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This paper aimed to use some nonparametric methods in estimating nonstationary time 

series through the application of the cointegration regression methodology. The research 

employed both descriptive and econometric methods to construct the standard ECM 

(Error Correction Model) for monthly time series data for the period 2010-2015. The 

results relied on the Phillips-Perron unit root test to ascertain the stationarity of the time 

series and the Engle and Granger cointegration test to examine the existence of a long-run 

relationship. The application focused on the use of two nonparametric methods, in order 

to compare and identify the best method for estimating time series models in the light of 

the cointegration regression methodology. The results proved the superiority of the 

Lowess method over the cubic Spline method, as it achieved the shortest period and the 

highest adjustment ratio for disturbances occurring in the short run, with the aim of 

returning to the long run 
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1. Introduction 

    Traditional economic research seeks to build 

mathematical models and formulas that 

illustrate the interrelations between the 

economic variables under investigation. This 

process involves the practical application of 

economic theory and Mathematical Economics, 

in which theoretical concepts and mathematical 

structures are used to analyze real-world 

economic phenomena. The primary goal is to 

represent these phenomena through 

mathematical modeling-the formulation of 

problems using equations or inequalities that 

capture quantitative relationships between 

relevant factors and conditions. Such 

representations facilitate the application of 

well-established mathematical techniques to 

derive meaningful solutions and insights.     

    The present research seeks to employ two 

non-parametric estimation methodologies to 

model the error correction mechanism within a 

cointegration regression framework, 

specifically examining the dynamic 

relationship between bank deposits and money 

supply.  

    This analytical endeavor is predicated on the 

understanding that robust economic analysis 

necessitates consideration of the historical 

evolution and influential factors shaping the 

phenomena under investigation. Characterizing 

the temporal trajectory of such phenomena 

typically involves the acquisition and analysis 

of statistical data presented as time series. 

    Many studies, such as Irizarry (2004) [17] 

demonstrated the application of periodic 

smoothing Splines in modeling data exhibiting 

underlying circadian patterns, establishing a 

connection to REACT estimators. Similarly, 

Nchor and Adamec (2016) [21] identified key 

determinants of real money aggregates in 

Ghana, revealing the long-run impact of GDP 

https://isj.edu.iq/index.php/rjes
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and the short-run influence of interest rates. 

Hmood and Burhan (2018) [14] evaluated the 

efficacy of non-parametric techniques, 

including Local Linear Regression and Cubic 

Smoothing Splines, alongside semi-parametric 

Single Index models in estimating transfer 

functions, concluding the superiority of their 

proposed estimator. Adams and Adeyemi 

Ipinyomi (2019) [3] compared various methods 

for estimating the smoothness of Spline 

smoothing techniques in time series data, 

aiming to identify the most effective and 

consistent approach for smoothing parameter 

estimation.  

    Furthermore, Fernandez and Fernández 

(2018) [8] analyzed the interplay between 

foreign direct investment, exports, and 

economic growth in Spain utilizing an error 

correction model (ECM) and vector error 

correction model (VECM) Granger causality 

approach, confirming a long-run relationship 

among the variables.  

    Finally, Makawi M. (2020) [20] investigated 

the factors affecting Algeria's gross domestic 

product through simultaneous integration, 

multiple linear regression, and Granger 

causality tests, following an assessment of data 

stationarity.      

    The current research contributes to this 

literature by focusing on the specific 

relationship between bank deposits and money 

supply, utilizing nonparametric estimation 

techniques to provide insights into their 

dynamic interaction and potential for error 

correction.    

2. Cointegration  

    Cointegration analysis represents a 

contemporary statistical methodology 

specifically designed to investigate long-run 

relationships between variables, even in 

instances where short-term deviations from 

equilibrium occur. 

    While differencing techniques can induce 

stationarity in time series data, they inherently 

lead to a loss of crucial information regarding 

the underlying long-term dynamics of the 

variables under consideration. 

    

 

    Granger's contributions significantly 

elucidated the concept of cointegration between 

two or more statistical variables, suggesting a 

long-run equilibrium relationship among them.  

    This methodological approach has become 

particularly useful in cases where long-run 

relationships affect the present value of the 

variable under study, emphasizing the 

importance of cointegration in time series 

analysis. 

