
 

  
 

 Iraqi Statisticians Journal / Vol. 2 (2025): Special issue for ICSA2025: 358-365 

*
 Corresponding author.E-mail address: noor.abd2201m@coadec.uobaghdad.edu.iq  

 https://doi.org/10.62933/xb53be21 

This work is licensed under   https://creativecommons.org/licenses/by-nc-sa/4.0/    
358 

 

 

Iraqi  Statisticians Journal 

 

https://isj.edu.iq/index.php/isj 

ISSN: 3007-1658 (Online) 

 

Comparison of the LEO Estimator Method and the Two-Parameter 

LEO Method in Estimating the Parameters of the Conway–Maxwell–

Poisson Regression Model in the Presence of the Multicollinearity 

Problem 

 
Nour Alaa Aldin Abdul Moneim

1
, Suhail Najim Abood

2 
 

 
       1,2 Department of Statistics, University of Baghdad, College of Administration and Economics, 10064 Baghdad, Iraq.  

ARTICLE INFO ABSTRACT 

Article history: 
Received               4/12/2024  
Revised                 6/12/2024 

Accepted               15/1/2025   
Available online   15/5/2025 

The aim of the research is to compare the Leo method and the two-parameter 

Leo method in estimating the parameters of the Conway-Maxwell-Poisson 

regression model in the presence of the Multicollinearity problem, While 

Poisson regression serves as a standard tool for modeling the association 

between a count response variable and explanatory variables, it is well 

documented that this approach is limited by Poisson's assumption of equal 

dispersion of the data, The Conway–Maxwell–Poisson (COMP) regression 

model has established itself as a viable alternative for real count data that 

Accounting for over- or under-dispersion, COM-Poisson regression can flexibly 

model associations that include the discrete count response variable and 

covariates, Using the simulation method (Mont-Carlo) to generate data tracking 

the Conway-Maxwell-Poisson regression model, and these data suffer from the 

problem of linear multiplicity according to the influencing and variable factors, 

including (sample size, degree of correlation, different values of the dispersion 

parameter, number of explanatory variables) and the average squares of error 

were relied upon as a criterion for comparing the methods of estimating the 

parameters of the model, Through the results of the simulation, the superiority of 

the new modified Leo estimator with two parameters over the estimator Leo, In 

the future study, the Generalized Mutual Verification Standard (GCV) can be 

used to select the bias parameters of the new modified two-parameter Leo 

estimator (CPNMTPL) for greater efficiency, The results indicate that the 

number of publications is growing, and the management and business area is the 

one that contributes the most, with the countries that produce in co-authorship 

also providing the most publications. 

Keywords: 

Conway-Maxwell-Poisson  

Regression model 

Liu estimator 

New modified two-parameNer Liu estimator 

The problem of Multicollinearity 

Simulation 

 

 

1. Introduction  

Regression models are one of the most 

important models used in modern studies, 

especially research and health studies because 

of their important results, Poisson regression 

is a common tool for modeling counting data 

and is applied in medical sciences, 

engineering, etc. However, real data is often 

too much or little dispersed, and we cannot 

apply Poisson regression, to overcome this 

problem, we consider the regression model 

based on the Conway Maxwell Poisson 

distribution (COMP) to be the best 

distribution for this problem, in general 

Estimator of the maximum probability of 

estimating unknown parameters of the 

regression model (Conway-Maxwell-Poisson 

(COMP) However, in the presence of the 

problem of Multicollinearity, the estimates 

become unstable due to their large variance 

and standard error, to solve this problem, a 
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new Liu estimator was proposed for the 

Conway-Maxwell-Poisson regression model 

with excessive and even dispersion and lack of 

dispersion, the number of data modeling is 

improving in many areas of research, 

Regression models of counting data are used 

with data that suffer from excessive or under-

dispersion, counting data regression models 

include the Poisson model, the negative 

binomial (NB) model, the bell model, and the 

Conway-Maxwell-Poisson model, in many 

areas of research, the commonly used model is 

the Poisson model. However, the Poisson 

model assumes that the mean and variance of 

the response variable are equal, in most cases, 

the response variable data can be excessive 

and dispersed, in these cases, The binomial 

regression model is used. negative (NB) 

because it is more flexible than the Poisson 

regression model in absorbing excessive 

dispersion However, the Conway-Maxwell-

Poisson model is more flexible than the 

negative binomial (NB) model because it can 

be used in both cases of excess or minus 

dispersion, the Conway-Maxwell-Poisson 

(Com-Poisson) distribution was proposed by 

Conway and Maxwell, this distribution applies 

to real counting data that express dispersion 

data, plus or minus, So the COM-Poisson 

regression is a flexible model for linking a 

discrete enumeration response variable with 

common (explanatory) variables, a COM-

Poisson distribution is flexible enough to deal 

with dispersion in counting data (whether 

excess or minus) with an additional dispersion 

parameter denoted by kama (γ), which is a 

two-parameter generalization of the Poisson 

distribution. 

