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The Lasso is a common model for selection and also is a common estimation procedure for 

linear models. In this study, Lasso estimator will be used for obtaining more fitted 

autoregressive time series models. Simulation procedure has been used to generate a time 

series of the motion caenorhabditis elegans (CE represented by the tan-angles of wave-

motion). Each observation of this time series is a recorded frame (0.5 second) of 2.5 hours 

video of CE motion. in this study, the real and simulated univariate time series of CE motion 

(tan-angles) are modelled via Lasso and autoregressive models (hybrid Lasso-AR approch) 

after multi-processes of variable selection. The results of simulated and real univariate time 

series reflect more fitted models after performing variables selection procedure. In 

conclusion, hybrid Lasso-AR approach can be used for best high dimensional time series 

modelling. 
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1. Introduction  

Roundworms are usually used as model 

organisms in the study of genetics, including 

Caenorhabditis elegans (CE), since the 

movement of this worm is a useful indicator for 

understanding behavioral genetics. Datasets for 

the movement of this worm were obtained from 

the UEA&UCR time series classification 

archives that are available to the public. The 

data are decimal numbers that represent the 

movement of the worm on an agar plate 

containing bacterial food. This movement was 

determined by tracking using video clips. The 

length of the video is recorded as frames and 

time. Each movement is represented by a start 

frame, an end frame, and the time spent to 

make this movement until the next movement 

in the form of a set of time series values. Each 

time series is a video clip of the worm's 

movement with a length of approximately 

(144) minutes, where the data represent 6 

dimensions for 5 strains of Caenorhabditis 

elegans (CE), and each worm represents a time 

series containing (17984) observations [1]. 

The lasso method can provide very good 

prediction accuracy, because reducing and 

removing coefficients can reduce variance 

without a significant increase in bias, and this 

is useful when we have a small number of 

observations and a large number of features 

and in the field of statistics they are variables 

and in time series they are autoregressive 

variables. Moreover, the lasso helps to increase 

the interpretability of the model by removing or 

eliminating irrelevant variables that are not 

associated with the response variable [2]. 

The selection of variables plays an 

important role in statistical modeling when 

https://isj.edu.iq/index.php/rjes
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there are a large number of variables of 

importance in the model among a large group 

of explanatory variables, where the goal of 

selection is to exclude variables that do not 

contain information related to the response 

variable, and thus improve the statistical 

models , and this can be seen not only in 

prediction, but also in interpreting the model 

and reducing computational operations  [3]. 

Reduces the number of (predictive) 

explanatory variables to create the model. 

Variables selection algorithms search for a 

subset of predictive variables and determine 

which variables are required or excluded and 

the final size. The main benefits of variable 

selection are improved predictive, faster and 

more optimized predictions, and a better 

understanding of the data generation process. 

Using too many variables can lead to a 

deterioration in prediction performance even 

when all predictive variables have an effect on 

the response variable [4]. There are several 

previous studies dealing with the use of (AR 

and Lasso) method, where the researchers [5] 

studied the LASSO estimator to fit the 

autoregressive time series models, where they 

derived the conditions under which the LASSO 

estimators are estimated for the autoregressive 

coefficients. Also, the two researchers [6] 

developed a method to estimate the 

autoregressive model in the time series by 

reformulating the parameters of the 

autoregressive model by selecting the 

appropriate variables, where the LASSO 

procedure reduces the variables and estimates 

the model, as well as a simulation study was 

conducted to evaluate the performance and 

apply the results based on quarterly data of real 

gross national product of the United States for 

the period 1947-2009. The researchers [6, 7] 

also developed an inferential model for 

modeling high-dimensional time series using 

the extended LASSO method (under NEAR 

EPOCH Dependence NED). The two 

researchers [8] also studied the LASSO 

estimators to fit the time series and compared it 

with the OLS method. To this end, a large 

number of different time series were used. 

In this study, the main objective is using 

Lasso estimator for obtaining more fitted 

autoregressive time series models. In addition 

to generate a time series of the motion 

caenorhabditis elegans by using simulation 

procedure (CE represented by the tan-angles of 

wave-motion). 

2. Methodology  

This section will deal with the general 

theoretical framework, autoregressive models, 

the LASSO procedure in selecting variables, 

the method for determining the tuning 

parameter, and the use of the Cross-Validation 

method to choose the best tuning parameter, as 

well as the standard used in measuring 

prediction error. 
 

