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 الملخص:

يقذو هزا انجحج دساسخ يقبسَخ شبيهخ نًختهف خىاسصييبد جذونخ انًهبو انًستخذيخ في ثيئبد انحىسجخ 

( في انجُيخ انتحتيخ انسحبثيخ أيشًا VMsانتخصيص انفؼبل نهًهبو ػهً الأجهضح الافتشاضيخ )انسحبثيخ. يؼذ 

ثبنغ الأهًيخ نتحسيٍ استخذاو انًىاسد والأداء انؼبو نهُظبو. في هزا انجحج، َشكض ػهً حلاث خىاسصييبد 

يٍ (، ويجًىػخ يختبسح ACO(، وتحسيٍ يستؼًشح انًُم )PSOثبسصح: تحسيٍ سشة انجسيًبد )

انخىاسصييبد انتقهيذيخ. تجذأ انذساسخ ثتقذيى خهفيخ وأهًيخ جذونخ يهبو انحىسجخ انسحبثيخ، وتسهيظ انضىء ػهً 

 PSOانطهت انًتضايذ ػهً انحهىل انقبثهخ نهتطىيش وانًىفشح نهًىاسد. ثؼذ رنك، يتى تقذيى كم خىاسصييخ، وهي 

وانخىاسصييبد انتقهيذيخ، يغ يجبدئهب الأسبسيخ وأسبنيجهب نجذونخ انًهبو. تتضًٍ يُهجيخ انجحج تُفيز  ACOو

انخىاسصييبد انًزكىسح أػلاِ في ثيئخ سحبثيخ يحبكبح وتقييى أدائهب ثبستخذاو يقبييس يختهفخ. يتى استخذاو آحبس 

يُبييكيخ، يًب يؼضص أهًيخ انذساسخ وصلاحيتهب. ػتء انؼًم في انؼبنى انحقيقي نًحبكبح أًَبط وصىل انًهبو انذ

يكشف انتحهيم انًقبسٌ نهخىاسصييبد ػٍ َقبط انقىح وانضؼف ويذي يلاءيتهب لأَىاع يختهفخ يٍ انًهبو 

وانسيُبسيىهبد انسحبثيخ. وتُبقش انؼىايم انشئيسيخ يخم قبثهيخ انتىسغ، وانقذسح ػهً انتكيف يغ أػجبء انؼًم 

خ نتقهجبد انًىاسد. في انختبو، تسبهى هزِ انىسقخ في فهى أفضم نخىاسصييبد جذونخ يهبو انًتغيشح، والاستجبث

انحىسجخ انسحبثيخ وتأحيشاتهب ػهً أداء انجُيخ انتحتيخ انسحبثيخ. يًكٍ أٌ تسبػذ انُتبئج يقذيي انخذيبد 

ػهً سيُبسيىهبد َشش  انسحبثيخ وانجبحخيٍ في اتخبر قشاساد يستُيشح فيًب يتؼهق ثبختيبس انخىاسصييخ ثُبءً 

 انسحبثخ انًحذدح ويتطهجبد انتطجيق.

انحىسجخ انسحبثيخ، خىاسصييخ انجذونخ، خىاسصييخ،: الكلمات المفتاحية   

Cloud computing task scheduling algorithms: Comparative Study 

Raqia Jassim Mohammed 

Abstract 

This paper presents a comprehensive comparative study of various task scheduling 

algorithms used in cloud computing environments. The efficient allocation of tasks 

on virtual machines (VMs) in a cloud infrastructure is crucial for optimizing 

resource utilization and overall system performance. In this research, we focus on 

three prominent algorithms: Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and a selection of traditional algorithms. The study begins by 

introducing the background and significance of cloud computing task scheduling, 

highlighting the growing demand for scalable and resource-efficient solutions. 

Next, each algorithm, namely PSO, ACO, and traditional algorithms, is presented 

with its underlying principles and approaches to task scheduling. The research 

methodology involves implementing the aforementioned algorithms in a simulated 

cloud environment and evaluating their performance using various metrics. Real-

mailto:Osamaahmed8817@gmail.com
mailto:Osamaahmed8817@gmail.com


 

745 
 

world workload traces are used to simulate dynamic task arrival patterns, 

enhancing the relevance and validity of the study. The comparative analysis of the 

algorithms reveals their strengths, weaknesses, and suitability for different types of 

tasks and cloud scenarios. Key factors such as scalability, adaptability to changing 

workloads, and responsiveness to resource fluctuations are discussed. In 

conclusion, this paper contributes to a better understanding of cloud computing 

task scheduling algorithms and their implications for cloud infrastructure 

performance. The findings can aid cloud service providers and researchers in 

making informed decisions regarding algorithm selection based on specific cloud 

deployment scenarios and application requirements. 