2.CONWAY–MAXWELL–POISSON 

REGRESSION 

As a generalization of the Poisson distribution 

and a common alternative to other discrete 

distributions, the Conway–Maxwell–Poisson 

(CMP) distribution has the flexibility to 

characterize redundant or dispersed data 

clearly (Zhan & Young, 2024). 

The distribution of Conway-Maxwell-Poisson 

according to (Daly & Gaunt, 2016) is defined 

as 
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Where   (     ) It is known as the 

normalization factor and as in the following 

formula 
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n : Indicates the sample size. 

   : Indicates the dispersion parameter of the 

Conway–Maxwell–Poisson distribution. 

And that 

       (  
    )                                        (3)                                                       
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β: indicates a vector whose dimensions 

(k+1)×1 vector parameters (            
  ).  

δ : indicates a vector of dimensions (m+1)×1 

vector parameters (             )  
                                              

 and   . 

3.The problem of Multicollinearity 

The term multiple linear relationship refers to 

the situation in which two or more illustrative 

variables are closely related to each other. 

4.Methods for estimating Conway-

Maxwell-Poisson regression parameters 

In this paragraph, the methods for estimating 

the regression parameters of Conway Maxwell 

Poisson will be explained (COMP). 

1.4 COM–Poisson–Liu estimator 
Several studies on regression models have 

shown that the Liu type estimator is a good 

alternative to the character regression 

estimator (Tanış & Asar, 2024). 

(Akram et al., 2022) and (Rasheed et al., 

2022), presented a Liu estimator for the 

COMP model and named the CPL estimator, 

as follows: 
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1.2 Proposed COM–Poisson–new modified 

two-parameter Liu estimator 

After (Sami, Amin, Akram, et al., 

2022) (Sami, Amin, & Butt, 2022) and  

(Abonazel, 2023), the new modified Liu 

estimator for the Conway–Maxwell–Poisson 



 

 

Nour A. A. A. M., Suhail N. A. /Iraqi Statisticians Journal / Vol. 2 (2025): Special issue for ICSA2025: 358-365 

360 

 

(COMP) regression model was proposed 

Based on the two parameters, our proposed 

estimator is obtained by increasing 

  (    ) ̂        
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5. Comparison between the Liu estimator 

(CPL) and the two - parameter 

Liuestimator (CPNMTPL) 

A two-parameter Leo estimator 

(CPNMTPL) is better than a CPL estimator if 

condition is met 
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The difference between the Mean Mean Least 

Squares of Error (MMSE) matrix for Leo 

estimators (CPL) and the two-parameter Leo 

estimators (CPNMTPL) is as follows: 
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So we can rewrite the previous equation as 

follows: 
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A two-parameter Leo estimator (CPNMTPL) is 

better than a CPL estimator. 

6.Estimation of bias parameters 

We can use the following estimators 

for parameter d in the Leo estimator (CPL): 

 ̂  
 

 
∑ (

 ̂  ( )
 

(
 ̂

  
    ̂  ( )

 )

)
 
                                       (9)                                      

 ̂      (      (
 ̂  ( )

   ̂

    (
 ̂

  
)     ( ̂  ( )

 )

),  (10)                                   

We can use the following estimator for 

parameter k in the character regression 

magnitude (CPR): 
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(SABRI, 2013) presented the following 

formula: 
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   7. Simulation 

Simulations are the imitation of a 

process or system in the real world over time, 
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simulations require the use of models; the 

model represents the main characteristics or 

behaviors of the chosen system or process, 

while simulation represents the evolution of 

the model over time, although simulation can 

still be performed "manually", nowadays it 

always implies the use of a computer to create 

an artificial history of a system to draw 

conclusions about its characteristics and 

actions. 

Simulation experiments were 

conducted using some different levels of (n), 

(γ), (ρ), (p), (σ
 
) and as follows: 

Different sample sizes were used, n = 50, 100, 

150, 250. 

Different values were used for the dispersion 

parameter,              . 

Different degrees of correlation were used 

between the illustrative variables, 𝜌    0.90, 

0.95, 0.99. 

