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Robust statistical methods are of great importance in statistical studies because they 

provide great resistance in the presence of basic violations of statistical analysis 

models due to failure to achieve one of the basic assumptions such as the normal 

distribution of data and others. One of the most important problems facing the 

researcher is the problem of the presence of outliers in the data under study. Therefore, 

the goal of this study is to reduce the impact of outliers on the accuracy of the results. 

The discriminant analysis method was applied to a set of data taken from the Iraqi 

Stock Exchange, where the outliers were weighted with certain weights to eliminate 

their impact on the results. The banks under study were classified into two groups 

based on the cut-off point. The classification error of the mentioned methods was 

measured and the results were good and reliable.  
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1.1 Introduction  

Robust methods are one of the important 

measures that recent studies have focused on 

because of their ability to deal with 

contaminated data in the event that one of the 

basic assumptions is violated. The discriminant 

analysis method is considered one of the 

methods of multivariate statistical analysis that 

is concerned with classification and 

discrimination. It is based primarily on the 

discriminant function, which is a linear 

combination between the explanatory variables 

that increases the variance between groups for 

the purpose of distinguishing them and reduces 

the variance within the elements of one group. 

In this study, we relied on using a robust 

method to get rid of the effect of outliers by 

weighting the contaminated data with certain 

weights and then using the robust discriminant 

function for the purpose of distinguishing and 

classifying the banks under study into two 

groups based on the median financial 

indicators. 

1.2. Importance 

Addressing the problem of using the 

discriminant analysis method in the presence of 

outliers by using a robust weighting matrix that 

gives relative weights to the outliers to reduce 

their impact on the discriminant function. 

2.1. Robustness 

The concept of Robustness, Robust 

Statistics, or Robustness Methods in the 

statistical literature means a set of statistical 

methods and tools that deal with data 

contaminated with outliers (contaminated data) 

and give a high rate of resistance in the event 
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that one of the basic assumptions is violated. 

Traditional statistical methods are based on 

them. For example, when the assumption of 

normal distribution of data is violated or in the 

case of the presence of outliers, the traditional 

methods, in the presence of these problems, 

produce inaccurate results in terms of 

estimation and analysis. However, solid 

methods provide strong and resistant 

capabilities. For example, the arithmetic mean 

is a highly efficient estimate, but it is very 

sensitive to outliers, as it is affected by the 

presence of a single outlier, so its breaking 

point is low, approaching zero. Therefore, the 

arithmetic mean is considered a vulnerable 

estimator, while the median is not affected by 

outliers and has a high breaking point, reaching 

(50%) Therefore, the median is a robust 

estimator according to (Huper 1981). 

This term means robustness against violations 

of basic assumptions and insensitivity to the 

presence of outliers that affects the accuracy of 

the model used. 

First, we must look into the robustness of 

distributions, as violating natural assumptions 

such as (independence, congruence, 

randomness...) leads to the basic distribution 

deviating from the true distribution. 

(Hyal.k.2023) 

The traditional methods in applied statistics 

depend on the principle of continuity, but 

unfortunately, the principle of continuity is 

baseless because in reality, the traditional 

methods rely mainly on (the statistically 

meaningful hypothesis). (B. Klaus 1986) 

2.2 Measures of Robustness 

There are several standards to measure the 

level of robustness in capabilities, such as: 

A - First: Sensitive Curve: 

The sensitivity curve (S.C) is considered one of 

the most important criteria relied upon in 

determining the level of robustness of the 

estimator. It measures the effect of outliers on 

the statistical estimators and parameters, and its 

mathematical formula is: 

   (   )   * (               )  (            )
+ 

(1) 

Where (Z)It is a typical estimator of a statistic 

 (            )) Is the data before it is 

contaminated with outliers. 

(               )  It is data that is polluted by 

the addition of a single outlier. 

The sensitivity curve is considered one of the 

important tests to measure the robustness of the 

estimator. When this test is applied, for 

example, to the arithmetic mean, we find that 

the arithmetic mean is very sensitive to 

outliers, as it is greatly affected and may 

collapse by adding just one outlier. However, 

in the case of the median, it is not sensitive to 

outliers and is not affected when... Add one 

outlier. 

B - Influence function: 

The influence function was first proposed in 

1964 by the scientist Hampel, and he worked 

on developing it and inferring it with a group of 

researchers. It is considered an approximate 

version of the sensitivity curve, through which 

the estimator (Z) is calculated at a specific 

distribution such as (F), meaning that the 

estimator (Z) is a function of the distribution 

(F). 