Keywords: cloud computing, Scheduling Algorithm , Round Robin 

Introduction: 

Cloud computing has emerged as a transformative paradigm that offers vast 

computational resources and scalable services to meet the escalating demands of 

modern applications [1]. The ability to efficiently allocate tasks on virtual 

machines (VMs) in a cloud infrastructure is of paramount importance to optimize 

resource utilization, enhance system performance, and reduce operational costs [2]. 

As the scale and complexity of cloud infrastructures continue to grow, the need for 

advanced task scheduling algorithms becomes increasingly critical [3]. 

 

Task scheduling in cloud computing involves mapping tasks from applications 

onto available virtualized resources while considering various constraints and 

performance objectives [4]. The scheduler must intelligently distribute tasks to 

VMs to achieve objectives such as minimizing makespan [5], reducing response 

time [6], balancing the load, and maximizing resource utilization [7]. Moreover, 

the scheduling algorithms must be able to handle dynamic workloads, fluctuating 

resource availability, and changing user demands. 

 

In response to these challenges, researchers have developed a variety of task 

scheduling algorithms, each employing different optimization techniques and 

strategies. Among the prominent approaches are Particle Swarm Optimization 

(PSO) [8] and Ant Colony Optimization (ACO) [9], which draw inspiration from 

nature's collective behaviors to search for optimal solutions. Additionally, 

traditional task scheduling algorithms, which are widely used in cloud 
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environments, remain relevant and serve as a valuable reference for comparison 

[10]. 

 

In light of the plethora of task scheduling algorithms available, it becomes crucial 

to perform a comprehensive comparative study to understand their relative merits 

and limitations. This research focuses on an in-depth examination of Particle 

Swarm Optimization, Ant Colony Optimization, and selected traditional 

algorithms, analyzing their underlying principles, characteristics, and performance. 

 

The primary objective of this study is to explore the strengths and weaknesses of 

these algorithms, assess their performance under various scenarios, and provide 

insights into their suitability for different cloud-based applications. By delving into 

the intricacies of these algorithms and evaluating their performance metrics, this 

research aims to contribute to a deeper understanding of their capabilities. 

 

The outcome of this comparative study will aid cloud service providers and 

researchers in making informed decisions in the pursuit of efficient and effective 

cloud task scheduling strategies. By identifying the most suitable algorithms for 

specific cloud deployment scenarios and application requirements, cloud providers 

can enhance resource utilization, optimize energy consumption, and improve the 

overall quality of service offered to end-users. 

 

In the subsequent sections of this paper, we present the methodologies used for 

implementing and evaluating the scheduling algorithms in a simulated cloud 

environment. We then showcase the experimental results and discuss the 

implications of our findings, offering valuable insights into the design and 

optimization of task scheduling mechanisms for cloud computing environments. 

1. Traditional Scheduling Algorithms: 

One of the simplest algorithms for task scheduling is the First Come First Serve 

(FCFS) algorithm [11]. It is based on real life application of a queue system. It 

simply schedules the tasks according to their arrival time [12]. However, one can 

simply imagine why such an algorithm is not normally used in real life scenarios. It 

neither has the concept of task prioritization nor is a pre-emptive algorithm [13]. 

This means, once a task schedule has begun, its execution is completed in one 

sitting.  Hence, it is not an effective algorithm and several other algorithms have 

since developed to increase the performance of task schedulers. These include like 

Shortest Job First (SJF) [14], Round Robin, Priority Based etc [15]. 
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One of the ways to represent task scheduling is Generalized Activity  

Normalization Time Table (Gantt chart) [16]. It is a type of bar chart in which 

tasks completion is shown along with a timeline. For e.g., if FCFS algorithm is 

being followed and a list of tasks is given as: 

 

Task Arrival Time Burst Time 

T1 0 1 

T2 2 3 

T3 2 4 

T4 5 2 

Table 1. Simple example of list of tasks 

Then the Gantt Chart would be as follows: 

 

T1 Idle T2 T3 T4 

 

 

 

Shortest Job First (SJF) is a non-preemptive task scheduling algorithm used in 

operating systems and job scheduling systems. It prioritizes tasks based on their 

burst time, executing the shortest job first among the available tasks. 

