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Abstract:

Differential equations are fundamental in mathematical modeling across
various fields such as science, engineering, medicine, economics, astronomy,
and environmental science. The theory of differential equations has evolved
alongside the sciences where these equations appear, and their solutions are
applied. Despite their significance, only a limited number of differential
equations have analytical solutions, and even in cases where solutions exist,
deriving them can be a complex process. Consequently, numerical methods
play a crucial role in solving these equations, as they offer an alternative when
analytical solutions are not feasible. This paper discusses the analytical
methods for solving various types of differential equations, exploring their
applications in diverse real-world problems such as Newton's second law of
dynamics, radioactive decay, wave equations, and electrical circuits.
Keywords:Differential Equations,Analytical Solutions,Numerical Methods,
Integral Equations
1.1 Introduction
The differential equation is the most important tool used for mathematical
modeling in various fields of science, engineering, medicine, economics,
astronomy, environmental science, and many other fields. The theory of
differential equations developed in harmony with the sciences in which
equations appear and results are applied.

Differential equations are crucial and commonly employed tools in
mathematical modeling. However, only a limited number of these equations
have analytical solutions, and even when they do, finding them can be quite
challenging. Therefore, numerical methods play a vital role in solving
differential equations and should not be overlooked.

The most famous differential equations are Newton's second law of dynamics
(Mechanics), radioactive decay in nuclear physics, wave equation, Kepler's
problem, simple pendulum problem, electrical circuits, chemical Kinetic
problems" etc. An equation is said to be a differential equation "if it contains a
dependent variable and its derivatives of one or more independent variables"
[1, 2].
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1.2 Types of differential equations
A differential equation can be classified into the following types
1.3 Ordinary Differential Equation
"A differential equation in which an unknown function is a function of a single
independent variable" is called an ordinary differential equation (ODE) [1].
1.4 Partial differential equation
"The differential equation in which the unknown function is a function of
several independent variables and their partial derivatives" is called the partial
differential equation (PDE) [2].
1.5 Stochastic differential equation
"A differential equation involving one or more terms is a random process,
called a stochastic differential equation (SDE) and the solution of these
equations is itself a random process™ [3].
1.6 Differential Equation of Delay
"A differential equation involving the derivative of the unknown function at a
given time in terms of function values in previous times is called the
differential lag equation (DDE). In the ODE, unknown functions and their
derivatives are evaluated at the same time, i.e. there are no historical functions.
But when the rate of change of a time-dependent process is judged not only by
its current state, but also by some previous state in its mathematical
formulation, a DDE appears. [4,5].
The general first-order DDE is represented as follows
w' (v) = g (v,w(v),w (T (v)),v0 < v < vy,
w(v) = ¢ (v),v < v, }

where g : [v0, vg] X way x way — .
Since for some v > v0 , we can see that = (v) <v0 , the initial function ¢ (V) is
needed for the integrity of the problem rather than a simple prime value vO , as
happens for ODEs.

The differential equation of relative delay The relative first-order DDE
Is represented as follows

w' (v) =g (v,w(v),w(pr)),0<v<T,
w (v) = wy, }

where pp& (0.1).
The multiple pantograph equation is a special type of relative DDE that can be
used in control systems, electrodynamics, quantum mechanics, and number
theory.
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The differential equation of constant delay "*The first-order constant DDE
Is represented as follows""
w (v) =g w,w),wv—"1)),v0 <v <y,
w(v) = ¢ (v).v < v, }
where 7 > 0 is a real constant.
The differential equation of the delay of the time variable '"The DDE
"ime of the first order is represented as followsvariable at the t
w' (v) =g (v,w(v),wv—7))),v <v <,
w(v) = ¢ (v),v < v, }
where 7 (v) is some function of v for v > 0.
Differential equation of neutral delay
« DDE in which the highest derivatives of an unknown function occur with
or without delay, called neutral DDE ».
The class neutral DDE is represented as follows
w' (v) =g (v,w (), w (v—"7)),0 <v <,
w () =o(v),v < vy, }
where 7 > 0 is a real constant [4, 5].
1.7 Differential Algebraic Equation
"A differential equation that is a combination of a differential equation and an
algebraic equation, given in implicit form" is called a differential algebraic
equation (DAE). The most important class of AEDs is a semi-explicit AED,
which is represented as[8].
w' = f(v,w,z),
0 :g(v,w,z),}
where W is the dependent variable, v is the independent variable, and z is the
algebraic variable. The AED system (1.2.6) is not well defined in the
mathematical sense, which will lead to the failure of any direct discrimination
method. Hessenberg forms are more important categories than the AED
mentioned below.
Heisenberg-1 index[12].
w' = f(v,w,z),
dg
Supposing that jacobite 9= is not singular for all v. Semi-Explicit Index -1
DAE
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System.