For example, to express the arithmetic mean, 

the formula is: 

 ( )    ( )                       ( ) 
In the case of indicating the mediator, the 

formula is: 

 ( )     (   )               (3) 

The primary goal of the influence function is to 

measure the changes that occur in the estimator 

as a result of contamination of the data under 

study with a single outlier value such as (X0). 

If we have an estimator ( ) defined on the 

probability distribution (F) where: 

  .
 

   

/     (   )       
           ( ) 

where: 

 : a certain constant. 

δ: standard deviation of the distribution (F). 

X0: outlier. 

We assumed that the triple (Ω, γ, P) is the 

probability space of the independent random 

variables with identical distribution (x1, x2,,xn) 

then the influence function for the estimator ( ) 

is: 

  (      )        
 (     )  ( )

 
           (5) 

C – The breakdown point: 
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The breaking point (BP) is considered one 

of the important measures to indicate the level 

of robustness of the estimator. It represents the 

highest resistance point or percentage of 

resistance that the estimator can reach and still 

maintain the properties of the true parameter 

before it collapses due to data contamination 

with a number of outliers, according to 

(Maronna 2006). Hampel (1974) stated that the 

breaking point represents the highest level at 

which the estimator can maintain its efficiency 

before losing it when there is a high percentage 

of abnormal values in the data, which causes 

inaccurate results to appear in statistical 

analysis models. The highest breakdown points 

that the estimator can reach is (50%) because 

the amount of contaminated data or outliers 

cannot exceed (50%) of the amount of real data 

under study, as mentioned by Giloni (2006). 

Previous studies, such as (Huper 1983) and 

(Rousseeuw 1987), have shown that if we have 

a specific estimator such as ( ) for a set of data 

contaminated with outliers, the breaking point 

of this estimator can be calculated from the 

following formula: 

 

  (
 

 
)     ,

 

 
      || ( )

  (  )||-                ( )    

Where: 

  (   ) : the breakdown for the estimator ( ). 

   The data set before being contaminated with 

outliers. 

  : The data set after being contaminated with 

outliers. 

 : number of outliers. 

n: number of observations. 

 

2.3 Outliers 

Literature and statistical sources mentioned 

several definitions and concepts of outliers, 

such as: 

Bross 1961: An outlier is an observation that 

appears to deviate very significantly from the 

rest of the sample data. 

Freeman 1980: He defined an outlier as an 

observation that was not generated in the 

general way that most data in the sample were 

generated from. 

 AL Jubouri 1976: An outlier is a value that is 

inconsistent with other observations in one of 

the variables or phenomena because it comes 

from other populations or distributions that 

differ from the rest of the data. 

Keller 2000: An outlier is an observation that 

falls far from the regression line and has a large 

error compared to the rest of the data, so it will 

have a significant impact on the characteristics 

of the regression model and its estimates. 

Barnett and Lewis 1978: They showed that an 

outlier is an irrational observation when 

compared to the rest of the data under study. 

Hawkins 1980: It is an observation that 

deviates so much from other observations that 

it comes to mind that it was generated by 

different mechanisms or from different other 

distributions. 

Hampel 1986: It is the value that usually 

comes from different other distributions, and 

the percentage of abnormal values in real data 

ranges between (1-10) %. 

2.4 kinds of outliers: 

Studies have shown the classification of 

outliers according to their location in the data. 

Those anomalies that appear in the regression 

residuals for single models are called 

(Outliers), but in the case of using multiple 

models, the outliers are called Leverage Points, 

which are the outliers that occur in the 

independent variables and are Their direction 

in the values of (x) and their values are very far 

from most of the values of the matrix Some of 

these attraction points have a negative impact 

on the data line, causing the general average to 

deviate away from the true center of the data, 

so they are called (Bad leverage points). Others 

have a positive impact on the data line, so they 

are called (Good Leverage Point), as shown in 

the following figures: 
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Figure (2-1) an outlier value towards the (y) 

values 

 

Figure (2-3) A good outlier (located on the data 

regression line) 

2.5 Sources of outliers 

The outliers are often a small group compared 

to the other values in the sample, and there are 

many reasons that lead to the appearance of 

outliers in the data, the most important of 

which are: 

1- The data should be taken from asymmetric 

distributions, meaning that it contains a high 

skewness towards the right or left. 

2- Outliers come from contaminated 

distributions, unlike good data that comes from 

the Basic Distribution. 