 

Here's a simple example to illustrate the SJF scheduling algorithm, consider the 

following five process: 

 

Task Arrival Time Burst Time 

T1 2 6 

T2 5 2 

T3 1 8 

T4 0 3 

T5 4 4 

Table 2. Simple example of list of tasks 

Then the Gantt Chart would be as follows: 

T4 T1 T5 T2 T5 T1 T3 

 

Round-Robin (RR) is a preemptive task scheduling algorithm commonly used in 

operating systems and time-sharing systems. It assigns a fixed time quantum (also 

0 1 2 5 9 11 

0 3 4 5 7 10 15 23 

Figure 1. Gantt chart of FCFS algorithm 

Figure 2. Gantt chart of SJF algorithm 
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known as time slice) to each task in the ready queue, and tasks are executed in a 

circular manner based on their arrival time. 

 

Here's a simple example to illustrate the Round-Robin scheduling algorithm with a 

time quantum of 3 milliseconds: 

Let's consider a set of tasks with their respective burst times in milliseconds: 

 

Task Arrival Time Burst Time 

T1 0 5 

T2 1 6 

T3 2 3 

T4 3 1 

T5 4 5 

T6 6 4 

Table 3. Simple example of list of tasks 

 

Then the Gantt Chart would be as follows: 

 

T1 T2 T3 T4 T5 T1 T6 T2 T5 

0           3 6 9 12 15 18 21 24   27 

 

As a result by compare the three task scheduling algorithms: First Come First 

Serve (FCFS), Shortest Job First (SJF), and Round-Robin (RR), based on various 

criteria: 

 

1) Scheduling Policy: 

 FCFS: Non-preemptive. Tasks are executed in the order they arrive. 

 SJF: Non-preemptive or Preemptive. Shortest job is executed first. 

 RR: Preemptive. Each task is executed for a fixed time quantum and then 

moved to the back of the queue. 

 

2) Complexity: 

 FCFS: Simplest and easy to implement. 

 SJF: More complex than FCFS, as it requires knowing the burst times of all 

tasks beforehand. 

 RR: Moderately complex due to the need for time quantum management and 

preemption. 

Figure 3. Gantt chart of RR algorithm 
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3) Average Waiting Time: 

 FCFS: Can suffer from high average waiting time, especially if longer tasks 

arrive first (convoy effect). 

 SJF: Minimizes average waiting time, as shorter jobs are prioritized. 

 RR: Fairly low average waiting time due to time-slicing and equal time 

allocation. 

 

4) Throughput: 

 FCFS: Moderate throughput, but can be suboptimal in certain scenarios. 

 SJF: Can achieve good throughput for short and bursty tasks. 

 RR: Moderate throughput, may suffer when time quantum is too small or too 

large. 

 

5) Starvation: 

 FCFS: Can lead to starvation for longer tasks if shorter tasks keep arriving. 

 SJF: May cause starvation for longer tasks if they continuously arrive with 

shorter ones. 

 RR: Generally avoids starvation as tasks are executed in a cyclical manner. 

 

6) Response Time: 

 FCFS: Moderate response time, but can be higher for longer tasks. 

 SJF: Short response time for short tasks, but longer tasks may experience 

higher response time. 

 RR: Provides reasonably low response time, especially with a small time 

quantum. 

 

7) Context Switching Overhead: 

 FCFS: Low context switching overhead, as tasks run to completion. 

 SJF: Low context switching overhead in non-preemptive mode. Preemptive 

mode may incur more overhead. 

 RR: Moderate to high context switching overhead, especially with smaller time 

quantum. 

 

 

8) Predictability: 

 FCFS: Highly predictable, as tasks run in the order they arrive. 
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 SJF: Less predictable due to variations in burst times of tasks. 

 RR: Reasonably predictable due to equal time slicing for tasks. 

 

9) Suitability: 

 FCFS: Suitable for non-preemptive scenarios or when tasks arrive in an orderly 

manner. 

 SJF: Best suited when burst times are known or can be accurately estimated. 

 RR: Suitable for time-sharing systems and scenarios where fairness and 

responsiveness are essential. 

 

Overall, the choice of the most appropriate scheduling algorithm depends on the 

specific characteristics of the tasks, system requirements, and performance 

objectives. Each algorithm has its strengths and weaknesses, and selecting the right 

one involves considering the trade-offs between fairness, average waiting time, 

throughput, and response time. 