Heisenberg-2 index

w' = f(v,w,z),
0=g(v,w),

99 0f
wheredw 9= it is not singular for any V. Here, there is no algebraic variable z in
The second equation is therefore a pure indicator -2 DAE. Heisenberg-3
index ,
[] «(v, largeur, y, z) f= w
NN

(V, W, P) g= and

0 =h(vy), 000

Oh dg O f

where the product of everythingdy 9w 0z is non-singular for V [6].
1.8 Integral differential equation
A differential equation that contains the unknown function on one side as an
ordinary derivative and also has its presence on the other side under the
integral sign is called the differential equation (IDE). [9].
The general form of the integral equation is represented in w (v) as follows
B(v)
w' (v) = f(v)+ / K (v, t)w(t)dt,
Ja(v)
where K(v, t) is called the kernel of the integral equation.

Integral equations are mainly classified into two categories, the Fredholm and
Volterra integral equations.

Fredholm integral equation
"The Fredholm integral equation is represented as follows"

b
o(v)w ()= f(v)+ )\/ K (v, t)w(t)dt,v,t € [a,bl

When the limit of the integral a and b are constants, K(v, t) is called the
kernel of the integral equation, the function f (v) receives a function, and 4 is a
parameter.
Volterra Integral Equation The Volterra Integral Equation is represented as
follows ;

o (v)w(v) = f(v)+ )\/ K (v, t)w(t)dt,

a
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When the limit of the integral is functions in v, K(v, t) is called the kernel of
the integral equation, the function f (v) receives a function, and 4 is a
parameter [7].

2.1 Methods and techniques for solving a differential equation

2.2 Edomian decomposition method

The Adomian Decomposition Method (ADM) is a sequential solution
technique for solving differential equations. ADM can provide a solution to a
differential equation in sequential form, which is determined by a recursive
relation using Adomian polynomials. An effective implementation of the
method can lead to an accurate and numerical solution of a broad and general
class of dynamical systems representing physical problems [8, 9].

2.3. Symmetric Disorder Method

The symmetric disorder method (SMP) is a sequential solution method for
obtaining a solution of different types of differential equations. HPM is built
on the idea of small parameters. These small parameters are so sensitive that
even a slight change in one of them will change the results. A careful selection
of modest parameters leads to the best results. However, a poor selection of
small parameters has negative effects. [10].

2.4 Variable Iteration Method

The variable recurrence method (VIM) is also a sequential solution method for
solving linear and nonlinear differential equations. The implementation of
VIM involves the determination of the Lagrange multiplier. In VIM, first
create the debug function, then select Lagrange Multiples, and then select the
initial iteration [11].

2.5 Contrast Conversion Method

The differential transformation method (DTM) is one of the important series
solution methods that is examined in linear and nonlinear differential
equations. The solution obtained in this way is in the form of polynomials and
IS an approximation of the exact solution. Because this method uses an
iterative procedure to obtain a higher-order serial solution. It avoids the
symbolic computation of derivatives and thus produces a sequential term in an
easy and efficient way [12, 13].

2.6 Plume Removal Method

The Banach Contraction Method (BCM) is based on the concept of an iterative
function, which uses previous iterative solutions to create a new, more precise
solution. [13].The iterative method is repeated until convergence is reached
[14].

February (2025) bl oY) o A s e
114



Lokl D lgld) Aas (po i Lild (ol (69l oimd pandaad! pas ) 2lg
350 30 2o (39 allg o pekidfy 1 31 e /g 71 eyl g Ergmad) A
iy ol At A1 AASD / 31k Aol g e A1 3139 7 g 71 Colaalyud g Sl

Sl St diailly v buod) Ao A Gl — Gy i) Anelindlg
(S9! g Uall) A (2 L2939 Aol 1))
2025/2/12 s0ald

2.7 Integral equation

The differential equation is changed to an integral equation, i.e. an equation in
which the unknown is inside the integral.