    Moreover, cointegration has played a pivotal 

role in making economic relations more 

measurable and quantifiable, in line with 

contemporary trends in the econometrics of 

time series     

    To ascertain the presence of unit roots in 

time series data, a variety of diagnostic tests 

have been developed, among which the 

Phillips-Perron test (Phillips & Perron, 1988) 

stands as a notable example.  

    This test offers a refinement over earlier unit 

root tests by incorporating a nonparametric 

adjustment to the model variance, effectively 

correcting for the potential autocorrelation 

present in the residuals of the test equation. 

    By accounting for the Autocorrelation 

structure of the error term without relying on 

specific parametric assumptions, the Phillips-

Perron test addresses the limitations associated 

with residual autocorrelation and 

heteroscedasticity often encountered in the 

conventional Dickey-Fuller test. 

    The implementation of the Phillips-Perron 

test typically involves four distinct stages.     

1. Estimation of the three basic models for the 

Augmented Dickey-Fuller test using ordinary 

least squares, with calculating the associated 

statistics. 

2. Estimating the short-run variance: 

   
 

 
∑   

  

   
, where    represents the 

residual term. 
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3. Estimating the long-run correction factor,   , 

that can be determined from the residual 

variance: 

  
  

 

 
∑   

      ∑ .  
 

   
/ 

   
 
   

 

 
∑   
 
               (1)

   This type of variance estimation requires the 

knowledge of the number of lags, determined 

by the number of observations (n). 

4. Calculate the Phillips-Perron statistic: 

    
   √   

(   )

   
 
 (   )    

√ 
              ( ) 

Where   
  

  
  (which equals one in the 

approximate case if    represents white noise).      

Subsequently, this test statistic is evaluated 

against critical values obtained from the 

Mackinnon (1991) distribution tables. 

    Consequently, if the computed Phillips-

Perron statistic exceeds the tabulated critical 

values at a chosen significance level, this 

provides evidence to suggest the presence of a 

unit root within the time series, thereby 

indicating its nonstationary nature.    

3. Engle and Granger Methodology 

    According to this methodology, the 

cointegration test is based on the algorithm 

proposed by Engle and Granger (1987), which 

consists of two stages [2][6]: 

1)Testing the degree of integration of variables. 

2) Estimating the long-run relationship. 

To test the null hypothesis that both    and 

   do not share a common level of integration 

within the framework of the Engle-Granger 

(EG) model, a test is conducted assuming that 

the residuals is integrated at the I(0) level. [25] 

4. Error Correction Model (ECM) 

    Economic variables characterized by long-

run cointegration tend towards stability or 

equilibrium. However, due to temporary 

shocks, these variables may temporarily 

deviate from their path. Therefore, the Error 

Correction Model (ECM) is used to account for 

the fitting between the long-run and short-run 

behaviors of economic relationships. [1] 

    The ECM represents an adjustment 

mechanism that allows the incorporation of 

short-run changes into the long-run 

relationship. The name "Error Correction 

Model" signifies its ability to correct short-run 

deviations from the long-run trend. The ECM 

enables us to examine and analyze the behavior 

of variables in the short run to achieve 

equilibrium in the long run. According to Engle 

and Granger (1987), the long-run residuals of 

the relationship are introduced as a lagged 

independent variable to estimate the ECM. 

    To estimate the ECM according to Engle and 

Granger, the following steps are required: 

1) Verify the stationarity of the model variables 

and determine the order of integration of each 

variable separately by testing for unit roots. 

2) Ensure a balanced relationship between the 

variables of the model through cointegration 

testing. 

5. Cubic Spline Smoother 

    Smoothing Spline is a statistical method 

aimed to estimate the nonparametric regression 

function to establish a nonlinear relationship 

between pairs of random variables and to 

discover patterns or structures in data without 

the need for a parametric model. The method of 

Splines is a commonly used smoothing 

technique that relies on the residual sum of 

squares (RSS) as a measure of the goodness of 

fit of the function  ( ) to the data. The RSS is 

defined as follows: [14] 

    ∑*    (   )+
 

 

   

                                 ( ) 
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    The necessary condition for the function 

 (   ) is that it must be twice differentiable, 

allowing the second derivative to be obtained. 

    In Spline smoothing, the number of knots is 

equal to the number of observations in the time 

series studied, i.e., knots = n). Non-smoothed 

penalty solution methods have been proposed 

to calculate the non-smoothed part. 