2. Evolutionary Algorithms: 

Evolutionary Algorithms (EAs) are a family of optimization algorithms inspired by 

the principles of natural selection and genetics [17]. These algorithms mimic the 

process of evolution to iteratively search for optimal solutions to complex 

problems. EAs are particularly useful for solving optimization problems where 

traditional methods may struggle due to a large search space or non-linear 

relationships between variables [18]. 

The core idea behind evolutionary algorithms is to maintain a population of 

potential solutions (often referred to as individuals or chromosomes) and use 

selection, crossover, and mutation operations to create new generations of 

solutions [19]. The individuals that represent better solutions (according to a 

defined fitness function) have a higher chance of being selected for reproduction 

and producing offspring with desirable characteristics. 

 

Here are the key components and steps involved in most evolutionary algorithms: 

 

1) Initialization: Create an initial population of individuals randomly or using 

domain-specific knowledge. 

2) Fitness Evaluation: Evaluate the fitness of each individual in the population 

based on a fitness function, which quantifies how well a solution performs in the 

given problem domain [20]. 
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3) Selection: Choose individuals from the population to form the parent pool for 

the next generation. The probability of selection is usually proportional to the 

fitness of each individual (higher fitness leads to higher chances of being selected). 

4) Recombination (Crossover): Perform crossover (recombination) on pairs of 

selected individuals to create new offspring. Crossover involves exchanging 

genetic information between parents to generate diverse solutions. 

5) Mutation: Apply mutation to some of the newly created offspring. Mutation 

introduces random changes to individuals, helping explore new regions of the 

search space. 

6) Replacement: Replace the old population with the new generation of 

individuals (including parents and offspring). 

7) Termination: Repeat the selection, crossover, mutation, and replacement steps 

for a predefined number of generations or until a termination criterion is met (e.g., 

a satisfactory solution is found). 

2.1 Particle Swarm Optimization: 

Particle Swarm Optimization is an optimization technique which applies the 

concept of population-based search [21]. Here, position of particle is the solution 

while swarm of particles act as searching agent. PSO find the minimum value for 

the function. 

 

The PSO particle learns from other particles (social learning) as well as from its 

own experience (cognitive learning). Due to this, there are two solutions [22]:  

gbest and pbest. Velocity V and acceleration play a role here as well since there are 

changes in position with respect to time (or iteration) plus there is an 

implementation of random weighted acceleration. 

The following figure 4 illustrates the concept of swarm intelligence algorithm: 

 

 

 

 

 

 

 

 

 

 

 

Pbest 
Gbest 

Updated Position 

Current Velocity 

Current Position 

Figure 4. PSO Algorithm 
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The position X at t+1 can be formulated as: 

)1()()1(  tVtXtX  

 

And subsequently velocity V at t+1 can be formulated as: 

))(())(()()1( 2211 tXXrctXXrctwVtV GbestPbest   

Where: 

w: Initial weight. 

c1, c2: Accelerating factor. 

r1, r2: Uniformly distributed random number ∈ [0,1]. 

2.2 Ant Colony Optimization: 

Ant Colony Optimization is an optimization technique which applies the concept 

of population-based meta heuristic [23]. It involves probabilistic techniques 

inspired from the behavior of real ant colonies. For this algorithm, problems must 

be considered in the form of path finding with a weighted graph. Hence, ACO 

finds  the shortest path.  

It starts with a group of ants leaving their nests and searching randomly for food. 

Whenever a particular ant finds food, they deposit pheromones on their way to the 

nest. The more the pheromones concentrated on the path, the more becomes  the 

probability of it being followed. Since pheromones evaporate with time,  longer 

paths are automatically discarded. Hence, different ants keep giving  different path 

routes until we reach the shortest path where the pheromone trails have the 

strongest concentration. Almost all of the ants will then follow this path, 

reinforcing it further and hence all of them reach the food source. 

4. Methodology: 

We used CloudSim software to perform the simulation and extract the results. 

CloudSim is an open-source framework used for modelling and simulation of 

cloud computing infrastructures and services [24]. It is developed by the CLOUDS 

Lab organization and is written entirely in Java. It can successfully model and 

simulate infrastructures such as: 

 Large-scale cloud computing datacenters 

 Virtualized server hosts 

 Application containers 

 Energy-aware computational resources 

 Datacenter network topologies 

The major modal classes used in CloudSim simulation are: 

 Cloudlet: Used to define a task to be scheduled in an environment. 
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 Vm: Used to define a virtual machine which will run the tasks in the 

simulation. 

