its 

relationship with a group of explanatory 

variables. Data were collected from the 

Ministry of Health in Iraq, Al-Diwaniyah 

general hospital, where the data recorded in 

one of the center of kidney diseases and 

transplantation. This data represents (120) 

people with kidney failure of both sexes for the 

period from  20/5/2022 until  20/12/2022. The 

researcher will employ the proposed method 

and the methods referred to in the experimental 

side on this real data with the aim of 

identifying the most important factors affecting 

the level of creatinine in the blood and the 

cause of kidney failure in patients. The model 

that we try to fit includes the following 

variables:  

1- The dependent variable (Y) is 

Serum Creatinine, which represents 

the level of creatinine in the blood. 

2-   ,  the kidney failure (failure=0, 

not failure=1) 

3-    , which represents red wolf 

syndrome. 

4-    whose symbol on the analysis 

sheet is (R.B Sugar), represents the 

percentage of random sugar in the 

blood. 

5-    whose symbol on the analysis 

sheet is (B. Urea), represents the 

percentage of urea in the blood. 

6-    its symbol on the analysis sheet 

(L.D.L), which represents low-

density lipoprotein analysis.  

7-    and its symbol on the analysis 

sheet (H.D.L), which represents 

high-density lipoprotein analysis.  

8-   , whose symbol on the analysis 

sheet is (Ca), analysis of the level of 

calcium in the blood.  

9-      , whose symbol on the analysis 

sheet is (HTC), represents the 

analysis of the size of packed red 

blood cells. 

10-     and its symbol on the analysis 

sheet (HP) represents the analysis of 

the hemoglobin test in the blood. 

11-    , whose symbol on the analysis 

paper is (PVC), represents the 

amount and percentage of red blood 

cells in whole blood. 

12-     and its symbol on the analysis 

sheet (WBC), which represents the 

test for the number of white blood 

cells in the blood. 

13-    , whose symbol on the analysis 

sheet is (cholesterol), represents the 

percentage of cholesterol in the 

blood. 

14-    , the blood group  

15-    , whose symbol on the analysis 

sheet is (PTC), represents the 

analysis of the procalcitonin test. 

16-    , whose symbol on the analysis 

paper is (MPV), represents the 

average platelet volume test. 

 

After we run the R code that implemented 

in simulation study, we employed the same 

code to analyze the real data and the results are 

summarized in the following tables and figures. 

The estimated value of learning rate parameter 

is ( = 0.4858727). 
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Table 4:  Coefficient estimates with three quantile levels (0.25,0.5,0.75)  

 

Table 5:  MSE and MAE values with three quantile levels (0.25,0.5,0.75) 

Quantiles Methods MSE MAE 

0.25 QR 0.717836 0.445268 

 
BQR 0.662855 0.371944 

 
BALQR 0.619001 0.328681 

 
SBALQ 0.524813 0.237693 

0.5 QR 0.817087 0.532218 

 
BQR 0.712855 0.431944 

 
BALQR 0.618630 0.328678 

 
SBALQ 0.532901 0.271013 

0.75 QR 0.922883 0.624321 

 
BQR 0.742855 0.531944 

 
BALQR 0.638984 0.428577 

 
SBALQ 0.555001 0.308962 
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Figure 3: Trace plots of estimator's values under quantile level (0.25) 

 

 

Figure 4: Box plots of estimator's values under quantile level (0.25) 
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Figure 5: Line plots of Trace plots of MSE and MAE values under quantile levels (0.25, 0.50, 0.75) 

From table 4, obviously some of the 

parameter estimates of the proposed model 

(SBALQ) are very close to zero at quantile 

level (0.25) and that indicates this methods 

behave as variable selection method (X2= 

kidney failure, X5= the percentage of urea in 

the blood, X8= the level of calcium in the 

blood., X14= procalcitonin test, X15= the 

average platelet volume test.) and that means 

these variable are irrelevant predictor variables 

to the response variable (level of creatinine in 

the blood). Also, the proposed methods behave 

as variable selection method on the quantile 

level (050, and 0.75). The (BALQR) method 

follows in terms of variable selection procedure 

our proposed method. Therefore, we can say 

that the proposed method is a comparable in its 

performance for the other existing methods. 

From table 5, the proposed method (SBALQ) 

obtained less values for MSE and MAE over 

all the quantile levels and that indicates this 

method performed well. 

Moreover, Figures 3- 4 show that indicate 

the Gibbs sampling algorithm convergence is 

efficiently and do well mixing for the 

generating chains of samples. Also, the 

histograms indicate that the distribution 

parameter estimates is normal. 

 

 

4 Conclusions 

the safe Bayesian technique used for 

addressing the problem of likelihood 

distribution misspecification distribution in 

quantile regression model. The safe Bayesian 

method was studied under the Lasso and 

adaptive lasso quantile regression models based 

on the scale mixture of normal mixing with 

exponential density of Laplace prior 

distribution that proposed by proposed by Park 

and Casella (2008).  The learning rate 

parameter was raised to the likelihood function 

to works as related weight for the misspecified 

prior distribution model. New hierarchical 

model of prior distributions was developed by 

assuming the learning rate has uniform prior 

distribution (0, 1). The multinomial distribution 

was derived as posterior distribution for the 

learning rate parameter. Gibbs sampling 

algorithm used to generate samples from the 

proposed posterior distributions. Simulation 

and real data results demonstrated that the 

proposed model have well performance 

comparing with other methods based one 

(MSE, MAE, Bias) and under different sample 

sizes and different quantile levels. 
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