2.8 Elementary Value Problem and Limit

The problem of a boundary value consists of a differential equation and all the
necessary elementary or boundary conditions. The solution of a differential
equation will satisfy the boundary conditions as well as the differential
equation anywhere within the boundary. Different types of differential
equations can be subject to limit value problems. The Dirichlet problem,
which consists of finding harmonic functions, is one of the first limit value
problems to be explored. The Sturm-Liouville problems constitute a large
category of important limit value problems. The autonomous functions of the
differential operator are used to study these problems [15].

Types of limit value issues

Limit value issues are categorized as below

e Dirichlet or first duration condition

The Dirichlet boundary condition is the condition in which the value of the
function itself is determined. If the solution takes a value of zero along the
boundary, then the case is called homogeneous Dirichlet otherwise it is
heterogeneous. [16].

e Neumann Secondary Limits or Condition

"Newman's boundary condition provides the value of the ordinary derivative
of the function."

Here, the derivative of the solution along the boundary is determined. [17].

e Third boundary condition or mixed boundary condition

"The mixed limit clause determines the value of the solution and its derivative
Is described along the limit" [16, 17].

In this thesis, we used the following methods

1. Differential Transfer Method

2. Fa di Bruno formula and Bell polynomials

3. Step Method

4. Panach Withdrawal Method

3.1 Differential Conversion Method

DTM was introduced by Pukhov [18] and Zhou [19] as "The "Taylor
transformation” was utilized in the analysis of electrical circuits. DTM is
closely associated with Taylor's "expansion of genuine analytical functions.” It
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can be applied to address a wide range of issues across all types of differential
equations, including normal, partial, late, fractional, fuzzy, and more.).

"DTM is an iterative method for determining the sequential solution of linear
and nonlinear differential equations. Compared to the traditional chain
method, which requires symbolic computation, DTM converts differential
equations into algebraic equations that can be solved repeatedly.

Suppose that w(v) is a real analytic function in the domain of Q and that v = v0
Is a random point in Q. Then, w(v) can be extended in the Taylor series to the
vicinity of the point v = vO0.

the derivative k of the The difterential transformation of” [96] Definition 1.6.1
:s followsis defined a v0 to (v)function w

W (k)[vo] = % {dk:;;’gy)] v=v

where W(k)[vO] represents the differential transformation from w(v) to v = v0".
The inverse differential transter 1'5 given by" [96] Definition 1.6.2

ZH; l“] L—l())

Using definitions 1.6.1 and 16 2 the function w can be represented as a
:inTaylor cha

29

o0

1 ldk } 5
— (v — )"
Z RUL dok ],

(1 + N) Thus, the solutlon 1s approximated by the finite terminology
practically
N

in (v) = *Y(k)[vO](v — VO)*.

k=0
The formulas that will be used in the next ch are presented and collected in
Theorem
"Suppose that W (k)[v0] is the differential transformation of the function w (v)
atv=v0".
(a)  Ifw(v) =wi(v) then for any vO

In(k)[v0] = (k + 1)Iny(k + 1)[vO] for k=0,1,2,....
8  Ifw®) =w"(v), then for any vO
W(K)[vO0] = (k +1)(k +2)...(k +n)W1(k +n))[v0] pour k=0,1,2,....
() Siw(v) =wl(v) - W2(V), Alors pour tout VO
K
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In(k)[v0] = “"*(1)[vo]Ina(k — 1)[vO] for k = 0,1,2,....
=0
(p) St w(v) =wl(v) - w2(V)... - wn(v), alors pour n‘importe quel vO
k k—11k—11-12—...—In—2

XX X
()Mol = = wigypow2(2)po]  11=0  12=0
In—1=0
Wi I(In-1)[VOIWn(k — 11 — 12 — ... —
In—1)[vO]
pourk =0,1,2,....

(E) If w(v) = eav then for all vO € R

_ eY0 ¢y
Wk = fork = 0,1,2,....
(F)  1fw(v) =vr, r € R then for any v such that [v — v0| < |v0|

W (k) [vo] = (z) ot

k

fork=0,1,2,...,

(-’r) Cr(r=1)...(r—=k+1)  (r)

"where \¥ k! k' and  (r)c represents the
Pochhammer

symbol".