2.1 Framework of study 

The framework for this study will include 

the following: 

a. Assigning the suitable AR model. 

b. Constructing three different LASSO models 

based on the lags AR model for 100, 500, 1000 

variables. 

c. Calculating the MSE measurement for AR 

and LASSO in of sample forecasts. 

d. Comparing the accuracy results for AR and 

LASSO to determine which model would be 

provided better results and which non zero 

parameters will be included in each model. 
 

2.2 Auto-regressive model 

Time series are defined as a set of 

observations generated sequentially and in a 

specific chronological order, its main 

characteristic is that it is not independent, that 

is, it is linked in time and each observation 

depends on its predecessors, which generates 

an impetus to make predictions and future 

predictions based on the behavior of the series 

observations in the past [9-11].  

Autoregressive can be used to express the 

value of the current time series using the linear 

regression function for the values of the 

previous time series. In general, the 

autoregressive p-order can be written as in the 

equations below. 

)( t tB x a   (1) 
2

1 2 )(1  p

p t tB B B ax     
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1 1 2 2t t t p t p tx ax x x         
 

where k  is the k
th

 auto-regressive 

parameter, t kx  on tx in the auto-regressive 

model, 1,2,3, ,k p , ta is random error or white 

noise with mean zero and constant variable 2

a

2. . . (0, )t aa i i d N  , and 2

1 2( ) )(1 p

pB B B B     

(1 )
d

t t
W B x  , Wt is after differencing to satisfy 

the stationarity of arithmetic mean and use  Wt 

instead of xt in the equations (1). With 

autoregressive models, the Box-Jenkins 

methodology is used with its four steps: 

identification, parameter estimation, diagnostic 

checking, and forecasting. 
 

2.3 LASSO procedures 

In recent years several penal methods for 

selecting variables and model estimation with 

time series data have been proposed. 

Accordingly, a set of penal methods have been 

proposed by adding a penal constraint to the 

Residuals sum of squares RSS. The goal of 

adding a penal constraint is to control the 

complexity of the model and provide a criterion 

for selecting a variable by introducing some 

restrictions on the parameters, and these 

restrictions impose some parameters that their 

values should be equal to zero[12]. This 

improves the prediction accuracy of the time 

series and provides an easy-to-interpret model 

[13]. However, the effectiveness of this system 

depends on the correct selection of the tuning 

Parameter in the penalty function. There are 

several ways to choose a tuning Parameter that 

are determined using an appropriate criterion. 

The desired determinant can be obtained by 

reducing this criterion around the tuning 

Parameter [14]. 

In 1996, the scientist (Tibshirany) proposed 

the LASSO penal function (Least Absolute 

Shrinkage and Selection Operator), as it is 

considered one of the most commonly used 

penalty methods. This method follows the 

estimated (L1-norm) by adding it to the 

residuals sum of squares, and it has become 

one of the basic penal methods for selecting 

variables due to its ability to reduce parameter 

values and select variables at the same time 

[15]. First of all, LASSO inputs are defined, 

which are denoted by 
ix  the time lags that 

represent the significant autoregressive 

variables from the AR(p) model. As for the 

target variable, it will represent the original 

series and symbolize it as iy  . Moreover, 

LASSO reduces the regression coefficients and 

makes them exactly zero. The LASSO 

estimator can be obtained with the minimized 

value of as in equation (2): 

 
0

1

0

1

2

,

1
min ( | |)

2

N
T

p

ji i

i j

y x
N

    
 

    (2) 

where j   represents the vector of non-zero 

parameters and (   ) represents the tuning 

parameter when ( 0   ) as the penalty limit 

depends entirely on the value of (   ) which 

controls the shrinking (diminishing) of the 

parameter values, and N represents the number 

of observations and 
0 ,   the  value is fixed 

values. When the value of ( 0  ), we get the 

least squares (OLS) estimates [15, 16] . On the 

contrary, when the value of (   ) increases, the 

number of variables excluded from the model 

increases [17]. The LASSO method can 

provide very good prediction accuracy in time 

series, because reducing and removing 

coefficients can reduce variance without a 

significant increase in bias, and this is useful 

when the number of features is large. 

