

وقائع المؤتمر العلمي البحثي الدوري الثامن للباحثين من حملة الشهادات العليا شعبة البحوث والدراسات التربوية/ قسم الاعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية/ وزارة التربية وجامعة بغداد/ كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

> ((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

Degree of Best Approximation of Unbounded Functions by Operators Raad Falih Hasan

Minsty of Education-Baghdad Education Third Rusafa *Corresponding author: raad49491@gmail.com

Harith M Abdul Razzaq

Mathematical, Open Educational College, Wasit Study Center – Iraq harith@uowasit.edu.iq

Abstract

In this work, we identified two operators of type H(f,x) and H(f,x), where H(f,x) is below the function f and H(f,x) is the above the function f. In this paper, the aim of it is to study and for a few unbounded functions, find the level of the most accurate approximation in the multiplier space $L_{p,\alpha_n}(x)$ and we obtained results.

Keywords: Multiplier Modulus of Smoothness, Multiplier Averaged, Degree of Best Multiplier Approximation of a Function,

1 Introduction

Approximation theory is a deep theoretical study of methods that use numerical approximation for the problems of mathematical analysis[1]. The concept of approximation was one of the most basic concepts that contribute effectively in the development of mathematical in frastructure in the past century [2]. Many researchers and mathematicians are still researching the problems of approximation theory and its applications, such as:

In (2014) [3] introduced the best one-sided approximation of unbounded functions in $1 \le P \le \infty$ by positive linear operator and entire functions. In (2012) [4] studied the magnitude of the constants in the equivalence between the first and second order Ditzian-Totik moduli of smoothness and related k-functional, continuous functions in topological spaces can also be used in the theory of function approximation in the future [8, 9, 10, 11]. In [12] investigated the Levitan and Bebutov approaches to the metrical approximations by trigonometric polynomials and ρ -periodic type functions. In [13] introduce two notions of closure in the category of proximity spaces which satisfy (weak) hereditariness, productivity, and idempotency.

وقائع المؤتمر العلمي البحثي الدوري الثامن للباحثين من حملة الشهادات العليا شعبة البحوث والدراسات التربوية/ قسم الاعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والمعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

2 Definitions and Concepts

Definition 2.1 [5]

The *k*-th difference of every function f of order k with step h at point x is defined by $\Delta_h^k f(x) = \sum_{m=0}^k (-1)^{m+k} \binom{k}{m} f(x+mh)$, where:

$$\binom{k}{m} = \frac{k!}{m!(k-m)!}$$
 is called the binomial coefficient.

Definition 2.2 [6], [7]

(1) For $f \in L_p(X), X = [a, b]$, we define the local modulus of smoothness of the function f of order k at point $x \in [a, b], 0 \le \delta \le \frac{b-a}{k}$ by:

$$\omega_k(f, x, \delta) = \sup\{\left|\Delta_h^k f(t)\right| : t, t + kh \in [a, b]$$

$$\cap \left[x - \frac{k\delta}{2}, x + \frac{k\delta}{2}\right]\}.$$
(1)

(2) The degree of best one-sided approximation is defined by:

$$\tilde{E}_n(f) = \inf\{\|P_n - q_n\|: P_n, q_n \in \mathbb{P}_n\}$$

Where

$$P_n(x) \leq f(x) \leq q_n(x)$$
.

(2)

 \mathbb{P}_n is the set of all algebraic or trigonometric polynomials of degree of n.

