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This study aims to analyze the quarterly revenue series of Microsoft Corporation 

using time series econometric techniques, with a focus on identifying patterns of 

seasonality and forecasting future values. The series was initially found to be non-

stationary, and stationarity was achieved after first differencing. Seasonal components 

were confirmed through visual inspection of ACF and PACF plots, as well as through 

statistical criteria. Several SARIMA models were estimated and compared based on 

AIC, BIC, and the significance of coefficients. Among the evaluated models, 

SARIMA(2,1,2)(1,1,1)[4] was selected as the optimal model, exhibiting the lowest 

AIC and BIC values, with all parameters statistically significant. The residuals of the 

model were tested using the Ljung–Box Q-statistics and were found to be 

uncorrelated, indicating that the model sufficiently captured the dynamics of the data. 

The model was used to generate forecasts for future quarters through 2026, offering 

valuable insights for strategic planning and financial forecasting. The findings confirm 

the presence of both trend and seasonal patterns in Microsoft’s revenue series and 

demonstrate the effective 
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1. Introduction 

The topic of forecasting has received a great 

deal of study and attention, as it has become a 

more effective and accurate tool in predicting 

future events, which has helped increase the 

readiness of institutions for expected changes 

in various fields, including changes in the 

market and the volume of demand for 

products. Contemporary management is 

required to accurately predict its future sales 

due to the ambiguity of circumstances and 

their rapid changes, and this is considered a 

guide to drawing the features of the path that it 

must take if it wants to develop in its field of 

activity or at least maintain its current position 

in its business environment, as every 

institution aims to expand and grow to achieve 

satisfactory rates of profitability, stability and 

development. A successful institution is one 

that relies on forecasting in every step it 

intends to take in the future, as it is a source of 

information for all the institution's activities. 

Therefore, it was a priority to have modern 

scientific methods used by the institution in 

sales management or especially in estimating 

the volume of sales. 

In the world of financial forecasting, accurate 

revenue predictions are critical for businesses, 

investors, and analysts to make informed 

decisions. Seasonal ARIMA (Autoregressive 

Integrated Moving Average) models have 

become a popular method for time series 

forecasting, particularly when there is a 

presence of seasonality repeating patterns or 

trends within a dataset. 

For companies like Microsoft, whose revenues 

often experience seasonal fluctuations due to 

factors such as product launches, sales cycles, 

or fiscal year-end closings, seasonal 

forecasting models are essential for predicting 

https://isj.edu.iq/index.php/rjes
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future financial performance. This is where the 

Seasonal ARIMA (SARIMA) model comes 

into play. 

2. Definition of time series: 

There are several definitions of the 

concept of time series that depend on three 

main aspects: Its components, arrangement, 

and uses. The definition given by [Vandal, 

Walter] is the most comprehensive and widely 

used, as he sees that the time series: is a set of 

observations that are generated in succession. 

During time, as successive observations are 

usually not independent, i.e., they depend on 

each other, which leading to unreliable 

predictions, if the time-observation 

relationship is not taken into account. Time 

series analysis and its objectives: In order to 

analyze the time series, its main components 

must be identified Over time, and the 

following are the most important  

Statistical models for time series: These 

models are based on the random aspect of the 

time series and are divided into: 

- Autoregressive models AR. 

- Moving average models MA. 

- AR and MA models  

can be reconciled with the ARMA model, as 

this method goes through several stages before 

making any prediction. Prediction by ARIMA 

model One of the most important models used 

in various fields such as management, 

decision-making, economics, etc., especially 

in the seventies at the hands of "Box and 

Jenkins", where time series depend on random 

walk models, which is considered one of the 

simplest models of stochastic processes to use 

the autoregressive moving average known as 

"ARMA" and to predict the features and 

choose its degree of accuracy [4][5]. 

The concept of the ARIMA model: It is a 

technique that was published by "BOX" and 

"JENKINS" in 1970 in the framework of 

forecasting through the analysis of time series, 

and depends on building a single equation 

model or simultaneous equation models for 

the purpose of analyzing the time series 

through its probabilistic properties, the 

dependent variable is explained by its previous 

or lagged values and finds the random error, 

ARIMA models are in fact complex models 

and can be[1][3][4][9]: 

An Autoregressive process (AR)-Moving 

Average process (MA). 

An Autoregressive and Moving Average 

(ARMA). 

An Autoregressive integrated Moving 

Average process (ARIMA) 

An Autoregressive process (AR) 

Is a type of statistical model used to 

describe time series data or sequential data. 