 Host: Used to define management of virtual machines.  

 Datacenter: Used to define datacenter in the simulation. 

 DatacenterBroker: Used to define as an entity which performs user  actions. 

The following figure 5 shows the main parts involved in CloudSim: 

 

 

 

 

 

 

 

 

The following table 4 shows meaning of the constants which used for cloud 

simulation and its used values in our simulation: 

Parameters Description Value 

POPULATION_SIZE 
Number of particles for 

PSO Scheduler 
25 

NO_OF_ANTS 
Number of ants for ACO 

Scheduler 
4 

NO_OF_GENERATIONS 
Number of generations 

for ACO Scheduler 
50 

DATACENTER PARAMETERS 

NO_OF_DATACENTERS Number of Datacenters 5 

ARCHITECTURE System Architecture x86 

OS Operating System Linux 

TIME_ZONE 
Time zone of the 

Datacenter 
5.5 

COST_PROCESS 
Cost of using processing 

in the Datacenter 
3 

COST_MEMORY 
Cost of using memory in 

the Datacenter 
0.05 

Cloudlets VMs Hosts Datacente

r 

Datacente

r Broker 

VM 

Allocation 

Cloudlet 

Scheduler 

VM 

Scheduler 

CloudInfo 

Service 

Figure 5. the main parts involved in CloudSim 
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COST_STORAGE 
Cost of using storage in 

the Datacenter 
0.001 

COST_BANDWIDTH 
Cost of using bandwidth 

in the Datacenter 
0.1 

HOST PARAMETERS 

STORAGE Storage size (in MB) 1000000 MB 

HOST_MIPS 
MIPS score for Host’s 

Processing Element 
1000 

HOST_RAM RAM size (in MB) 2048 MB 

HOST_BANDWIDTH 
Bandwidth of Host (in 

Gbps) 
10000 Gbps 

VIRTUAL MACHINE PARAMETERS 

NO_OF_VMS Number of VMs 5 

VM_IMAGE_SIZE VM Image size (in MB) 10000 MB 

VM_RAM RAM size (in MB) 512 MB 

VM_MIPS 
MIPS capacity for VM’s 

Processing Element 
250 

VM_BANDWIDTH 
Bandwidth of VM (in 

Gbps) 
1000 Gbps 

VM_PES 
Number of Processing 

Elements 
1 

CLOUDLET PARAMETERS 

FILE_SIZE 
Input file size (in Bytes) 

before execution 
3000 B 

OUTPUT_SIZE 
Output file size (in 

Bytes) after execution 
3000 B 

TASK_PES 
Number of PEs required 

to execute 
1 

Table 4. Meaning of the constants which used for cloud simulation and its 

used values in our simulation 

 

In every scheduler, these steps are followed for Scheduling and Comparison: 

 Initialize CloudSim simulation with 3 parameters: number of cloud users 

(num_user), calendar instance with current date and time (calendar) and flag for 

tracing events (trace_flag). 

 Create Datacenter(s) with the given parameters. Note that we have assigned 

only one Host and PE per Datacenter. 
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 Create a Datacenter Broker according to the scheduling algorithm. 

 Create Virtual Machine(s) with the given parameters. 

 Create Cloudlet(s) with the given parameters and length. 

 Submit the VM and Cloudlet list to the Datacenter Broker. 

 Start the CloudSim simulation. 

 Once there are no more events to execute, stop the CloudSim simulation. 

 From the broker, fetch the Cloudlet list after execution. 

 This list contains details related to the execution of Cloudlets like Execution 

Start Time and Finish Time. 

 The total finish time is calculated. 

5. Results and discussion: 

Simulations will be performed using CloudSim software using the parameters 

listed in Table 4. Five VMs will be used and 6 simulation scenarios will be applied. 

During the first scenario, we will adjust the number of tasks to 10, twice the 

number of virtual machines, and then the load on the cloud data center will be 

increased by increasing the tasks from five to 30 tasks, or six times the number of 

virtual machines, and this case represents a high load case on the cloud data center. 

The response time taken by each of the above algorithms to perform all the tasks 

will be calculated and then a comparison between these algorithms will be made. 

The following table 5 shows the response time results obtained for each algorithm 

during each simulation scenario. 

 

 

 

             

Algorithm 

Task NO. 