Definition 2.3

For $L_{p,\alpha_n}(X)$, where $X = \{f: f \text{ is unbounded function on } [0,\infty), \text{ if there is a sequence } \{\alpha_n\}_{n=0}^{\infty} \text{ of real numbers such that } \int_0^{\infty} f(x) \alpha_n dx < \infty \}$, with under the norm:

$$||f||_{p,\alpha_n} = \left(\int_X |f \alpha_n(x)|^p dx \right)^{1/p}, p \ge 1.$$

Definition 2.4

The degree of best multiplier approximation of f and the degree of best onesided multiplier approximation of f with respect to the algebraic or trigonometric polynomials on X are given respectively by:

$$E_n(f)_{p,\alpha_n} = in f\{\|f - P_n\|_{p,\alpha_n} : P_n \in \mathbb{P}_n\}$$

(4)

$$\tilde{E}_n(f)_{p,\alpha_n} = \inf\{\|q_n - P_n\|_{p,\alpha_n} \colon P_n, \ q_n \in \mathbb{P}_n\}$$

(5)

وقائع المؤتمر العلمي البحثي الدوري الثامن للباحثين من حملة الشهادات العليا شعبة البحوث والدراسات التربوية/ قسم الاعداد والتدريب وبالتعاون مع مركز

البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والجامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

Where:

$$P_n(x) \le f(x) \le q_n(x)$$

(6)

Definition 2.5

For $f \in L_{p,\alpha_n}(X), X = [0,\infty)$, the multiplier integral modulus of f of order $k, \delta \in \left[0, \frac{b-a}{k}\right]$ is defined by:

$$\omega_k(f,\delta)_{p,\alpha_n} = \sup_{0 \le h \le \delta} \left(\int_a^{1-kh} \left| \Delta_h^k f(x) \right|^p dx \right)^{1/p}$$

(7)

Definition 2.6

The multiplier local of smoothness of f of order k at point $x \in [a, b], \delta \in \left[0, \frac{b-a}{k}\right]$ is defined by:

$$\omega_k(f, x, \delta)_{\rho, \alpha_n} = \sup \{ \|\Delta_h^k f(x)\|_{p, \alpha_n}$$

(8)

Note that:

$$t, t + kh \in \left\{ \left[x - \frac{k\delta}{2}, x + \frac{k\delta}{2} \right] \cap [a, b] \right\},$$
 Additionally:
$$\Delta_h^k f(x) = \sum_{i=0}^k \binom{k}{i} (-1)^{k-i} f\left(x - \frac{k\delta}{2} + ih \right)$$

(9)

Furthermore, $x \mp \frac{kh}{2} \in X$ is the difference of a function f of order k with step h at a point x.

Definition 2.7

The multiplier averaged modulus of smoothness of f of order k is defined by:

$$\tau_k(f,\delta)_{p,\alpha_n} = \|\omega_k(f,.,\delta)\|_{p,\alpha_n} = \left(\int_X |\omega_k(f\alpha_n,x,\delta)|^p dx\right)^{\frac{1}{p}}, k \in N, P \in [1,\infty)$$

(10)

Definition 2.8

For $f \in L_{p,\alpha_n}(X), X = [0,\infty), n \in \mathbb{N}$, we define:

شعبة البحوث والدراسات التربوية/قسم الأعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

$$H(f,x) = f(x) - \frac{4}{h^2} \iint_0^{\frac{h}{2}} \left[2f(x+s+t) - f(x+2(s+t)) \right] \alpha_n ds dt$$
(11)
$$H(f,x) = f(x) + \frac{4}{h^2} \iint_0^{\frac{h}{2}} \left[2f(x+s+t) - f(x+2(s+t)) \right] \alpha_n ds dt$$
(12)
$$Where \ x \ge 0, h \ge 0. \text{ From the above inequalities, it is clear that:}$$

$$H(f,x) \le f(x) \le H(f,x)$$
(13)

3. Auxiliary Lemmas

Lemma 3.1

Assume that $f \in L_{p,\alpha_n}(X), X = [0,\infty)$, then $\omega_k(f,\delta)_{p,\alpha_n} \le \tau_k(f,\delta)_{p,\alpha_n}$ (14)

Proof:

The proof of this lemma will be carried out via definition 2.2 (part 1) and definition 2.7 respectively.