    If we have n observations of the time series 

values such as              , represented over 

the time interval [a, b], then the function f 

indicates a cubic Spline if the following 

conditions are met: [9] 

1. The function f is a Cubic Polynomial Spline 

with multiple boundaries in the intervals 
(     ) (       )   (     ). 

2. The piecewise polynomial with multiple 

boundaries is appropriate at point     for the 

first and second derivatives of the function f, 

and it is continuous at the points    , i.e., f is 

continuous in the interval [a, b]. 

    The concept behind Spline smoothing is to 

place a knot at each data point, aligning 

perfectly with the number of observations. 

However, parameter estimation is achieved by 

minimizing the sum of squares, in addition to 

the penalty term. Cubic Splines are represented 

as a continuous curve, and the idea of this 

method is to find a smoothing estimator that 

minimizes the sum of squared penalized 

residuals, along with a roughness penalty. 

∑,    (  )-
   ∫,   ( )-   

 

   

                  ( ) 

    We can use the Reinsch algorithm to 

calculate the estimator [Green and Silverman 

1994]. [9] 

    Regarding the selection of the penalty 

parameter h, the penalty parameter plays an 

important role in balancing between the 

goodness of fit and the roughness penalty. [4] 

    One of the techniques for estimating this 

parameter is Generalized Cross Validation 

(GCV). This approach can be summarized by 

the following formula: [3] 

   ( )  
 ∑ {    ̂ (  )}

  
   

 2  
 
      

(  )3
 

 

 
 
‖(    ) ‖

 

0
 
      

(    )1
             ( ) 

Given that:   

n: Refers to the number of pairs of observations 

(     ).   

 : Represents the penalty parameter.   

  : Denotes the hat matrix, defined as 

(    )  ̀    ̀ .   

Trace: Represents the trace of the matrix. 

6. Locally Weighted Scatter plot       

Smoothing (LOWESS) 

    A method of nonparametric smoothing, 

fortified based on the idea of local polynomial 

regression, starts by minimizing the squared 

errors of the local polynomial and then refines 

them by adopting a weight function from the 

local linear estimator (Local Linear 

Estimation). The method can be clarified 

according to the following algorithm: [10] 

1. Find the nearest value adjacent to   , i.e., 

find the coefficients that minimize the 

following value as much as possible {  }   
 
  

   ∑   ( )

 

   

(   ∑  

 

   

  )

 

                         ( ) 

Whereas: 

   ( ): represents the weights in Local Linear 

Smoothing (LLS). 
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2. Calculate the value of  ̂ after estimating the 

residuals* ̂ +, and then compute δi.   

Whereas:   

 ̂       *| ̂ |+     

    ( ̂   ̂⁄ ) 

Here, K represents a Gaussian function. 

3. Estimate the regression function as in the 

first step, but now using the following weight 

function:*      ( )+, this represents the weight 

function of the Local Linear Regression 

Smoother (LLS), proposed by Fan in 1993 and 

Fan and Gijbels in 1992 and 1996. It is 

considered one of the best estimators in 

nonparametric regression as it corrects some of 

the defects found in kernel estimators.   

    Based on this, assuming that the second 

derivative of the unknown nonparametric 

regression function f(x) exists, and to estimate 

the parameters a and b, we minimize the 

following expression. [11] 

∑(      (    ))
 

 

   

 (
    
 

)       ( )     

 

    Assuming that the solution to the problem of 

weighted least squares is represented by the 

estimators  ̂  ̂, and by performing some simple 

calculations, the Local Linear Smoothing (LLS) 

can be written as follows: 

  ̂   ̂( )  
∑     
 
   

∑   
 
   

 

Whereas  

    .
    

 
/ (     (    ))    )          

     ∑  .
    

 
/ (    )

  
    ,          

The smoothing parameter can be determined  

using the CV method 

7. Results and discussion 

    In order to evaluate the influence of 

fluctuations in bank deposits on the money 

supply, we conducted an analysis utilizing data 

sourced from the Central Bank of Iraq's 

database, spanning the years 2010 to 2015. 

MATLAB 2018 and EViews 12 were 

employed for data analysis purposes. The 

investigation focused on assessing the 

relationship between the variables using the 

Engle-Granger methodology. A crucial aspect 

of this methodology involves confirming the 

degree of integration within the time series. 

This validation process was executed through 

the application of Unit Roots tests, with 

particular emphasis placed on the Philips-

Perron test. 