PSO Ant Colony SJF RR FCFS 

10 3253.94 3924.32 5693.38 7947.02 3932.60 

15 2674.78 4141.76 6978.94 8407.90 8289.36 

20 4456.82 5946.68 6229.10 12367.06 8038.96 

25 7076.98 8115.64 13061.30 12933.66 8757.92 

30 4730.78 9702.24 10015.42 10699.82 10644.04 

Table 5. The response time results obtained for each algorithm during each 

simulation scenario 

 

The following figure 6 shows the comparison of the previous results: 
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Figure 6. Comparison between algorithms 

 

Let's analyze the response times for the different task scheduling algorithms in 

each scenario [25]: 

First Scenario: 

In this scenario, the PSO algorithm achieved the lowest response time, followed by 

the Ant colony algorithm. SJF and FCFS also performed reasonably well, while the 

RR algorithm had the highest response time among all the algorithms. 

Second Scenario: 

Similar to the first scenario, the PSO algorithm outperformed the others with the 

lowest response time. Ant colony and SJF algorithms followed, while RR and 

FCFS had relatively higher response times. 

Third Scenario: 

In this scenario, the PSO algorithm again performed better than the others. The Ant 

colony and SJF algorithms showed competitive results. However, the RR 

algorithm's response time increased significantly compared to the previous 

scenarios, and FCFS had a moderately high response time. 

Fourth Scenario: 
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In this scenario, the PSO algorithm still had the lowest response time, while the 

SJF, RR, and FCFS algorithms showed higher response times. The Ant colony 

algorithm also performed well but had a higher response time compared to PSO. 

Fifth Scenario: 

The PSO algorithm remained consistent with relatively low response times. The 

Ant colony, SJF, RR, and FCFS algorithms all showed higher response times, with 

the Ant colony algorithm having the second-lowest response time in this scenario. 

Overall, it appears that the PSO algorithm consistently provided the lowest 

response times across all scenarios. The performance of other algorithms varied 

depending on the number of tasks and virtual machines involved in each scenario. 

Ant colony and SJF algorithms generally performed reasonably well, while RR and 

FCFS algorithms seemed to struggle with larger task sets. 

Keep in mind that the choice of the most suitable algorithm depends on various 

factors, and these results can help guide decision-making in cloud task scheduling 

based on the specific requirements and constraints of your application. 

 

Let's compare the task scheduling algorithms based on the results obtained and 

discuss the pros and cons of each. We'll also explore the reasons behind the 

performance differences observed in the simulations. 

1) Particle Swarm Optimization (PSO): 

 Pros: PSO consistently achieved the lowest response times in all scenarios. It is 

a population-based optimization algorithm that is well-suited for continuous search 

spaces. PSO's ability to explore and exploit the search space efficiently likely 

contributed to its success in finding good solutions for task scheduling. 

 Cons: PSO's convergence rate and performance heavily rely on its parameters 

and tuning. In some scenarios, it may struggle to find optimal solutions due to 

premature convergence or getting stuck in local minima. 

 

2) Ant Colony Optimization: 

 Pros: Ant colony optimization showed competitive performance in several 

scenarios, especially with smaller task sets. It is inspired by the foraging behavior 

of ants and effectively explores solutions through pheromone trails. In certain 

cases, it managed to outperform other algorithms. 
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 Cons: Ant colony optimization can be sensitive to parameter settings and may 

require fine-tuning for different problem instances. It might struggle when dealing 

with larger task sets or complex search spaces. 

 

3) Shortest Job First (SJF): 

 Pros: SJF performed reasonably well in some scenarios, especially with fewer 

tasks. It prioritizes shorter tasks, leading to reduced response times for such cases. 

 Cons: SJF may suffer from "starvation" issues, where long tasks get delayed 

indefinitely if a continuous stream of short tasks keeps arriving. It is not suitable 

for all types of task distributions and may not perform optimally in scenarios with 

high variability in task lengths. 

 

4) Round-Robin (RR): 

 Pros: RR ensures fairness in task execution by giving each task equal time 

slices, which can be beneficial for certain scenarios with multiple users or time-

sensitive tasks. 

 Cons: RR's performance degraded significantly with larger task sets. It incurs 

higher overhead due to frequent context switches, and some tasks might experience 

longer waiting times, resulting in higher response times. 

 

5) First-Come, First-Served (FCFS): 

 Pros: FCFS is easy to implement and guarantees fairness based on the order of 

task arrivals. It can work well for small task sets with relatively homogeneous task 

lengths. 