The number of explanatory variables adjusted 

p=3, 5. 

Cases have been set for different discrepancy 

values (Hamood, 2019), σ
 
 =0.3, 1.5, 4. 

       √  𝜌  𝜌            

                                          (16) 

         (             )          
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Where as ∑   
             

 
    As in 

(Imoto, 2014) and (Abonazel, Awwad, et al., 

2023) (Abonazel, Saber, et al., 2023). 

Output data is duplicated  (      ) , L = 1000 

Time to calculate the MSE standard 

simulation as follows: 
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8. Simulation results 

Tables (1), (2) and (3) show the mean squares 

of error (MSE) values for the two estimation 

methods when the number of illustrative 

variables (P=3) and sample size (n=50, 100, 

150, 250) respectively show that the two-

parameter Leo estimator is better than the Leo 

estimator in the Conway–Maxwell–Poisson 

regression model in all cases.  

At the sample size (50) and the number of 

illustrative variables and the values of the 

correlation coefficients (0.90, 0.95, 0.99) it 

was found that the method of the two-

parameter Leo estimator (CPNMTPL) in its 

estimated form, in which it depends on two 

shrinkage parameters (K1, d3) shown in 

Tables (3-1), (3-2) and (3-3), has the lowest 

mean squares of error (MSE) compared to the 

other method. 

At the sample size (250) and for all ρ values, 

we note that the method of the two-parameter 

Leo estimator (CPNMTPL) in its estimated 

formula, in which it depends on two shrinkage 

parameters (K1, d3), has the lowest mean 

squares of error (MSE). 

Tables (4), (5) and (6) show the mean squares 

of error (MSE) values for the two estimation 

methods when the number of independent 

variables (p=5) and sample size (n=50, 100, 

150, 250) respectively show that the two-

parameter Leo estimator is better than the Leo 

estimator in the Conway–Maxwell–Poisson 

regression model in all cases.  

At the sample size (50) and the values of the 

correlation coefficients (0.90, 0.95, 0.99), we 

note that the method of the two-parameter Leo 

estimator (CPNMTPL) in its estimated 

formula, in which it depends on two 

contraction parameters (K1, d3), has the 

lowest mean squares of error (MSE) of its 

value respectively according to the values of 

the correlation coefficients (0.0059621, 

0.0047924, 0.0042797) in Table (3-4) and its 

value (0.0088887, 0.0071987, 0.0064513) in 

Table (3-5) and its value (0.0181250, 

0.0149066, 0.0134559) in Table (3-6). 

At the sample size (250), we notice that the 

method of the two-parameter Leo estimator 

(CPNMTPL) in its estimated formula, in 

which it depends on two contraction 

parameters (K1, d3) has the lowest mean 

squares of error (MSE) and for all ρ values. 

Where it can be easily observed the decline in 

the values of the mean squares of error (MSE) 

as the sample size increases, as it shows one 

of the new characteristics when the estimator 

approaches the real value of the parameter by 

increasing the sample size and the constant 

factor (number of explanatory variables, 

correlation coefficient) This indicates that the 

greater the sample size, the lower the value of 

the mean squares of error (MSE). 
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Table (1) Values of the mean of error squares for all estimation methods when the number of explanatory variables p = 3 & γ = 0.80 and σ
 
=0.3. 

N 50 100 150 250 

Ρ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 

 ̂  

D1 0.0044858 0.0050338 0.0062898 0.0026260 0.0029464 0.0036925 0.0018883 0.0021201 0.0026521 0.0014536 0.0016294 0.0020316 

D2 0.0044727 0.0050174 0.0062643 0.0026254 0.0029457 0.0036828 0.0018860 0.0021172 0.0026476 0.0014522 0.0016275 0.0020288 

 ̂    

K1, d3 0.0044214 0.0049530 0.0061642 0.0002779 0.0002812 0.0036063 0.0018783 0.0021074 0.0026323 0.0014450 0.0016186 0.0020149 

K2, d3 0.0048930 0.0055411 0.0070626 0.0010782 0.0011628 0.0040713 0.0019604 0.0022106 0.0027924 0.0015037 0.0016920 0.0021281 

K3, d3 0.0044482 0.0049863 0.0062148 0.0002852 0.0002878 0.0036592 0.0018821 0.0021122 0.0026398 0.0014495 0.0016242 0.0020236 

Table (2) Values of the mean of error squares for all estimation methods when the number of explanatory variables p = 3 & γ = 1 and σ
 
=1.5. 