(G) Ifw(v) =vn, n € NO, then for vO =0

W(Kk)[vO] = o(k — n) pour k=0,1,2,...,

"where d(k — n) = dkn is the Kroniker delta".

Guidance: The evidence for the formulas will be derived directly from
definitions 1.6.1 and 1.6.2 respectively.

(A)  Using equatlon (1 6.14), we have

wy (v) = d Zﬂ (v —1p)*
kW, () [vo] (v — v)*t

(k4 1) Wi (k + D)[ve] (v — v0)*[90]

(B) We WI|| use induction to continue. The first step is to show the formula
for n = 1, specifically the formula (1.6.17) that has already been established.
Next, we assume that the formula holds true for n.,
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. N '(n) ;
et nous le prouverons pour n + 1. Nous supposons que siw(v) = wi" (v), alors

pour tout vO nous avons W(k)[v0] = (k + 1)(k + 2)...(k + n)W1(k + n))[vO] pour
k=0,1,2,.... Cela signifie que
w () = w (’H)

= ZIV Ywo) (v — vo)*

o 0]

= Z(k + 1) (k+2)...(k+n)Wy(k+n))[ve] (v — vg)*
k=0 .
Then, forn + 1, we have

U;gn"" )( ) — U} = d Z IV' [?1 v — U Zkl{ U _ ,Uo)kffl

Z (k+1)(k+2)...(k+n)Wi(k+n))[ve] (v — v9)*?
k= .

By changing)othe limits of the last sum, we obtain
wi™ () =Y "(k+ 1)(k+2)...(k +n)(k +n + D)Wk +n + 1))[wg] (0 — vp)*
k=0
This implies that ifw(v) = w{""™"(v), then for any v0 , we have "W(k)[vO] =(k +
D(k +2)...(k +n)(k +n+1)W1(k +n+1))[vO] pour k = 0,1,2,...», ce qui prouve la
formule.
o0 o0
(©)  Supposons que wl(v) = P W1()[vo](v — vO0)' et w2(v) = * W2(m)[vO](v —
vO)™.
I=0 m=0
Then

w(v) = wi(v)-wy(v) = Z W1 (D)[ve] (v — vo)t - Z Wa(m)[vo] (v — vo)™

m=0

= Z Z Wi (E)[’U[-)]H,FQ (fm,) [fuo] (“U _ ’Uo)l""m_

=0 m=0
Si I'on substitue k = | + m, on obtient
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Z Vo] Wa(k — U)[vo) (v — vo)*

iu (D) [vo]Wa(k — )[vo] (v — vg)E.

=0 k=l
By changing the order of summation in the last sum, we get

o k
w(v) = "Y1 [Ve]Wa(k — ) [VO] (v — vO)',
k=0 1=0
k
ce qui implique que W(K)[vO] = " W1(I)[vo]Wa(k — )[vO] pour k = 0,1,2,....
=0
(D) (D) We will use induction to proceed. The initial step is to demonstrate
the formula for n = 2, specifically the formula (1.6.19) that has already been
established. Following that, we will verify the validity of the formula forn + 1
by assuming it holds for the product of the function at n. In other words, we
will assume that if u(v) = w2(v) - w3(v) - ... - wN+1(v), then for any vO0. [20].

k k—12  k—12-13—..—In—1
In(k)[vO] = %X X W2(l,) [vO]W3(13) [vO0]
12=013=0  In=0
oo Wo(In) [Vo]Wnag(k — 12 = 13 — ... — In)[v0]

pour k = 0,1,2,.... Mettre w(v) = wil(v) - u(v). Ensuite, selon (1.6.19), nous
avons

K

W(K)[v0] = P W1(I,)[vO]U(k — 11)[vO] pour k = 0,1,2,... C’est

11=0

k k—11 k—11-12k—11—12—13—...—In—1
In(k)[v0] = *™(1,)[v0] ** ... % W2(1,)[vO]W3(13)[v0]...
11=0 12=0 13=0 In=0
e Wo(IN) VoW (k — 11— 12 = 13 — ... — In)[v0]

for k =0,1,2,..., which proves the formula.
()  For any vO € R, we can extend the function w(v) = eav in the Taylor
series as

(v —UU

Comparison W|th the returns in defmltlon 1.6.2
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avg -k
] — e oo
W (k) [wol K, fork=0,1,2,...
(F)  "If x and y are real numbers such that [x|> |y|, and r is any complex
number, then

Newton's generalization of the binomial is ™

-3 ()

k=0
(r) Cr(r=1)...(r—k+1)

"where \¥ k!