 Cons: FCFS can lead to higher response times, especially when long tasks 

arrive early. It is not suitable for handling varying task lengths efficiently and may 

not scale well with increased task complexity. 

 

Reasons for the observed results: 

 The PSO algorithm's strong performance can be attributed to its robust search 

capabilities and the ability to escape local optima, leading to finding near-optimal 

solutions for task scheduling problems. 
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 Ant colony optimization performed well due to its ability to explore the search 

space through pheromone-based communication, but its performance may have 

diminished as task sets increased due to the exponential growth in search space 

complexity. 

 SJF showed competitive results with smaller task sets due to its preference for 

shorter tasks, but it struggled with larger sets and variations in task lengths. 

 RR's context switching overhead and inability to prioritize tasks based on their 

characteristics led to higher response times, particularly with larger task sets. 

 FCFS, while fair in terms of order of arrival, lacked adaptability to varying task 

lengths and struggled to handle more complex task scheduling scenarios. 

 

Overall, selecting the most appropriate task scheduling algorithm depends on the 

specific characteristics of the workload, the number of tasks, and the complexity of 

the problem. It's essential to consider these factors and carefully tune the 

algorithms' parameters to achieve optimal performance in real-world cloud 

computing environments. 

6. Conclusion: 

In this research, we highlights the importance of selecting appropriate task 

scheduling algorithms in cloud computing to optimize response times and system 

efficiency. PSO proved to be the most effective algorithm among the tested ones, 

but the selection should be based on specific workload characteristics and problem 

requirements. Proper parameter tuning and algorithm adaptation to the problem 

domain can lead to improved performance and successful task scheduling in cloud 

computing environments. This comparative study offers valuable insights for cloud 

system designers and administrators in making informed decisions regarding task 

scheduling strategies. 

Based on the obtained results from the simulations, the following conclusions can 

be drawn: 

1) Particle Swarm Optimization (PSO) emerged as the top-performing algorithm 

in all scenarios, consistently achieving the lowest response times. Its ability to 

efficiently explore the search space and find near-optimal solutions makes it a 

promising choice for cloud task scheduling. 
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2) Ant Colony Optimization demonstrated competitive performance, especially 

with smaller task sets. However, its effectiveness diminished as the number of 

tasks increased, and it faced challenges in complex search spaces. 

3) Shortest Job First (SJF) exhibited favorable results with fewer tasks, 

prioritizing shorter tasks and reducing response times. Nevertheless, it struggled to 

cope with larger task sets and variations in task lengths. 

 

4) Round-Robin (RR) scheduling, although ensuring fairness, suffered from 

significantly higher response times as the workload increased. Frequent context 

switches and lack of task prioritization impacted its efficiency. 

5) First-Come, First-Served (FCFS) scheduling, while simple and fair in task 

order, demonstrated relatively higher response times, particularly when dealing 

with long tasks arriving early. 

 

7. References: 

[1] Sadiku, M. N., Musa, S. M., & Momoh, O. D. (2014). Cloud computing: 

opportunities and challenges. IEEE potentials, 33(1), 34-36.  

[2] Ullah, A., & Nawi, N. M. (2021). An improved in tasks allocation system for 

virtual machines in cloud computing using HBAC algorithm. Journal of Ambient 

Intelligence and Humanized Computing, 1-14.  

[3] BEN ALLA, S., BEN ALLA, H., Touhafi, A., & Ezzati, A. (2019). An efficient 

energy-aware tasks scheduling with deadline-constrained in cloud computing. 

Computers, 8(2), 46.  

[4] Mohammadzadeh, A., Masdari, M., & Gharehchopogh, F. S. (2021). Energy 

and cost-aware workflow scheduling in cloud computing data centers using a 

multi-objective optimization algorithm. Journal of Network and Systems 

Management, 29, 1-34.  

[5] Umam, M. S., Mustafid, M., & Suryono, S. (2022). A hybrid genetic algorithm 

and tabu search for minimizing makespan in flow shop scheduling problem. 

Journal of King Saud University-Computer and Information Sciences, 34(9), 7459-

7467.  

[6] Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., Lydia, E. L., & Shankar, K. 

(2020). Hybridization of firefly and improved multi-objective particle swarm 



 

761 
 

optimization algorithm for energy efficient load balancing in cloud computing 

environments. Journal of Parallel and Distributed Computing, 142, 36-45.  