N 50 100 150 250 

Ρ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 

 ̂  
D1 0.0066279 0.0074159 0.0092134 0.0039641 0.0044244 0.0055183 0.0028136 0.0031498 0.0039189 0.0020121 0.0022530 0.0028041 

D2 0.0066030 0.0073850 0.0091662 0.0039549 0.0044235 0.0055008 0.0028093 0.0031442 0.0039102 0.0020097 0.0022500 0.0027997 

 ̂    

K1, d3 0.0063808 0.0071081 0.0087437 0.0038593 0.0002904 0.0053176 0.0027882 0.0031016 0.0038446 0.0019808 0.0022139 0.0027694 

K2, d3 0.0076056 0.0086118 0.0109651 0.0043763 0.0015449 0.0062754 0.0029601 0.0033734 0.0042581 0.0021357 0.0024065 0.0029741 

K3, d3 0.0065301 0.0072906 0.0090104 0.0039293 0.0002951 0.0054460 0.0028012 0.0031317 0.0038902 0.0020036 0.0022421 0.0027904 

Table (3) Values of the mean of error squares for all estimation methods when the number of explanatory variables p = 3 & γ = 1.5 and σ
 
=4. 

N 50 100 150 250 

Ρ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 

 ̂  
D1 0.0135405 0.0150794 0.0185648 0.0083564 0.0092752 0.0114221 0.0058267 0.0064940 0.0080078 0.0037369 0.0041783 0.0051863 

D2 0.0134723 0.0149954 0.0184393 0.0083292 0.0092739 0.0114206 0.0058137 0.0064779 0.0079830 0.0037314 0.0041714 0.0051758 

 ̂    

K1, d3 0.0128229 0.0141954 0.0172451 0.0078746 0.0003007 0.0003025 0.0057024 0.0063401 0.0076748 0.0036687 0.0040933 0.0050561 

K2, d3 0.0161396 0.0182042 0.0229836 0.0098220 0.0027713 0.0033104 0.0063614 0.0071497 0.0091755 0.0040073 0.0045126 0.0056885 

K3, d3 0.0132358 0.0146912 0.0179443 0.0081904 0.0003030 0.0003045 0.0057818 0.0064374 0.0078934 0.0037171 0.0041530 0.0051458 
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Table (4) Values of the mean of error squares for all estimation methods when the number of explanatory variables p = 5 & γ = 0.80 and σ
 
=0.3. 

N 50 100 150 250 

Ρ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 

 ̂  
D1 0.0043300 0.0048555 0.0060600 0.0025480 0.0028580 0.0035691 0.0018336 0.0020575 0.0025717 0.0012492 0.0014004 0.0017475 

D2 0.0043229 0.0048466 0.0060462 0.0025453 0.0028546 0.0035641 0.0018323 0.0020559 0.0025692 0.0012485 0.0013995 0.0017461 

 ̂    

K1, d3 0.0042797 0.0047924 0.0059621 0.0021613 0.0023803 0.0028540 0.0018257 0.0020476 0.0025562 0.0011788 0.0013126 0.0016128 

K2, d3 0.0057461 0.0066121 0.0087128 0.0053392 0.0060603 0.0076606 0.0020888 0.0023771 0.0030647 0.0020770 0.0024001 0.0031714 

K3, d3 0.0043080 0.0048276 0.0060156 0.0023650 0.0026163 0.0031612 0.0018300 0.0020529 0.0025645 0.0012330 0.0013785 0.0017081 

Table (5) Values of the mean of error squares for all estimation methods when the number of explanatory variables p = 5 & γ = 1 and σ
 
=1.5. 

N 50 100 150 250 

Ρ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 

 ̂  
D1 0.0065962 0.0073795 0.0091655 0.0038908 0.0043551 0.0054156 0.0027897 0.0031232 0.0038853 0.0019319 0.0021631 0.0026914 

D2 0.0065822 0.0073621 0.0091389 0.0038863 0.0043495 0.0054070 0.0027873 0.0031201 0.0038806 0.0019306 0.0021614 0.0026890 

 ̂    

K1, d3 0.0064513 0.0071987 0.0088887 0.0038632 0.0043206 0.0053624 0.0027694 0.0030977 0.0038460 0.0016881 0.0019589 0.0022408 

K2, d3 0.0097036 0.0111874 0.0147674 0.0047723 0.0054499 0.0070747 0.0033313 0.0037966 0.0049088 0.0039107 0.0041241 0.0056910 

K3, d3 0.0065449 0.0073140 0.0090600 0.0038776 0.0043385 0.0053897 0.0027823 0.0031138 0.0038705 0.0018319 0.0020946 0.0024649 

Table (6) Values of the mean of error squares for all estimation methods when the number of explanatory variables p = 5 & γ = 1.5 and σ
 
=4. 