Moreover, LASSO helps to increase the 

interpretability of the model by removing or 

eliminating irrelevant variables that are not 

associated with the response variable [18, 19]. 

2.3.1 Tuning Parameter Estimation 

Accurate estimation of the tuning 

parameter  is important because it greatly 

affects the performance of penal methods 

because it plays an important role in choosing 

variables, as its value determines the number of 

variables chosen in the model and the amount 

of bias imposed on the estimated regression 

coefficients [20, 21] .One of the most widely 

used methods for tuning  parameter estimation 

is the BIC (Bayesian Information Criterion) 

and the Cross-Validation method CV. The 

model selection criterion AIC was defined by 

[22] such as follows. 

 2 2ln ( )BIC f L RSS   (3) 

where RSS is the residual sum of squares, 

and n is the number of observations [23].  RSS 
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can be also changed to RMSE [24] and f is the 

number of the model’s parameters [25, 26]. 
 

2.3.2 Cross-Validation (CV) Method 

CV cross validation is a method of model 

selection by dividing the data (at least once). A 

part of the data (the training set) is used to train 

the algorithm, and the remaining part (the test 

set) is used to estimate the error of the 

algorithm and choose the model corresponding 

to the smallest estimated error. Therefore, CV 

is used to evaluate the prediction performance 

of the statistical learning model on out-of-

sample data. This method ensures that the data 

used to train the model is independent of the 

test data set in which prediction performance is 

evaluated. The CV K-fold process means 

performing the CV process by dividing the data 

into K groups and using one of them for 

testing, while the remaining groups (K-1) are 

used as training data. In this way we obtain 

several different estimates of the prediction 

error and choose the least of these errors for 

optimization. 

CV is used in data analysis to validate the 

implemented models where the main objective 

is to predict and estimate the prediction 

performance of the statistical machine learning 

model. In other words, CV assesses how good 

a statistical machine is [27]. For the purpose of 

employing this method (CV) in estimating the 

tuning parameter ( ) the prediction error rate 

will be calculated for each of the imposed 

values. This method can be represented 

mathematically as in equation (4): 
2

( )

( ) ( )

1

1
ˆ( )

k
k i

i i

i

k cv y y
k

 





    (4) 

Where ( ( )

( )
ˆ k i

iy 

 ) represents the appropriate 

response variable when the observation (i) 

belongs to the investigation data as long as it is 

the constant value of (  ). Since there is more 

than one value for the tuning parameter, the 

best value corresponding to the smallest rate of 

prediction error will be chosen [21]. In the 

following as in equation (5): 

( )

1,2,...,

k CVargmin 
roptimal

r R




   (5) 

2.3.3 Mean Squared Error (MSE) measurement 

MSE is imputed for the error of methods as 

a statistical criterion to evaluate the accuracy of 

these methods. The MSE is written such as 

follows [28] 

2

1

1
( )

n

i

i

M
n

S eE


   (6) 

where 
ie  is the forecasting error, n is the 

number of observations. 

 

3. Results and discussion 
 

3.1 Data used in the study 

The data that was used in the research 

represents the movement of the (CE) warm, as 

the movement is according to its speed. The 

speed is recorded passively when a part of the 

body moves towards the tail (as opposed to the 

head). The speed is defined as the distance 

between the two midpoints of the start and end 

frame. Divided by the time between both 

frames, the average speed of the worm is at 

least equal to 5% of its length per second in 

each frame, where the worm must maintain this 

speed continuously, so the worm compensates 

for the delay caused by stopping by increasing 

its speed by increasing the sharpness of the 

angles of movement until reaching the required 

rate of speed, where the movement of the worm 

was recorded (the movement is forward or 

backward) with time as a time series of 

movement represented by shadow angles of the 

wave movement, each observation of this time 

series is a recorded frame (0.5) seconds from a 

(2.5) hour video for the CE movement, every 

second the worm moves at a speed of (5%) of 

its length, and we must maintain this speed 

almost continuously, with interruptions allowed 

at most (0.25) seconds, which may generate 

contradictory movements during and after 

stopping, such as withdrawal of the head, 

contractions in the body, and noise in the 

mouth. move movement Its different [1]. Based 

on the foregoing, it is possible to benefit from 

the motor behavior of the worm through the 

relationship of the angle with the speed, so 

when the angle is acute, the speed will be 

greater, and when the angle is obtuse, that is, 

when the angle is positive, the movement will 

be slower. Where the data represent 6 

dimensions for 5 species of CE worm genes, 
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and each worm represents a time series 

containing (17984) observations or variables. A 

sample of two time series (each series 

representing an independent worm movement) 

was drawn from the same strain, the reference 

strain (N2), which is the strain of interest in 

most studies. 