[7] Yuan, H., & Zhou, M. (2020). Profit-maximized collaborative computation 

offloading and resource allocation in distributed cloud and edge computing 

systems. IEEE Transactions on Automation Science and Engineering, 18(3), 1277-

1287.  

[8] Baburao, D., Pavankumar, T., & Prabhu, C. S. R. (2021). Load balancing in the 

fog nodes using particle swarm optimization-based enhanced dynamic resource 

allocation method. Applied Nanoscience, 1-10.  

[9] Muteeh, A., Sardaraz, M., & Tahir, M. (2021). MrLBA: multi-resource load 

balancing algorithm for cloud computing using ant colony optimization. Cluster 

Computing, 24(4), 3135-3145.  

[10] Yiqiu, F., Xia, X., & Junwei, G. (2019, March). Cloud computing task 

scheduling algorithm based on improved genetic algorithm. In 2019 IEEE 3rd 

information technology, networking, electronic and automation control conference 

(ITNEC) (pp. 852-856). IEEE.  

[11] Aladwani, T. (2020). Types of task scheduling algorithms in cloud computing 

environment. Scheduling Problems-New Applications and Trends.  

[12] Bibu, G. D., & Nwankwo, G. C. (2019). Comparative analysis between first-

come-first-serve (FCFS) and shortest-job-first (SJF) scheduling algorithms.  

[13] Manasa, R., & Mabbu, D. (2023). A Comparative Approach on Scheduling 

Algorithms for Real time Systems. Journal Electrical and Computer Experiences, 

1(1), 29-35.  

[14] Putra, T. D. (2020). Analysis of Preemptive Shortest Job First (SJF) 

Algorithm in CPU Scheduling. International Journal of Advanced Research in 

Computer and Communication Engineering, 9(4), 41-45.  

[15] Zouaoui, S., Boussaid, L., & Mtibaa, A. (2019). Priority based round robin 

(PBRR) CPU scheduling algorithm. International Journal of Electrical & 

Computer Engineering (2088-8708), 9(1).  

[16] Panda, S. K., & Jana, P. K. (2019). An energy-efficient task scheduling 

algorithm for heterogeneous cloud computing systems. Cluster Computing, 22(2), 

509-527.  



 

762 
 

[17] Slowik, A., & Kwasnicka, H. (2020). Evolutionary algorithms and their 

applications to engineering problems. Neural Computing and Applications, 32, 

12363-12379.  

[18] Mohammadi, S., & Hejazi, S. R. (2023). Using particle swarm optimization 

and genetic algorithms for optimal control of non-linear fractional-order chaotic 

system of cancer cells. Mathematics and Computers in Simulation, 206, 538-560.  

[19] Xue, Y., Zhu, H., Liang, J., & Słowik, A. (2021). Adaptive crossover operator 

based multi-objective binary genetic algorithm for feature selection in 

classification. Knowledge-Based Systems, 227, 107218.  

[20] Islam, J., Vasant, P. M., Negash, B. M., & Watada, J. (2019, October). A 

modified crow search algorithm with niching technique for numerical 

optimization. In 2019 IEEE Student Conference on Research and Development 

(SCOReD) (pp. 170-175). IEEE.  

[21] Fan, S. K. S., & Jen, C. H. (2019). An enhanced partial search to particle 

swarm optimization for unconstrained optimization. Mathematics, 7(4), 357.  

[22] Zeng, N., Wang, Z., Liu, W., Zhang, H., Hone, K., & Liu, X. (2020). A 

dynamic neighborhood-based switching particle swarm optimization algorithm. 

IEEE Transactions on Cybernetics, 52(9), 9290-9301.  

[23] Ahuja, J., & Ratnoo, S. (2023, February). Population-Based Meta-heuristics 

for Feature Selection: A Multi-objective Perspective. In Proceedings of 

International Conference on Data Science and Applications: ICDSA 2022, Volume 

1 (pp. 243-264). Singapore: Springer Nature Singapore.  

[24] Le, D. N., Pal, S., & Pattnaik, P. K. (2022). Cloudsim: A simulator for cloud 

computing environment. Cloud Computing Solutions.  

[25] Zhou, Z., Li, F., Zhu, H., Xie, H., Abawajy, J. H., & Chowdhury, M. U. 

(2020). An improved genetic algorithm using greedy strategy toward task 

scheduling optimization in cloud environments. Neural Computing and 

Applications, 32, 1531-1541.  

 

 