3- Abnormal values are generated as a result of 

measurement errors that the researcher makes 

when collecting data, or because of a defect in 

some equipment, such as laboratory equipment, 

or because of an error in transmitting 

information correctly, or what is called a 

typographical error. 

4- The occurrence of sudden changes in the 

study population due to an emergency event or 

a compelling reason, such as a sudden loss or 

sudden profit that occurs in financial 

institutions or companies. 

 

2.6 The effect of outliers on multivariate 

statistical analysis models 

Statistical work in the event of the presence of 

outliers is subject to many difficulties because 

the researcher rarely expects or knows the 

sources of this contaminated data, and the 

various types of statistical analysis models are 

the ones that determine and measure the 

relationship between the variables, and when 

estimating the model parameters, we can know 

the strength and importance of this model. 

The least squares method is considered one of 

the most important statistical methods used in 

estimation due to the good advantages it 

enjoys, such as the ease of its practical 

application and the accuracy of its results 

provided that its assumptions are met. 

However, in the event of the presence of 

outliers, this method becomes inefficient and 

inaccurate, according to (Huper 1981). The 

presence of a single outlier will destroy the 

good advantages of the least squares method. 

There are several effects caused by the 

presence of outliers, such as: 

-Violating the assumption of normal 

distribution only (Huper 1981). The presence 

of a single outlier can lead to the collapse of 

the assumption of normal distribution of data. 

- Causes an increase in error variance (MSE). 

- Reduces the value of the coefficient of 

determination (R2) 

- Reduces the value of (F) calculated in the 

variance analysis table 

- It causes the problem of autocorrelation to 

arise. 

The presence of outliers gives an inaccurate 

and inefficient estimate of the model 

parameters using the least squares (OLS) 

method. (kleinbaum1988. 

2.7 The effect of outliers on the application 

of the discriminant analysis method 

It has been shown that there is a significant 

impact of outliers on statistical models. 

Likewise, the method of discriminant analysis 

is also affected by these anomalies. From the 

theoretical side, discriminant analysis is one of 

the methods of multivariate statistical analysis, 

and the presence of outliers is in the form of 

leverage points, which attract the general line 

of the data. Changing its direction gives 
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inaccurate results. From the statistical side, the 

linear discriminant function is stated in the 

following formula: 

       (  ̅    ̅ )                 ( ) 

It is clear that the linear discriminant function 

depends mainly on the variance and covariance 

matrix, which depends mainly on the arithmetic 

mean. Likewise, the cut point that we use in the 

classification decision also depends on 

extracting the arithmetic mean. We mentioned 

previously that the arithmetic mean is very 

sensitive to outliers. It collapses in the presence 

of a single outlier. Therefore, the estimates of 

this function are inaccurate and do not 

accurately represent the study data. Also, 

discriminant analysis depends on the vectors of 

averages for each sample and the general 

average and is sensitive to outliers. All of these 

factors lead to the emergence of inefficient 

discriminatory coefficients and 

misclassification of observations. Therefore, 

these matrices must be fortified using robust 

methods, such as replacing the arithmetic mean 

and variance with the secure location and 

measurement parameters. 

2.8. Discriminant analysis: 

It is a multivariate statistical analysis method 

used to distinguish and classify the data under 

study into two or more groups and then predict 

the classification of new elements into their 

appropriate groups according to a special rule 

called the discriminant function. 

The discriminant function can be written in the 

following form for two groups: 

       (  ̅    ̅ )                            (8) 

where: 

Z: The predictive value of the new view to be 

classified. 

  : The trance of independent variables (x1, x2, 

…, xn) 

(  ̅    ̅ ): the vector of difference between 

the means of groups. 

   : the invers of var-cov matrix for two 

groups. 

The discriminant function increases the 

variance between groups and reduces the 

variance within the elements of the group for 

the purposes of discrimination. 

To use discriminant analysis, the data must 

follow a normal distribution, the number of 

groups must be greater than or equal to two 

groups, the explanatory variables must be 

independent, and the sample must be drawn 

randomly. 

Using the discriminant analysis method 

requires that the data be free of outliers to 

ensure accurate results. 

The final step is to apply the cut of point, 

which determines the observation and classifies 

it into one of the two groups, which is in the 

following formula: 

  
 ̅   ̅ 

 
    ( ) 

Where: 

 ̅    ̅ 
    (  ̅   ̅ )       (  ) 

 ̅    ̅ 
    (  ̅   ̅ )                        (  ) 

when  ̅    ̅ The decision of discriminant will 

be made by this rule: 

- the new observation (  ) is classified into first 

group if      
     

- the new observation (  ) is classified into 

second group if      
 

 2.9. Reweighting matrix 

In order to protect Fisher's linear discriminant 

analysis method from the influence of outliers, 

we decided to adopt a robust method to reduce 

the influence of those anomalies in the data 

under study. It was necessary to resort to 

transforming the data using a specific location 

and scale matrix, which is called (RMVN). 