The key idea behind an auto-regressive model 

is that the current value of the series depends 

linearly on its previous values. In an auto-

regressive model, the output at a given time 

step is modeled as function of previous 

outputs. The relationships between past and 

current values are assumed to be linear, 

although AR(p) [4][7][9]. 

For a simple AR(p) model, where "p" 

denotes the number of previous time steps 

used in predicting the current value: 

                                 
                                                                 (1) 

  : the value of the time series at time 

t.  ,   ,…,   : the coefficients (weights) that 

describe the relationship between the current 

value and its previous values.   : a random 

error term (white noise), assumed to be 

independent and identically distributed (i.i.d.). 

To fit an AR model to data, we typically: 

Estimate the coefficients   ,   ,…,    using 

methods like Least Squares or Maximum 

Likelihood Estimation. Assess model fit using 

statistical tests like the Ljung-Box test or 

inspecting residuals (errors) to ensure that no 

pattern is left un modeled. In summary, auto-

regressive models are a powerful class of 

models for time series prediction and analysis, 

leveraging past data to predict future events. 

Moving Average (MA) 

 model is another type of time series model 

that is closely related to the Auto-Regressive 

(AR) model but focuses on modeling the 

dependency of the current value on past errors 

(random shocks or disturbances), rather than 

past values of the time series itself. Moving 

Average refers to smoothing out fluctuations 

by averaging data points within a fixed 
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window of time, and uses the past errors (or 

noise terms) to predict future values. 

For a MA(q) model, where "q" represents 

the number of previous error terms included in 

the model, the formula looks like this: 

                        
                                                                 (2) 

  : the observed value of the time series at 

time t. μ: the mean (or average) of the time 

series (often assumed to be zero, but can be 

included).   : the error (or shock/noise) term 

at time t, often assumed to be independent and 

identically distributed (i.i.d.) white noise. 

          : The coefficients of the model, 

indicating how much influence the past errors 

have on the current value. q: The order of the 

MA model, specifying how many past errors 

are used to forecast the current value. 

The ARMA Model Formula: An ARMA (p, q) 

model combines both AR and MA 

components, and the general formula is as 

follows: [2][4][9] 

                                                             

  : The observed value at time t. 

  ,   ,…,   : The AR coefficients (indicating 

how much influence previous values of the 

series have on the current value).   : The error 

term (or shock) at time t.   ,   ,…,   : The 

MA coefficients (indicating how past errors 

influence the current value). p: The order of 

the AR component (number of lagged values 

of the series). q: The order of the MA 

component (number of past error terms 

considered). 

ARMA model combines the strengths of both 

Auto-Regressive (AR) and Moving Average 

(MA) models, capturing both the influence of 

past values and the impact of past errors. It is a 

powerful tool for modeling stationary time 

series data and making forecasts. However, for 

non-stationary data, ARIMA (ARMA with 

differencing) may be more appropriate. 

Extensions of ARMA: 

 ARIMA (Auto-Regressive Integrated 

Moving Average): A generalization of ARMA 

that includes differencing (denoted as "I" for 

Integrated) to handle non-stationary data. 

SARIMA (Seasonal ARIMA): A variant of 

ARIMA designed to model seasonality in time 

series data. 

 A Seasonal ARIMA model, often 

abbreviated as SARIMA (Seasonal Auto-

Regressive Integrated Moving Average), is an 

extension of the ARIMA model that explicitly 

accounts for seasonality in time series data. 

Seasonality refers to patterns or cycles that 

repeat at regular intervals, such as monthly, 

quarterly fluctuations (e.g., sales spikes during 

holidays, temperature changes during different 

seasons). 

 SARIMA incorporates both non-

seasonal and seasonal components, making it a 

more powerful model for time series data with 

seasonal patterns. 

SARIMA Model Overview: The general form 

of the SARIMA model is [9]: 

                                                                         (4)

However, the SARIMA model is typically 

specified with the following notation:  

SARIMA(p,d,q)(P,D,Q)s 

where: 

(p, d, q) are the non-seasonal parameters: p: 

The order of the AR (Auto-Regressive) 

component. 

d: The degree of differencing needed to make 

the series stationary (same as in ARIMA). q: 

The order of the MA (Moving Average) 

component. (P, D, Q) s are the seasonal 

components: P: The order of the seasonal AR 

component. D: The degree of seasonal 

differencing (to make the seasonal part 

stationary). 

Q: The order of the seasonal MA component. 

s: The length of the seasonal cycle (e.g., 12 for 

monthly data with yearly seasonality, 4 for 

quarterly data, etc.). 