Let's rewrite virtual reality as

vr = (v —V0 + vp)' = (v0 + (v —Vv0))".

The application of the returns of the equation

T T r—k ]
V" = Z (}1) ol (0 — ) F[101]

k=0
(G) For vO = 0, we can extend the function w(v) = vn, where n € NO, in
Taylor series as

w(v) =" = Z §(k —n)”
k=0

where 6(k — n) = dkn is the Kronecker delta. We compare it to definition 1.6.2
and conclude that:

W(K)[0] = o(k — n)

for k =0,1,2,..., which proves the formula.

Some of the results of the differential transformation, used in this case, are
listed in Table 1.1 and can be proved using definitions
Table 1.1;: NCM Results.

Original Function Transformed function

n (1 S
: ;I:tﬂ(lt ) (k+1)(E+2)(k+3)...(k+n) W (k +in’)
( k
1 1, «
2 L (k—n) = -
February (2025) bl RIS Y- PP

120



Lokl D lgld) Aas (po i Lild (ol (69l oimd pandaad! pas ) 2lg
359 30 20 (9kaiyg iy 1A M e / g AU oyl g gl A
iy (ol Ao FU1 A / 31y Al g e A1 8159 7 g A1 S laalyubdlg S gmad!

had Gt ddaddly Ao buo 1 A 71 A — Sy puaiciad) Aot
(9 £ ol daid (2 Laygd9 Al )
2025/2/12 sald

W

2 W (3) We (k — )

1=0

a® kw
o sin (7 + ,3)

S Tx =

3 eoy v

4 wl (V)w2 (v) % cos (%T + 8)
5 sin(av + f)

6 cos(av + p)

4.1 Two-Dimensional Differential Transformation Method

The basic definitions and operations of two-dimensional DTM are presented
here.

Definition "The differential transformation of the function w (x,t)
represented in the following form

1 ak+h (2.t
W (k, h) = { w (@, )]
r=mxq,t=tp

klh! oxkoth

where w (x,t) is an analytic function and continuously differentiable with
respect to time t in a specified domain”.
Definition "The inverse differential transform of W (k,h) can be determined as
o0 00O
in (x,t) =Y (k,h)(x — x0)* (t — t0)" .

k=0 h=0
Combining the equation we get

1 [oFhw (x,t) o A

w ;hz =T [ pRE L N (@ — @0)" (t — o)

It is clear from the above definitions that the idea of two dimensional
differential transform is based on the two-dimensional expansion of the Taylor
series. Some of the two-dimensional differential transformation results used in
this document are presented in Table 1.2. Evidence of the results can be seen
in [21].
Table 1.2: NCM results for the EDP.

29

Original FunctionTransformed function

k h
«ux,v (xt)»  «Y(rh=9)V (k—rs) »
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r=0s=0

2 Ou(zt) (k+ 1)U (k + 1,h)

a'u,a(g,t)
3 — (h+ 1)U (kh + 1)

rs

%, (.

4 aféf” >k + 1)k +2)(k+ )+ )(h+2)..(h+s)U (k+r1,h+53)"

4.2 Faa di Bruno formula and Bell polynomials

Eric Temple Bell invented Bell's polynomials, which were first used to
examine ensemble scores. Bell polynomials appear in a variety of applications,
including combinatorics, analysis, statistics, and more. Exponential partial
Bell polynomials are polynomials with an infinite number of variables x
1.X,,..., and it is generally known that Bell polynomials can be used to obtain
several specific combinatorial sequences, such as Stirling numbers, Lah
numbers, and idempotent numbers [22].