Then use it to fortify the Mahalanobis Distance 

method according to (Uraibi 2017). 

(Olive and Hawkins 2010) presented a new 

matrix used to weight multiple normal 

distribution estimators using an efficient 

algorithm and has a high breaking point, which 

can be summarized in the following steps: 

1- The construction of this algorithm begins 

with finding estimates of the mean, variance 

and covariance matrix and can be denoted by 

(         )  
2- Finding the Mahalanobis Distance by 

substituting the above estimators, which we 

denote (MD). Then we arrange the values in 

ascending order to obtain the median (MD) 

values and consider it as a standard limit that 

can be relied upon to obtain a new row of 

observations that are less than the (MD) values. 

We repeat the previous steps five times and 

each time we calculate the (MD) values for all 
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the data to obtain ((         ) The latter 

considers the location and measurement 

estimates of the (MD) matrix. 

3- We repeat the same previous steps, but using 

the median and not the arithmetic mean in the 

variance and covariance matrix to find the 

value of (MD) and thus we obtain (         ). 

Finding the FCH estimators by calculating the 

traditional distance between the previous 

estimators (        ). If the distance is less than 

the last value of the threshold, which is the 

median (MD), in the fifth step, then we choose 

one of these two estimators, so the location 

estimator is: 

     {
         √|    |  √|    |

                                
}  (  )  

  

As for the scale estimator, it is also calculated 

based on the same condition, but the estimator 

here is multiplied by a constant or correction 

factor as follows: 
      

 

{
 
 

 
    (   

 ((         )))

 (     )
           √|    |  √|    |

   (   
 ((         )))

 (     )
                              

}
 
 

 
 

(  ) 

4- RFCH estimator: After obtaining the two 

(               ) from the previous step, (MD) 

is calculated again for the entire observation 

and then we repeat the previous step to find 

(       ) Taking into account the correction 

factor and my agencies: 

         
   (   

 ((                 ) ))

 (       )
 

                  (  )     
5- RMVN estimators: The algorithm of this 

method first seeks to find a new matrix of 

observations for the variables based on the 

previous location and measurement estimator, 

as follows: 

Let's    ∑    
  
    

Where:  

   

 ,      (                 )

    (   (                 ))- 

K=1,…,n1    

Let's  ( )     *             ⁄       + 

To get the first estimator for scale: 

     
( )

 
   (  

 (             )))

 
(   ( ))
  

6- Strengthening Mahalanobis distance law by 

substituting the fortified location and 

measurement estimators instead of the 

arithmetic mean, covariance and covariance 

matrix, as follows: 

     (        )      
( )   

(         ) 

 After that, a critical value is found 

according to the following method: 

 The following chi-square value 

 (       )
 is adopted, where (p) is the 

number of variables. 

 take the sum of the RMD values whose 

values are less than or equal to the 

critical value, and we symbolize this 

sum with the symbol (V1). 

 Compute (𝜗):𝜗  (           )     

Where n is the size of sample. 

Now compering (𝜗) with (0.975)  

If  𝜗        then it will be a new critical 

value as ( 
(  𝜗)
 ) 

- weights are calculated through the ratio: 

   √
 

(  𝜗)
 

    

 

 

Weights will be obtained by the number of 

rows, and each row will be multiplied by its 

corresponding weight, and the new weighted 

matrix will be named (wx) 

- e- After that, the traditional method is 

applied to the weighted data after 

reducing the effect of the outliers by 

multiplying the outlier value by a 

certain weight, so the robust linear 

discriminant function (RLDAF) 

becomes as follows: 

- After that, the traditional method is 

applied to the weighted data after 

reducing the effect of the outliers by 

multiplying the outlier value by a 

certain weight, so the robust linear 

discriminant function (RLDAF) 

becomes as follows: 

        (   ̅   ̅ ) 
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3-The applied side  

3.1 Real data 

A random sample was taken from a group of 

publicly traded financial banks. 

The data was taken for a period of 8 years, and 

the number of explanatory variables was (28), 

which are the financial ratios mentioned in the 

reports and financial statements. 