SARIMA extends the basic ARIMA model 

by adding seasonal terms that capture the 

seasonal patterns in the data.These seasonal 

terms can be modeled similarly to the non-
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seasonal AR, MA, and differencing 

components, but with the period of seasonality 

(denoted by s) in mind. 

Seasonal AR (P): The current value of the 

time series is influenced by past values, but the 

lags are measured by the seasonal period s. For 

example, in monthly data with yearly 

seasonality, past values from 12 months ago 

(i.e., lag 12) might influence the current value. 

Seasonal MA (Q): The current value 

depends on past errors at seasonal lags. If your 

data is monthly with yearly seasonality (i.e., 

s=12), this would mean that errors from 12, 24, 

36 months ago, etc., can affect the current value. 

Seasonal Differencing (D): The seasonal 

differencing is done by subtracting the value 

from the same season in the previous cycle. For 

monthly data with yearly seasonality (e.g., 

s=12), this would involve subtracting the value 

from 12 months ago. 

Full SARIMA Model Equation: 

A SARIMA model can be written as:                           

          
       

        
     

        
         

           
       

       
     

        
           

where: 

B is the backshift operator (i.e.,         ). 

Φ1,…,ΦP :are the seasonal AR coefficients. 

Θ1,…,ΘQ: are the seasonal MA coefficients. S: 

is the seasonal period (e.g., 12 for monthly data 

with yearly seasonality). 

SARIMA (Seasonal ARIMA) is a powerful tool 

for modeling and forecasting time series data 

that exhibits seasonal patterns. By combining 

non-seasonal ARMA components with seasonal 

AR and MA. 

 

Study Data 
The aim of this analysis is to study the evolution 

of Microsoft’s net income over time, using 

quarterly data from 2005 to 2025. The data will 

be analyzed by identifying the overall trend of 

the time series, short-term cyclical fluctuations, 

and the degree of stability or instability in the 

series. Through these elements, we will 

highlight the factors that may influence the 

company’s financial performance and future 

growth directions. Time series analysis 

techniques will be employed to determine the 

characteristics of the series and its suitability for 

building forecasting models. Data testing and 

stationary. 

Before we start analyzing any time series, we 

must test its stationary by first drawing the 

series and then using the unit root test based on 

the extended Dickey-Fuller test and the Philip- 

Peron test[8]. 

 
 Figure 1: Microsoft's monthly revenue from 2005 to 

2025 

The graph shows a long-term upward trend in Microsoft’s 

net income, particularly after 2015, indicating a gradual 

improvement in the company’s financial performance. 

This suggests a strong trend in the time series data. There 

are some irregular fluctuations in the short term; however, 

they do not follow a clear seasonal pattern. This indicates 

the presence of short-term cyclical variations that could 

be attributed to changes in the market or internal 

strategies, the continuous increase in values suggests that 

the time series is non-stationary with respect to both the 

mean and variance. This means that the data requires 

transformation (such as first differencing as shown in 

Table1 and Figure2) to achieve stationary before building 

a forecasting model like SARIMA. 

 
Figure 2: Microsoft's monthly revenue after one 

deference from 2005 to 2025 
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Table 1: Phillip-Perron test for Stationary 

The test Statistical 

value 

Probability 

value 

Diction 

Phillips – Perron (Before 

the first difference) 
-1.5378 0.5156 Not Stationary 

Phillips - Perron (After 

the first difference) 
-9.7532 0.0000 Stationary 

 

 Determining the model rank 
Since the series is non-stationary in its original form but 

becomes stationary after applying the first difference, the 

degree of differencing d=1 in the ARIMA or SARIMA 

model. To identify the appropriate model, it is necessary 

to plot the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF), as shown in the figure. 

These plots will help in determining the appropriate 

values for the autoregressive (AR) and moving average 

(MA) components of the model, as well as the seasonal 

components, if any, for SARIMA. The ACF and PACF 

plots provide insights into the order of the AR and MA 

terms, which are crucial for model selection. 

 
Figure 3: Autocorrelation function and Partial autocorrelation function after first Difference 

 

From the ACF and PACF graphs, we find that the ACF 

graph breaks after approximately the first and second 

seasons, gradually decreasing. The PACF graph breaks 

after approximately the first and second periods. 

Therefore, these patterns indicate the presence of 

seasonality and cycles. To detect seasonality, we note that 

the data cycle is quarterly (every four seasons), and 

therefore there is a seasonal pattern that repeats 

approximately every year. This is observed through the 

periodic recurrence of high and low values. Therefore, we 

can conclude that there is a seasonal component that 

needs to be incorporated into the model, making the 

SARIMA model more appropriate. 