$$\begin{split} & \omega_k(f,\delta)_{p,\alpha_n} = \sup_{0 \le h \le \delta} \left(\int_a^{b-Kh} \left| \Delta_h^k f \alpha_n(x) \right|^p dx \right)^{\frac{1}{p}} \\ & = \sup_{0 \le k \le \delta} \left(\int_a^{b-kh} \left| \omega_k \left(f \alpha_n, x + \frac{x+kh}{a}, \delta \right) \right|^p dx \right)^{\frac{1}{p}} \\ & = \sup_{0 \le k \le \delta} \left(\int_{a+\frac{kh}{2}}^{b-\frac{kh}{2}} \left| \omega_k (f \alpha_n, x, \delta) \right|^p dx \right)^{\frac{1}{p}} \\ & = \tau_k (f,\delta)_{p,\alpha_n}. \end{split}$$

The proof is completed.

Lemma 3.2

Let
$$f \in L_{p,\alpha_n}(X), X = [0,\infty)$$
, then

$$\| \underset{+}{H}(f,\cdot) - f(\cdot) \|_{p,\alpha_n} \leqslant c\omega_2 \left(f, \frac{h}{2} \right)_{p,\alpha_n}$$

$$(15)$$

شعبة البحوث والدراسات التربوية/ قسم الاعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والحامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

Proof:

From definition 2.8, we have:

$$H_{h}(f,x) = f(x) + \frac{4}{h^2} \iint_{0}^{\frac{h}{2}} \left[2 f(x+s+t) - f(x+2(s+t)) \right] \alpha_n ds dt$$

$$H_{\underset{+}{h}}(f,x) - f(x) = \frac{4}{h^2} \iint_{0}^{\frac{h}{2}} \left[2f(x+s+t) - f(x+2(s+t)) \right] \alpha_{n} ds dt$$

Taking norm to both sides, yields the below inequality:

$$\left\| \frac{H}{h}(f,x) - f(.) \right\|_{p,\alpha_n} \le \left\| \frac{4}{h^2} \iint_0^{\frac{h}{2}} 2f(x+s+t) - f(x+2(s+t)) \right] ds dt \right\|_{p,\alpha_n}$$

$$= \left\| \frac{4}{h^2} \iint_0^{\frac{h}{2}} \Delta_{s+t}^2 f(x) ds dt \right\|_{p,\alpha_n}$$

$$=c\omega_2(f, h/2)_{p,\alpha_n}$$

The desired inequality is satisfied.

Lemma 3.3

Let
$$f \in L_{p,\alpha_n}(X), X = [0,\infty)$$
, then $||f(\cdot) - H(f,x)||_{p,\alpha_n} \le C\omega_2(f,\cdot,h/2)_{p,\alpha_n}$ (16)

Where *c* is a constant.

Proof:

The proof will be carried out via definition 2.8 as shown below:

$$H_{\underline{h}}(f,x) = f(x) - \frac{4}{h^2} \iint_0^{\frac{\pi}{2}} \left[2 f(x+s+t) - f(x+2(s+t)) \right] \alpha_n ds dt$$

Then we get the below integral equation:

$$f(x) - H_{\underline{h}}(f,x) = \frac{4}{h^2} \iint_0^{h_{12}} \left[2f(x+s+t) - f(x+2(s+t)) \right] \alpha_n ds dt$$

Taking the norm for both sides of the above integral equation would then yield:

$$\|f(\cdot) - H_{\underline{h}}(f, x)\|_{p, \alpha_n} \leq \left\|\frac{4}{h^2} \int \int_0^{h/2} \Delta^2 f(x + s + t) - f(x + 2(s + t)) ds dt\right\|_{p, \alpha_n}$$

شعبة البحوث والدراسات التربوية/ قسم الأعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والحامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

$$= \left\| \frac{4}{h^2} \iint_0^{\frac{h}{2}} \Delta_{s+t}^2 f(x) ds dt \right\|_{p,\alpha_n}$$

 $\leq C \omega_2(f,\cdot,h/2)_{p,\alpha_n}$

The desired inequality is fulfilled.