   

  

 

 

 

 

 

 

 

Figure 1: The time series of Deposit Banks and Money 

Supply (in million dinars) 

    Through the plotting of the time series for 

the study variables, it is evident that they 

exhibit nonstationary at level zero, i.e., I(0). 

    To confirm this status, unit root tests are 

conducted, both at level I(0) and first 

differences I(1), utilizing the Phillips-Perron 

test. Table (1) presents the results of this test 

for the money supply at I(0) and I(1) levels, 

respectively.   

    The results in Table (1) indicate that the time 

series for the Money Supply variable is 

nonstationary at the level I(0), revealing the 

presence of a unit root in this variable. 
 

   So that after applying the first difference I(1),  

the analysis shows that the Money Supply 

variable becomes stationary. Similarly, the 

series of bank deposits is evaluated in Table 

(2), which presents the test results for both I(0) 

and I(1). 
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Table (1): Philips-Perron Test Results for Unit Root 

under 5% Significance Level for the Money Supply 

 

Without 

Intercept 

and trend 

Intercept 
Intercept and 

Trend 

Money 

Supply 
I(0) I(1) I(0) I(1) I(0) I(1) 

Statistic 1.94 -7.05 -2.78 -7.36 -0.16 -8.16 

P-Value 0.97 0.00 0.07 0.00 0.99 0.00 

Decision NS S NS S NS S 

 
Table (2): Philips-Perron Test Results for Unit Root 

under 5% Significance Level for the Bank Deposits 

variable 

 

Without 

Intercept  

and trend 

Intercept 
Intercept and 

Trend 

Bank 

Deposits 
I(0) I(1) I(0) I(1) I(0) I(1) 

Statistic 1.59 -7.97 -2.24 -8.34 -0.73 -9.02 

P-Value 0.97 0.00 0.20 0.00 0.97 0.00 

Decision NS S NS S NS S 

 

    Observing the results in the aforementioned 

tables reveals that the variables are integrated 

at the first-difference level I(1), which allows 

for the application of the Engle-Granger 

cointegration test methodology. 

    The stationarity analysis of the variables 

reveals that all variables are initially 

nonstationary, as they exhibit a unit root, with 

computed values significantly below the 

MacKinnon critical values.  

    However, after first differencing the time 

series, the variables achieve stationarity, 

indicating first-order integration, I(1). 
 

    The Engle-Granger cointegration test 

requires that the time series be nonstationary at 

the level I(0) but integrated at the same order. 

Once this condition is confirmed, i.e., the series 

achieve stationarity at the first difference I(1), 

the Engle-Granger test can be applied to 

determine the presence of a long-term 

equilibrium relationship between the money 

supply and bank deposits. Traditionally, this 

relationship is estimated using Ordinary Least 

Squares (OLS) regression; however, our 

research will employ two nonparametric 

estimation methods for a more robust analysis. 

 
Table (3):The results of the Phillips-Perron test for 

residuals at level I(0). 

Method Lowess Cubic Spline 

Phillips-Perron 

test Statistic 
-4.6716 -3.5269 

1% level 
-2.5989 

-2.5989 

5% level 
-1.9456 

-1.9456 

10% level 
-1.6137 

-1.6137 

P-value 
0.0000 0.0006 

 

    Table (3) shows that the test statistic (t) 

values for both methods exceed the critical 

values at all significance levels. As a result, the 

null hypothesis of a unit root in the residual 

series is rejected, implying that the error series 

is stationary at the level I(0).  

    In other words, the variables are integrated at 

the first order I(1), confirming cointegration 

among the time series variables and indicating 

a long-term equilibrium relationship between 

them. 

    Consequently, an Error Correction Model 

(ECM) can be estimated to confirm the joint 

integration, demonstrating a long-term 

equilibrium relationship between the money 

supply and bank deposits, as established by 

Engle and Granger (1987). This ECM 

framework allows for testing and estimating 

both the long-term relationship and the 

directionality of this relationship in both the 

short and long runs. 

    The Error Correction Term (ECT), or Speed 

of Adjustment, indicates the magnitude of 

change in the dependent variable resulting from 

deviations in the independent variable from its 

equilibrium value in the short term. This 

coefficient is expected to be negative, 

reflecting the rate at which the short-term 
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dynamics converge towards the long-term 

equilibrium. The other coefficients represent 

the short-term relationship direction. 