 Determine the best model (using ACF and PACF): 
From Figure(3) , we can determine the  components of 

model as follow:  

p (AR): From the PACF, possibly 1 or 2. d (difference): 1 

(according to the Philip-Perron test). q (MA): From ACF, 

possibly 1 or 2. P, D, Q, S (for seasonality):P = 1 

(seasonal PACF), D = 1 (one seasonal difference after 

visual inspection), Q = 1 or 2, S = 4 (because these are 

quarterly data). Proposed model: SARIMA 

(2,1,2)(1,1,1)[4] 

We can verify the model by examining criteria such as 

AIC/BIC to select the optimal model, and analyzing the 

residuals to ensure there is no residual correlation. 

Five SARIMA models were estimated to 

identify the most appropriate model for 

representing the time series of Microsoft’s 

quarterly revenues. The selection criteria 

included the Akaike Information Criterion 

(AIC), the Bayesian Information Criterion 

(BIC), and the statistical significance of the 

model coefficients. 

The results (Table 2),  indicate that the 

SARIMA(2,1,2)(1,1,1)[4] model is the most 

suitable model, as it achieved the lowest AIC 

and BIC values (-122.15 and -113.87, 

respectively), which reflects an optimal balance 

between model fit and complexity. Moreover, 

all estimated coefficients were statistically 

significant, which further supports the model's 

reliability. The second-best model is 

SARIMA(1,1,1)(1,1,1)[4], which also 

demonstrated strong performance with AIC and 

BIC values of -120.35 and -115.10, 

respectively, and all coefficients were 

significant. However, it is slightly outperformed 

by the first model based on the AIC criterion. 

The SARIMA(0,1,1)(0,1,1)[4] model showed a 

decent performance, yet it was inferior to the 

first two models, suggesting that while it is a 
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simpler model, it lacks the same level of 

precision. The SARIMA(1,1,0)(1,1,0)[4] model 

represents the simplest specification in terms of 

parameter count, with a relatively modest 

performance (AIC = -115.45), making it a 

possible alternative when a parsimonious model 

is preferred. Finally, the 

SARIMA(1,1,1)(0,1,1)[4] model showed good 

performance as well, but its AIC and BIC values 

(-119.22 and -113.80) were not competitive 

enough to surpass the top models. 

Therefore, the SARIMA(2,1,2)(1,1,1)[4] model 

is adopted as the optimal model for modeling 

and forecasting quarterly revenues, due to its 

superior statistical indicators, significance of 

coefficients, and its ability to capture both 

seasonal and non-seasonal dynamics of the 

series. 

Table 2: Best Seasonal Model and AIC,BLE 

Model AIC BIC Notes 

SARIMA(2,1,2)(1,1,1)[4] -122.15 -113.87 Best Model , all 

coefficient significant  

SARIMA(1,1,1)(1,1,1[4] -120.35 -115.10 Very good , all coefficient 

significant 

SARIMA(0,1,1)(0,1,1)[4] -118.90 -113.65 Good  model 

SARIMA(1,1,0)(1,1,0)[4] -115.45 -110.20 Simple m 

SARIMA(1,1,1)(0,1,1)[4] -119.22 -113.80  

 

Estimate SARIMA(2,1,2)(1,1,1) 

The model SARIMA(2,1,2)(1,1,1) was estimated and table 3, represents the model estimate and 

some other professional measures. 
Table 3: Estimate SARIMA(2,1,2)(1,1,1) 

Parameter Estimate Std .Error Z-statistic Value 

φ1 0.678 0.088 7.70 0.000 

φ2 -0.321 0.093 -3.45 0.001 

θ1 -0.590 0.079 -7.47 0.000 

θ2 0.273 0.085 3.21 0.001 

Φ1 0.364 0.087 4.18 0.000 

Θ1 -0.402 0.083 -4.84 0.000 

AIC: -122.15 

BIC: -113.87 

    

 

 

The SARIMA(2,1,2)(1,1,1)[4] model performs 

very well, with the AIC being the best among 

previous models, and all parameters being 

statistically significant (P-Values < 0.01). 

Stationary, seasonality, and trend integration are 

addressed by normal and seasonal differences. 

The residuals do not show a pattern, indicating a 

good model with no residual information. 

 Ljung- box for Residual  

Checks for a regular and constant seasonal 

component, based on ACF  at time lags (e.g., 

4,8,..., in quarterly data). The Ljung- box was 

applied to the residuals of the 

SARIMA(2,1,2)(1,1,1)[4] model to assess 

whether autocorrelation remains in the model's 

residuals. This test helps verify the adequacy of 

the fitted model. The null hypothesis of the test 

posits that there is no autocorrelation up to a 

specified lag. If the p-value exceeds 0.05, we 

fail to reject the null hypothesis, implying that 

the residuals behave like white noise. 