4 Main Results

Several results will be proved and analyzed in this section.

Theorem 4.1

Let $f \in L_{p,\alpha_n}(X), X = [0, \infty)$, then

$$\tilde{E}_n(f)_{P,\alpha_n} \leqslant c_1 \tau_2 \left(f, \frac{h}{2}\right)_{P,\alpha_n}$$

(17)

 C_1 is a constant.

Proof:

By taking the norm for both sides of the integral of the difference H(f,x) - H(f,x) and by utilizing Lemmas 3.1, 3.2 and 3.3, respectively we

get:

$$\left\| \frac{H(f,x) - H(f,x)}{\frac{h}{2}} + (f,x) \right\|_{P,\alpha_n} = \left\| \frac{H(f,x) - f(x) + f(x) - H(f,x)}{\frac{h}{2}} \right\|_{P,\alpha_n}$$

$$\leq \left\| f(\mathbf{x}) - H_{\frac{h}{t}}(f, \mathbf{x}) \right\|_{p, \alpha_n} + \left\| H(f, \mathbf{x}) - f(\mathbf{x}) \right\|_{p, \alpha_n}$$

$$=c\omega_2\left(f,\cdot,\frac{h}{2}\right)_{p,\alpha_n}+c\omega_2\left(f,\cdot,\frac{h}{2}\right)_{p,\alpha_n}=c_1\cdot\tau_2\left(f,\cdot,\frac{h}{2}\right)_{p,\alpha_n}\\ +c_1\tau_2\left(f,\cdot,\frac{h}{2}\right)_{p,\alpha_n}$$

$$\leq C \tau_2(f, h/2)_{p,\alpha_n}.$$

The constant C is given by $C = c_1 + c_2$. This completes the proof.

Theorem 4.2

Let $\in L_{p,\alpha_n}(X), X = [0,\infty)$. Then:

شعبة البحوث والدراسات التربوية/قسم الأعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

$$\|H'_{\underline{h}}(f,x) - f'(x)\|_{p,\alpha_n} \le \frac{c}{h} \omega_1 \left(f, \frac{h}{2}\right)_{p,\alpha_n} + \frac{1}{h} \omega_1(f,h)_{p,\alpha_n}$$
(18) Proof:

From definition 2.8, it can be obtained:

$$H_{\underline{h}}(f,x) = f(x) - \frac{4}{h^2} \iint_0^{\frac{h}{2}} \left[2f(x+s+t) - f(x+2(s+t)) \right] ds dt$$

Then

$$H_{\underline{h}}(f,x) = f(x) - \frac{4}{h^2} \left[\iint_0^{\frac{h}{2}} (x+s+t) - \iint_0^{\frac{h}{2}} (x+2(s+t)) ds \right] dt$$
(19)

Let $u = x + s \rightarrow du = ds$, then as $s = 0 \rightarrow u = x$ and then $s = \frac{h}{2} \rightarrow u = x + \frac{h}{2}$.

Suppose that $u = x + 2s \rightarrow du = 2ds$. This yields that:

as $s = 0 \rightarrow u = x$ and then $s = \frac{h}{2} \rightarrow u = x + h$. The function $H_{\underline{h}}(f,x)$ is then given by:

$$H_{\underline{h}}(f,x) = f(x) - \frac{4}{h^2} \left[\iint_x^{x+\frac{h}{2}} 2f(u+t)du - \iint_x^{x+h} \frac{1}{2} f(u+2t)du \right] dt$$
 (20)

Furthermore, $H'_h(f,x)$ is also introduced by:

$$H'_{\underline{h}}(f,x) = f'(x) - \frac{4}{h^2} \int_0^{\underline{h}} \left[2\left(f\left(x + \frac{h}{2} + t \right) - f(x+t) \right) - \frac{1}{2} (f(x+h+2t) - f(x+t)) \right] dt$$