    Table (4) below presents the results of 

estimating the Error Correction Model using 

the Engle-Granger methodology. 

 
Table (4): Estimation of the Error Correction Model 

(ECM) using Cubic Spline Smoother. 

Variable Coeff. 
Std. 

Error 

t-

Statistic 
P-Value 

C 0.252 2.154 1.636 0.107 

D(X) 0.500 0.102 4.889 0.000 

U(t-1) -0.240 0.073 -3.305 0.002 

R-

Squared 
0.331 

Mean Dependent 

Variable 
4.414 

Adjusted  

R-

Squared 

0.3107 
Sum Squared 

Residual 
1.02E+14 

F-

Statistic 
16.326 

Akaike Info. 

Criterion (AIC) 
30.948 

P-Value 0.000002 
Durbin-Watson 

(D.W.) 
1.394 

 
Table (5): Estimation of the Error Correction Model 

(ECM) using Lowess method. 

Variable Coeff. 
Std. 

Error 

t-

Statistic 

P-

Value 

C 2.247 0.159 1.553 0.125 

D(X) 0.506 0.1061 4.767 0.000 

U(t-1) -0.247 0.099 -2.476 0.016 

R-Squared 0.286 
Mean Dependent 

Variable 
9.919 

Adjusted  

R-Squared 
0.265 

Sum Squared 

Residual 

1.09E+

14 

F-Statistic 13.250 
Akaike Info. 

Criterion (AIC) 
31.012 

P-Value 0.000015 
Durbin-Watson 

(D.W.) 
1.610 

 

    Based on the results in Table (4), the Error 

Correction Term (ECT) coefficient for the 

Cubic Spline Smoother is negative and 

statistically significant, with a probability of 

0.002, this suggests a speed of adjustment of 

approximately 24% per month, indicating that 

short-term disequilibrium corrects towards 

long-term equilibrium at this rate. 

    In other words, the estimated ECM implies 

that roughly 24% of any deviation in the 

relationship between money supply and bank 

deposits is corrected within a month. Thus, 

following a shock in the bank deposits variable, 

it would take approximately 
 

      
         

months for the money supply to return to its 

long-run equilibrium, assuming other factors 

remain constant. 

    For the Lowess smoother in table (5), the 

Error Correction Term (ECT) coefficient is 

negative and statistically significant, with a P-

value of 0.016 and a coefficient of -0.247. This 

indicates that approximately 25% of any short-

term disequilibrium adjusts towards the long-

term equilibrium each month.  

    In other words, about 25% of the 

discrepancy in the relationship between money 

supply and bank deposits is corrected within a 

month. Therefore, it would take an estimated  
 

      
 months for the money supply   4   ــ 

to return to its long-run equilibrium level after 

a shock in the bank deposits variable, assuming 

other factors remain constant. 

    Examining the coefficients of the model for 

both estimators reveals the following 

observations: 

 There is a positive and statistically 

significant effect of bank deposits on the 

money supply in the short term. 

Specifically, an increase in bank deposits 

by one unit results in an increase in the 

money supply by approximately 0.500 and 

0.506 units, respectively, for each 

estimator. 

 The coefficient of determination (R-

squared) values are 0.331 and 0.286, 

indicating that approximately 33% and 

29% of the variations in the money supply 

are explained by the bank deposits variable 

in the model. This means that the remaining 

67% and 71%, respectively, can be 

attributed to errors or other unaccounted 

variables. 

 The Durbin-Watson statistics (DW) are 

1.394 and 1.610, suggesting that there are 
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no significant autocorrelation issues among 

the residuals of the model. 

8. Conclusions 

1. Unit Root tests indicated that the variables in 

the model (Money Supply and Bank Deposits) 

were not stationary at level I(0), but became 

stationary after first differencing, indicating 

integration of the first degree I(1). 

2. Engle-Granger cointegration test revealed a 

long-run equilibrium relationship between 

Money Supply and Bank Deposits, indicating 

similar behavior of these variables in the long 

run.  

3. There was a statistically significant positive 

relationship between both Money Supply and 

Bank Deposits for both methods. 

4. The estimation results of the Error 

Correction Model (ECM) for short-run Money 

Supply using the Engle-Granger methodology 

showed that Bank Deposits explained 33% of 

the variations in Money Supply using the 

Cubic Spline Smoother and 29% using the 

Lowess Smoother. 
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