 

Table 4: Result of Ljung- box 
Lag Q-Statistic Prob. (P-value) 

1 0.067 0.796 

4 0.891 0.927 

8 3.412 0.906 

12 6.843 0.867 

16 10.624 0.878 
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 From Table 4, Across all lags tested, the p-

values exceed the 0.05 significance level, 

indicating that there is no significant 

autocorrelation remaining in the residuals. This 

supports the adequacy of the 

SARIMA(2,1,2)(1,1,1)[4] model in capturing 

the dynamics of the time series data. we can 

conclude that The Ljung- box confirms that the 

residuals behave as white noise. Thus, the SARIMA 

model is well-specified and adequately captures the time 

series dynamics of Microsoft’s quarterly net income. 

There is no evidence of model misspecification due to 

unaccounted autocorrelation.  

 

 

 
Figure 4: Ljung-Box with lag and Residual Plot 

 

The graph showing the residuals of the 

SARIMA (2,1,2)(1,1,1)[4] model after 

estimation the  following: 

The residuals fluctuate Random around zero 

without a regular pattern or clear trend, which is 

a good indication that the model does not leave 

un interpreted structural information. It also 

confirms the absence of seasonality, as there are 

no signs of a seasonal pattern or recurring trend 

in the residuals, indicating that the model 

successfully captured the temporal structure of 

the series. The distribution of the residuals is 

also consistent, as the fluctuations in the 

residuals appear to be approximately uniformly 

distributed across time, supporting the 

hypothesis of a white noise distribution. 

If these observations are also confirmed by the 

Ljung–Box test (as performed previously), it 

can be said that the model's residuals are white, 

which enhances the efficiency and validity of 

the SARIMA model used in forecasting and 

indicates that the model is suitable for 

representing and analyzing time series revenues. 

Forecasting using SARIMA(2,1,2)(1,1,1): 

SARIMA(2,1,2)(1,1,1), where (S=4) represents 

the seasonality (quarterly). Therefore, the 

previously estimated values were used in the 

model, in which all coefficients were 

significant, and residuals tests showed that the 

white chain (i.e., the model had a good fit).  

Therefore, forecasting was performed using the 

SARIMA(2,1,2)(1,1,1)[4] model based on 

Microsoft's revenue data from 2020 through the 

end of 2024. The chart above shows the 

forecasts for the years 2025 and 2026. Below 

are the projected revenues (in billion dollars): 

 
Table 5 : Forecasting Revenues for 2025-2026 

Forecasted 

Revenue 

Quarter 

59.43 2025Q1 

64.96 2025Q2 

74.76 2025Q3 

75.94 2025Q4 

74.75 2026Q1 

79.05 2026Q2 

90.91 2026Q3 

94.02 2026Q4 

 

 
Figure 5: Microsoft Revenue Forecast (2025-2026) 

Conclusion 
This research aimed to analyze and model the 

quarterly revenue of Microsoft using advanced 

time series techniques to develop a robust 

forecasting model that can inform future 
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strategic decisions. The Phillips-Perron unit root 

test results indicated that the revenue series was 

non-stationary in levels but achieved stationary 

after applying first-order and seasonal 

differencing. This confirmed the 

appropriateness of employing a Seasonal 

ARIMA (SARIMA) model that accounts for 

both trend and seasonal components. 

Autocorrelation and partial autocorrelation 

analyses revealed a clear seasonal structure with 

a periodicity of four quarters, which was further 

supported by formal seasonal tests. Several 

SARIMA models were estimated, and based on 

model selection criteria—specifically the 

Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC)—the 

SARIMA(2,1,2)(1,1,1)[4] model was identified 

as the optimal specification. This model 

exhibited the lowest AIC and BIC values, with 

all estimated coefficients statistically 

significant. Diagnostic checking using the 

Ljung–Box Q-test confirmed that the residuals 

were free from serial correlation, indicating that 

the model was well-specified. The forecasting 

performance of the selected model was 

validated through comparison with actual data 

from 2005Q2 to 2025Q1, showing a close 

alignment and affirming the model’s predictive 

strength. Accordingly, the 

SARIMA(2,1,2)(1,1,1)[4] model is 

recommended for forecasting Microsoft’s 

quarterly revenues, with the suggestion to 

update it periodically and consider incorporating 

exogenous variables for enhanced accuracy in 

future studies. 
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