Then

$$H'_{\underline{h}}(f,x) = f'(x) - \frac{4}{h^2} \int_0^{\underline{h}} \left[2\Delta_{h/2} f(x+t) - \frac{1}{2} \Delta_h f(x+2t) \right] dt$$
(21)

Then

$$\begin{split} & \left\| H_h'(f,x) - f'(\,.) \, \, \, \right\|_{p,\alpha_n} \leqslant \left\| \frac{4}{h^2} \int_0^{\frac{h}{2}} \, \varDelta_{h/2} f(x+t) dt \right\|_{p,\alpha_n} + \left\| \frac{4}{h^2} \int_0^{\frac{h}{2}} \, \frac{1}{2} \varDelta_h f(x+2t) dt \right\|_{p,\alpha_n} \\ & \leqslant \big[\frac{c}{h} \, \omega_1 \left(f, \cdot, \frac{h}{2} \right)_{p,\alpha_n} + \frac{1}{h} \, \omega_1 \big(f, \cdot, h \big)_{p,\alpha_n} \big]. \end{split}$$

The final result is obtained from definition 2.5. The preferred inequality is verified.

Theorem 4.3

If
$$f \in L_{p,\alpha_n}(X), X = [0,\infty)$$
, then

وقائع المؤتمر العلمي البحثي الدوري الثامن للباحثين من حملة الشهادات العليا شعبة البحوث والدراسات التربوية/ قسم الاعداد والتدريب وبالتعاون مع مركز

البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

$$\left\| \dot{H}_{h}(f,x) - f'(x) \right\|_{p,\alpha_{n}} \leqslant \frac{c}{h} \omega_{1} \left(f, \frac{h}{2} \right)_{p,\alpha_{n}} + \frac{1}{h} \omega_{1} \left(f, h \right)_{p,\alpha_{n}} \tag{22}$$

Proof:

The proof can be carried out via definition 2.8 and by a similar way to the proof of theorem 4.2.

Theorem 4.4

Let
$$f \in L_{p,\alpha_n}(X)$$
, $X = [0,\infty)$ then $\tilde{E}_n(f)_{p,\alpha_n} \le \frac{c_1}{h} \tau_1(f,h/2)_{p,\alpha_n} + \frac{c_2}{h} \tau_1(f,h)_{p,\alpha_n}$ (23)

Where c_1 and c_2 are constants.

Proof:

By utilizing lemma 3.1, theorem 4.2 and theorem 4.3, the desired inequality can be obtained as shown in the below analysis.

$$\begin{split} & \left\| \dot{H}_{\underline{h}}(f,.) - \dot{H}_{\underline{h}}(f,.) \right\|_{p,\alpha_{n}} = \left\| \dot{H}_{\underline{h}}(f,.) - \dot{H}_{\underline{h}}(f,.) - f(x) + f(x) \right\|_{p,\alpha_{n}} \\ & \leq \left\| \dot{H}_{\underline{h}}(f,.) - \dot{f}(x) \right\|_{p,\alpha_{n}} + \left\| \dot{H}_{\underline{h}}(f,.) - f(x) \right\|_{p,\alpha_{n}} \\ & = \frac{c}{h} \omega_{1} \left(f, \frac{h}{2} \right)_{p,\alpha_{n}} + \frac{1}{h} \omega_{1}(f, f, h)_{p,\alpha_{n}} + \frac{c}{h} \omega_{1} \left(f, \frac{h}{2} \right)_{p,\alpha_{n}} + \frac{1}{h} \omega_{1}(f, h)_{p,\alpha_{n}} \\ & = \frac{c_{1}}{h} \omega_{1} \left(f, \frac{h}{2} \right)_{p,\alpha_{n}} + \frac{c_{2}}{h} \omega_{1}(f, h)_{p,\alpha_{n}} \\ & \leq \frac{c_{1}}{h} \tau_{1} \left(f, \frac{h}{2} \right)_{p,\alpha_{n}} + \frac{c_{2}}{h} \tau_{1}(f, h)_{p,\alpha_{n}}. \end{split}$$

The proof is completed.