3.2 Auto-Regressive Model 

After selecting the two series randomly 

from the data, we drew these two series using 

the (Minitab) program. The functions (ACF) 

and (PACF) were drawn for the two series to 

determine the significant parameters and 

entered them into the AR model to obtain the 

values of the significant parameters, which 

represent a number of values that we will use in 

building a model the (AR). The figure below 

shows the functions ACF and PACF for the 

first sample of the original series. 

 
Figure 1. ACF and PACF for the time series of sample 1. 

  
Figure 2. ACF and PACF for the time series of sample 2. 

We note from the previous figures, Figure 

1 and Figure 2, that the best models, regardless 

of the stability of the time series, are AR (6) for 

both samples, after noting the significant of the 

first six time lags of the ACF function in both 

figures. Information criteria also have been 

used to satisfying AR(6) is the most fitted 

model for studied datasets. 

As for the estimates of the AR (6) model 

for both samples, it is not possible to obtain 

them with high accuracy through traditional 

statistical programs, so it was resorted to 

matlab and y is the target variable that 

represents the original series. When applying 

several instructions, the MSE of the model was 

calculated and the X and Y were obtained, and 

then we obtained the LASSO estimator, and the 

cross validation method was used to determine 

the values of the tuning parameter. 

After applying the LASSO directive to the 

data and to all the different (AR) values, which 

contain several variables (p = 100, p = 500, p = 

1000), the results were obtained. The following 

table, Table 1, shows the values of the 

significant parameters for the first and second 

samples when the regression values are Self 

AR(6). 

Table 1: Significant parameters of AR(6) model for sample 1 and sample 2 
p. AR(6) sample 1 Parameters AR(6) sample 2 Parameters 

1 - 1.338 -1.294 
2 0.0297 0.02602 
3 0.1884 0.1439 
4 0.0666 0.08593 
5 0.0283 0.0036 
6 0.0281 0.05235 
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3.3 LASSO Model. 

The general framework of the LASSO 

model implementation algorithm includes the 

implementation of several sequential steps as 

follows. 

1- Using autoregressive variables with p 

number represented by time lags based on 

Table 1 to determine the input variables for 

the LASSO model. 

2- Inputting the target variable, which is the 

original time series. 

3- Building the best LASSO model using time 

series data for the input and target variables, 

as well as selecting the cross validation 

(CV) method with the default K-Fold when 

K = 10. Using the directive 

(lasso(x,y,'CV',10)) in Matlab program 

when the number of variables is 100, 500, 

and 1000, respectively. 

4- Use the model in the previous step to 

forecasting of the data after setting the 

default values for the parameters. 

5- Calculate the accuracy of the LASSO 

method for forecasting by means of the 

MSE scale. 

Non-zero parameter values and forecasting 

accuracy were measured by MSE. Table 2 

shows the variables of the first sample when 

(AR(6)) which were selected using the LASSO 

method for different (p) values. When using the 

LASSO method for the first sample when the 

value of (p = 100) we notice that the variables 

that were chosen are (x1,x5,x6,x7,x8,x9,x17) which 

are the important variables according to this 

method and the remaining variables were 

excluded. It can be compared with the 

significant AR (6) variables as in Table (1), 

namely (x1,x2,x3,x4,x5,x6). By comparison, it is 

clear that the LASSO method excluded the 

significant variables (x2,x3 x4) in Table (1), and 

also chose the variables (x7,x8,x9,x17) as 

important variables, while they were not 

significant in AR (6) in Table (1). 

When using the LASSO method for the first 

sample when the value is (p = 500), we notice 

that the variables that were chosen are 

(x1,x5,x6,x7,x8,x9,x17,…, ,x422) which are the 

important variables according to this method as 

The remaining variables were excluded. It can 

be compared with the significant AR (6) 

variables as in Table (1), namely 

(x1,x2,x3,x4,x5,x6). By comparison, it is clear that 

the LASSO method excluded the significant 

variables (x2,x3 x4) in Table (1), and also chose 

the variables (x7,x8,x9,x17,…, ,x422) as important 

variables, while they were not significant in 

AR ( 6) in Table (1). 