In the existing literature, it has been noted that differential transformation is
not applied directly to

nonlinear terms such as " w, n > 2 or In(w). However, the differential
transformation of nonlinear terms can be determined using the Faa di Bruno
formula in a more efficient manner. Some of the necessary notations and
definitions of Bell polynomials defined as:

Definition "Partial exponential Bell polynomials are polynomials

Bk,l (x7,...,.xk—[+1) in an infinite number of variables x1, x2 ... defined by the
expansion of the series

l
th 1 t"
Z Bk,l (Ilﬂ ‘e a:ﬂk*H’l) E = l_' Z "r?ri,m_l ’ | = 07 1: 2* ‘e

k>l m=>1

Definition "Partial ordinary Bell polynomials are polynomials

Byi(x1,- ... 2—141) in an infinite number of variables x 1., X'k=1+1 defined by
the expansion of the series™

!
Z E:’M (T1, ooy Tpig1) th — (Z :f:,,,tm) A=0,1,2,...

k>l m>1
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"The relation between the partial exponential Bell polynomials Bk,l and the
partial ordinary Bell polynomials B %,/ is[23].
—'B Ty T2 Tp—141
nOR 2 k=1 1))
Lemma ([98]) "The partial ordinary Bell polynomials B,/ (x"1,....x " k—I+1), |

=0,1,2,....k >/ satisfy the recurrence relation
k—I+1 .

A ) ) il - ) )
By, (331; ceey 37k71+1) = Z E.Tinq.zfl (-Tl: cees :rl’cfifl+2)
=1

B, (1, Thei1) =

where B0.0 — 1 and Bk.0 — Ofork=>1".
Theorem 1.8.4 [98] "Let g and f be analytic real functions near vO and g(v0)
respectively, and let h be the composition h(v) = f (g(v)). The differential
transformation of the functions g, f, and h is represented by G(k), F(k), and
H(k) respectively. Then H(K) satisfies the relations

H(O) = F(0),
k

Hk  ="1).B%(G(Q),...G(k—1+1)) fork>1.”
I=1
Some initial terms of “ordinary parital Bell polynomials B%,!/
(x"1,...xk—I+1)" using
Lemma 1.8.3 are generated as
k=1x7Tk=2 x2 #

k=3 x’3 2x"1x"2 @
k=4 x4 23185 + @3 3223, 2t
k=5

and so on.

4.3 Step Approach

The step method is examined to solve the DDEs by converting them into

proportionality

DDEs on successive intervals [A &, Ac+1]. Rewrite equation (1.2.1), we have
in'(v) =g [V,W (v)in(v—T)], c. >0,

where the initial function w(v) defined in v € [—t,0] and the initial condition is

w(0) = w0 then

Successive iterations are defined as the first iteration

wy (v) = glv,wy (v), (v —7)], 0< v <A,

Second iteration

w2 (V) = g [V,wz (V),WL(v —7)], A <V <22,
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Nth iteration

w, (v) =g v,w, (v),w,1(v—=T)], (n—1)A <v < n,
where n € Z+, it is clear that each interval provides a solution of the equation
[24].
4.4 Banach Contraction Method
BCM is an iterative method that is based on the concept of a recursive
function, which uses previous iterative solutions to generate a new, more
precise solution. The iterative method is repeated until convergence is reached
[25].
In this thesis, we will study limit value problems at three singular points,
differential algebraic equations, delay differential equations, ordinary
differential equations, partial differential equations, and integrative-differential
equations using DTM, Bell polynomials and BCM.
Computer code has been developed using Mathematica software (version
11.1.1) and MATLAB software (version 9.7.0), to obtain numerical results for
different types of differential equations that are discussed
numerically/analytically and presented through tables and graphs.
Results:
The study reveals that analytical solutions to differential equations, while
important, are not always attainable or easy to compute. Numerical methods,
such as finite difference methods and Runge-Kutta methods, are vital for
obtaining solutions when analytical approaches are insufficient or infeasible.
The analysis of various applications, such as mechanics, nuclear physics, and
electrical circuits, demonstrates the practical importance of both analytical and
numerical techniques in solving real-world problems. Furthermore, the
research emphasizes the necessity of combining these methods to enhance the
accuracy and efficiency of solutions, especially in complex systems.
Conclusion
DTM has been found to solve integral and integrator-differential equations in
series solution rather than using linearization or discretization, resulting in
significant time and computational resource savings. Compared to other
methods, DTM is simple and easy to apply.
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