First, the median value of each financial ratio 

was calculated as the table: 

 

 

 
Variabl

es 

Media

n 

variabl

es 

media

n 

variabl

es 

Media

n 

X1 0.039 X13 0.071 X25 0.629 

X2 0.067 X14 0.067 X26 0.043 

X3 0.629 X15 0.088 X27 1.400 

X4 8.350 X16 0.094 X28 8.199 

X5 2.526 X17 0.297   

X6 1.090 X18 0.470   

X7 0.081 X19 0.106   

X8 0.825 X20 0.423   

X9 0.975 X21 0.629   

X10 0.715 X22 0.962   

X11 0.790 X23 0.534   

X12 0.131 X24 0.933   

 

Stepwise forward selection: 

In this procedure use some tests to get the best 

discrimination equation this test is (wilks 

lambda, f test, P.value). 

From the result of this tests, we can determine 

the important variables in the model: 

                              (  ) 
Statistical analysis was conducted using the R 

programming language and the results of the 

aforementioned tests were obtained. The results 

contained 6 variables, which are the best and 

most important among the financial ratios, as in 

the following table (3-1): 

table (3-1): selective variables 
Important 

variables 

Wilks. Test F. test P.value 

X6 0.5723 14.64777 1.04E-10 

X7 0.548405 13.31274 5.94E-11 

X15 0.727093 12.51133 5.17E-07 

X20 0.793054 13.1779 8.22E-06 

X27 0.643386 13.71833 6.17E-09 

X28 0.854149 17.41712 6.33E-05 

After observing the results of the analysis, 

there are (6) financial ratios that are the most 

important explanatory variables in the 

discriminant equation. The highest value of the 

Wilks' Lambda statistic was for the variable 

(X28), which is the leverage index, as it 

reached (0.854149), and thus it is considered 

one of the most powerful variables in the 

discriminant model. Then comes Followed by 

the rest of the variables in order of importance. 

Thus, the main model becomes according to 

the important variables according to the 

following formula: 

                         

                (  ) 

Where (                         ) is the 

discriminant coefficient. 

3.2 Estimating the parameters and medians: 

After selecting the important variables, the 

medians of each indicator were calculated for 

distressed and non- distressed banks, as well as 

the discriminatory coefficients for the 

discriminant model, as shown in the table (3-

2): 

table (3-2):value of parameters 
Best 

variables 

The 

estimators 

The med. 

For 

Distressed 

banks 

The med. 

For non-

distressed 

banks 

X6 -15.512 0.217 0.205 

X7 8.669 0.224 0.215 

X15 133.536 0.014 0.017 

X20 -1.452 0.415 0.244 

X27 -2.944 0.479 0.457 

X28 0.158 1.996 7.91 

The model after estimating parameters is: 

                              

                  

                    
It is clear that the variable (X15) has the largest 

discriminatory coefficient with a value of 

(133.536), and this indicates that it is the most 

influential variable in the equation as it is 

directly proportional. As for the variable (X6), 

it has the largest discriminatory coefficient 

with a negative value     (-15.512), so its effect 

on the predictive value Inversely proportional. 

3.3 Cut-off point: 

The cut-off point is considered the last 

forecasting step in classifying new observations 

into one of the two groups (distressed and non-

distressed) and can be calculated from the 

formula:  

  
 ̅   ̅ 

 
  (  ) 
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Where ( ̅   ̅ ) is the means of the variables to 

first and second groups respectively. 

The results of statistical analysis give the 

prediction values for the robust discriminant 

function as the table: 

Table (3-3): Predictive values of the 

discriminant model and classification of banks 

into two groups based on the medians of the 

financial indicators of the Bank of 

 

 

 

 

 

 
Table 1: the prediction case 

 
The table above shows the prediction values 

and cases of non-distressed and failure for the 

banks under study and according to the years of 

study, as there are eight cases for each bank in 

the number of years, and these values show the 

status of the bank in that year regarding the 

case of failure and non-distressed (F, S). 

We note that the average of the discriminating 

values for the distressed banks is (-1.137), 

while for the second group, which is the non-

distressed banks, the average is (0.711), and 

thus the cut-off point is as follows: 

  
 ̅   ̅ 

 
 

      (      )

 
        

Any estimated value that passes this point is 

considered non distressful, otherwise it is 

failed. 

3.4 Classification errors 
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Classification error is an important indicator to 

measure the efficiency of the discriminative 

model and aims to obtain the lowest 

classification error. 