N 50 100 150 250 

Ρ 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 

 ̂  
D1 0.0141653 0.0157816 0.0194332 0.0083693 0.0093295 0.0115023 0.0059819 0.0066701 0.0082302 0.0042643 0.0047633 0.0058967 

D2 0.0141210 0.0157270 0.0193516 0.0083577 0.0093157 0.0114831 0.0059738 0.0066601 0.0082150 0.0042603 0.0047585 0.0058896 

 ̂    

K1, d3 0.0134559 0.0149066 0.0181250 0.0052459 0.0056079 0.0063268 0.0058634 0.0065232 0.0080078 0.0035307 0.0038661 0.0045809 

K2, d3 0.0250820 0.0288132 0.0375679 0.0161222 0.0174429 0.0201160 0.0082468 0.0094388 0.0122883 0.0090435 0.0101718 0.0126251 

K3, d3 0.0139159 0.0154599 0.0189069 0.0058805 0.0062769 0.0070494 0.0059500 0.0066295 0.0081649 0.0038883 0.0042746 0.0050980 
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9. Application 

Conway-Maxwell-Poisson regression was 

applied in the presence of the Multicollinearity 

problem, and Table (7) shows the estimates of 

the regression coefficients of the Leo estimator 

with the best parameters in the experimental 

aspect of the Conway-Maxwell-Poisson 

regression model in the presence of the problem 

of Multicollinearity multiplication and its Mean 

Squares of Error (MSE). 

The results of estimating the parameters of the 

Conway-Maxwell-Poisson regression model in 

the presence of the problem of Multicollinearity 

and mean squares of error (MSE) for the two-

parameter Leo estimator can be expressed by 

writing a number of programs in MATLAB 

R2013a. 

The data that have been adopted in this aspect are 

related to the analysis of the impact of 

environmental factors on the level of air pollution 

in Iraq, which was obtained from the Statistics 

and Information Systems Authority at the 

Ministry of Planning if the values of the variables 

were recorded during the years 2021 and 2022, 

and the Conway-Maxwell-Poisson regression 

model includes: The dependent variable (The 

dependent variable): Y: the level of air pollution. 

Explanatory variables include: X1: traffic level.  

X2: The quantity of industries in the region. X3: 

the amount of precipitation. 

Sample size (n=50). 
Table (7) Estimation of the parameters of the Conway-

Maxwell-Poisson regression model for the two-

parameter Leo estimator. 
 

 

 

 
Through Table (7) applying the Conway-Maxwell-

Poisson regression in the presence of the problem of 

linear multiplicity of the two-parameter Leo estimator 

on real data, we note that the value of the mean 

squares of error of the two-parameter Leo estimator 

was (1.39    ).  

 It was found through the table that the value of the 

parameter β1 has reached its value (β1=1.4780.1.) and 

this means that the variable X1 has a direct 

relationship with the dependent variable (air pollution 

level) The higher the level of traffic, the higher the 

level of air pollution, while the value of the parameter 

β2 has reached its value (β2=4.1417188) and this means 

that the variable X2 has a direct relationship with the 

dependent variable (air pollution level) The more the 

amount of industries in the region, the greater the level 

of High air pollution, as for the value of the parameter 

β3, its value was (β3 = 4.471..10), and this means that 

the X3 variable has a direct relationship with the 

dependent variable (air pollution level), the greater the 

amount of rain, the greater the level of decrease in air 

pollution. 

10.Conclusion 

1. Study the possibility of developing new, 

more efficient algorithms to solve 

parameter estimation problems in the 

Conwy-Maxwell-Poisson regression model. 

2. Conway Maxwell Poisson's regression the 

CMPRE model has proven effective in 

modeling counting data with a wide range 

of dispersion. 

3. In the future study, the Generalized 

Mutual Verification Standard (GCV) can 

be used to select the bias parameters of the 

two-parameter Leo estimator (CPNMTPL) 

for greater efficiency. 

4. We conclude that the D2 estimator is 

better than the D1 estimator in the Leo 

method with one parameter when P=3 and 

P=5. 

5. The new modified two-parameter Leo 

estimator method (CPNMTPL) can be 

relied upon because it performs better than 

the Leo estimator method 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSE           Estimator 

1.39     4.471..10 4.1417188 1.4780.1. 
K1, d3  ̂    
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