5 Conclusion

Through the operators H(f,x) and H(f,x), the Approximating of unbounded functions with the optimal multiplier in $L_{p,\alpha_n}(X)$ -space $X=[0,\infty)$ is obtained. The relationship between this degree $\tilde{E}(f)_{p,\alpha_n}$ and $\omega_1\left(f,\frac{h}{2}\right)_{p,\alpha_n}$, $\omega_2(f,\frac{h}{2})_{p,\alpha_n}$ and $\tau_1(f,\frac{h}{2})_{p,\alpha_n}$.

وقائع المؤتمر العلمي البحثي الدوري الثامن للباحثين من حملة الشهادات العليا شعبة البحوث والدراسات التربوية/ قسم الاعداد والتدريب وبالتعاون مع مركز البحوث والدراسات التربوية / وزارة التربية وجامعة بغداد / كلية التربية ابن رشد والجامعة المستنصرية — كلية التربية الاساسية والمنعقد تحت شعار

((الاستدامة ودورها في تنمية القطاع التربوي)) للمدة 2025/2/12

References:

- [1] Soleymani F, Stanimirović PS, Torregrosa JR, Saberi Nik H, Tohidi E., Recent theories and applications in approximation theory, The Scientific World Journal, 2015.
- [2] Park JH., Chebyshev approximation of discrete polynomials and splines, PhD, Virginia Polytechnic Institute and State University, USA, 1999.
- [3] AL-saidy, SK, Alaa, AM, The best one -sided approximation of unbounded functions in Lp,w spaces, PhD, Mustansiriyah University, Baghdad ,Iraq, 2014.
- [4] Tachev GT., Refined Estimates for the Equivalence Between Ditzian-Totik Moduli of Smoothness and K-Functionals, Theory and Applications of Mathematics & Computer Science, 2(2), 48-54, 2012.
- [5] Hristov, V.H. Ivanov, K.G., Operators for one sided approximation by algebraic in $L_{\mathbb{P}}[-1,1]^d$, Mathematica Balkanica, 2, 374-390, 1988.
- [6] Sendov, BI. Popov VA., The averaged modulus of smoothness, John Wiley & Sons, New York, USA, 1988.
- [7] DeVore, RA, Lorentz, GG., Constructive approximation, Springer Science and Business Media, 1993.
- [8] Ali HJ, Hassan RF., On Light Mapping and Certain Concepts by Using m x N-Open Sets, Baghdad Science Journal, 17(1), 371-377, 2020.
- [9] Humadi NK, Ali HJ., On ω C-continuous functions, In Journal of Physics, Conference Series, 1294(3), 2019.
- [10] Humadi NK, Ali HJ., New types of perfectly supra continuous functions, Iraqi Journal of Science, 26, 61(4), 811-819, 2020.
- [11] <u>Hussain, KA</u>, <u>Noman LM</u>, Ali, HJ., On supra ωb_p-Lindelöf spaces, Italian Journal of Pure and Applied Mathematics, 47, 588–595, 2022.
- [12] Chaouchi B, Kostic M, Velinov D., Metrical almost periodicity, metrical approximations of functions and applications, Turkish Journal of Mathematics, 47(2), 769-793, 2023, https://doi.org/10.55730/1300-0098.3393.
- [13] Özkan S, Kula M, Kula S, Baran TM., Closure operators, irreducibility, Urysohn's lemma, and Tietze extension theorem for proximity spaces, Turkish Journal of Mathematics, 47(2),870-882, 2023, https://doi.org/10.55730/1300-0098.3398.