Classification error is the probability that a 

view is classified into the first group but 

belongs to the second group 

The previous table shows the predictive values 

and non-distressed cases for the banks under 

study, according to the years of study, where 

there are eight cases for each bank, giving a 

detailed picture of the failure and non-

distressed cases (F, S) for each year. 

For example, the Iraqi Bank, which was 

initially classified as faltering depending on the 

broker, has non distressed cases in some years, 

such as (2013-2014-2015), while the rest of the 

years resulted in failure (F). Another example: 

Let us take the commercial bank that was 

classified as non-faltering, but it had failures in 

the years (2010-2011). This is also the case in 

the rest of the banks. There are cases of 

matching classification and cases of mismatch, 

so we generate what is called a classification 

error. The table below shows the number of 

success and failing cases that occurred. The 

results of the discriminant analysis of the 

model appeared in the previous table (3-4): 

Table (3-4) represents the matching cases of 

default and non-default for the total banks of 

the study sample 

Hypothesis 

Prediction   failure Not failure 

Failure 31 9 

Not failure 10 54 

The classification error rate is (0.18), which is 

a certified percentage and gives accurate results 

in classification and prediction, while the 

accuracy of the classification is (0.82), and to 

obtain a match in the classification, the cases 

that were classified as distressed and are 

actually distressed are collected, which amount 

to (31) cases, with the non-distressed cases, 

which are It was also classified as non-

faltering, which is (54), then dividing the result 

by the total number of views, and the result is 

31+54=85/104= 0.82 

 

Shape (3-1): distribute the data into two groups 

The figure above shows the spread of new data 

after classification into two groups. It is clear 

that there is a slight overlap between the data, 

which led to the emergence of an intersection 

area between the two groups that expresses the 

presence of a classification error, which is very 

low. This means that the validity of the 

classification is more accurate in this model. 

3.5 Testing the power of the discriminatory 

function 

To measure the strength of the discriminant 

function to distinguish between the 

observations under study, the Wilks' Lambda 

test is used. 

  A hypothesis is developed to test the equality 

of the means of the groups under study. The 

null hypothesis indicates that there are no 

statistically significant differences between the 

means, i.e. the inability of the function to 

discriminate. As for the alternative hypothesis, 

it indicates the presence of significant 

differences between the means, i.e. the ability 

of the function to discriminate, as follows: 
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The results shows that Wilks' Lambda value is 

(0.5331) and P.value is (0.000000000611) so 

we reject the null hypothesis and that's mean 

the discriminant function has a hi ability to 

discriminant and classification. 

 

3.6. Conclusions 

This study was based on how to use the robust 

discriminant analysis method for the purposes 

of classification and prediction of financial 

default for a sample of leading banks in the 

Iraqi Stock Exchange, through the formation of 

a robust matrix consisting of the robust 

location and measurement parameters to resist 

the influence of outliers. 

  Contaminated data were weighted with 

appropriate weights to reduce the impact of 

outliers on the final results. The discriminant 

analysis method depends on dividing the study 

sample into two or more groups of 

observations, and the Iraqi Stock Exchange has 

not officially announced its decision to classify 

banks in terms of faltering or not. Therefore, a 

new method has been proposed to classify the 

banks of the study sample, starting with two 

groups (faltering and non-distressed). 

Distressed) by relying on a robust statistical 

measure, which is the median of the values of 

financial indicators, to eliminate the effect of 

outliers using an innovative algorithm. The 

proposed methods and techniques were applied 

to a random sample of data taken from the Iraqi 

Stock Exchange for a group of the most widely 

traded banks. 

The results of the analysis showed that this 

method was highly successful in classifying the 

study sample into two groups and predicting 

the classification of new observations into the 

group that fits them according to the approved 

cut-off point, with a significant classification 

error of (0.188), which corresponds to a high 

classification accuracy of (0.822), which 

suggests the last method to be used. In 

classification and forecasting of studies 

concerned with studying the Iraqi financial 

market. 

3.7. Recommendations 

Based on the results of the study, we 

recommend the following: 

 

1- This study achieved accurate results in 

classifying and predicting financial distress, so 

we recommend that researchers take advantage 

of the methods mentioned in this study. 

2- We recommend that researchers in statistical 

studies use robust standards and methods 

because they give accurate and efficient results 

in the event of abnormal values. 

3- We recommend that banks and financial 

institutions focus on the important financial 

indicators and ratios that were classified as 

influential variables in this study. 

4- We recommend that the competent 

authorities in the Iraq Stock Exchange provide 

the financial data and ratios that were used in 

this study until the year 2023 so that 

researchers can analyze studies related to 

financial analysis models. 
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