Table 2: The parameters of LASSO model for sample 1 

I P=100 

Parameters 
i 

P=500 

Parameters 
i P=1000 

Parameters 
x1 1.12842 x1 1.12872 x1 1.12144 
x5 0.02876- x5 -0.02864 x5 -0.01739 
x6 -0.04892 x6 -0.05111 x6 -0.04745 
x7 -0.02175 x7 -0.02206 x7 -0.02336 
x8 -0.01740 x8 -0.01672 x8 -0.02006 
x9 -0.01174 x9 -0.01023 x9 -0.01339 

x17 -0.00724 x17 -0.00754 x16 -0.00165 

      
x53 0.00078 X422 0.00005 X756 -0.00046 

MSE 0.09680 MSE 0.09740 MSE 0.09830 

 

When using the LASSO method for the 

first sample when the value is (p = 1000), we 

note that the values that were chosen are 

(x1,x5,x6,x7,x8,x9,x16,…, ,x756) which are the 

important variables according to this method as 

The remaining variables were excluded. It can 

be compared with the significant AR (6) 

variables as in Table (1), namely 

(x1,x2,x3,x4,x5,x6). By comparison, it is clear that 

the LASSO method excluded the significant 

variables (x2,x3 x4) in Table (1), and also chose 

the variables (x7,x8,x9,x16,… ,x756) as important 

variables, while they were not significant in 

AR (6) in Table (1). Table 1 shows the 

variables of the second sample when (AR(6)) 
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which were selected using the LASSO method for different (p) values 
Table 3: The parameters of LASSO model for sample 2 

i P=100 

Parameters 
i 

P=500 

Parameters 
i P=1000 

Parameters 
x1 1.201547303 x1 1.174394173 x1 1.168376691 
x3 -0.034020129 x3 -0.00000998 x4 -0.081672128 
x4 -0.099200217 x4 -0.092005648 x5 -0.028521723 
x5 -0.022422905 x5 -0.027381626 x6 -0.049359947 
x6 -0.039569996 x7 -0.045734031 x7 -0.004227875 
x7 -0.001807311 x9 -0.011552096 x9 -0.010158665 
x9 -0.009778673 x10 -0.00685326 x10 -0.00571434 

      
x84 -9.82E-05 x484 -0.000106263 x905 -0.00036975 

MSE 17041.0 MSE 1705110 MSE 1704115 

when using the LASSO method for the 

second sample when the value is (p = 100), we 

note that the values that were chosen are 

(x1,x3,x4,x5,x6,x7,,x9,…,x84) which are the 

important variables according to this method 

and the remaining variables were excluded. It 

can be compared with the significant AR (6) 

variables as in Table (1), namely 

(x1,x2,x3,x4,x5,x6). By comparison, it is clear that 

the LASSO method excluded the significant 

variable (x2) in Table (1), and also chose the 

variables (x7,x9,…,x84) as an important variables, 

while they were not significant in AR (6) in 

Table (1). 

when using the LASSO method for the 

second sample when the value was (p = 500), 

we note that the values that were chosen 

are(x1,x3,x4,x5,x7,,x9,…,x484) which are the 

important variables according to this method 

and the remaining variables were excluded. It 

can be compared with the significant AR (6) 

variables as in Table (1), namely 

(x1,x2,x3,x4,x5,x6). By comparison, it is clear that 

the LASSO method excluded the significant 

variables (x2, x6) in Table (1) and also chose 

the variables (x7,x9,…,x484) as an important 

variables, while they were not significant in 

AR (6) in Table (1). 

  when using the LASSO method for the 

second sample when the value is (p = 1000), 

we note that the values that were chosen 

are(x1,x4,x5,x6,x7,,x9,…,x905) which are the 

important variables according to this method 

and the remaining variables were excluded. It 

can be compared with the significant AR (6) 

variables as in Table (1), namely 

(x1,x2,x3,x4,x5,x6). By comparison, it is clear that 

the LASSO method excluded the significant 

variables (x2,x3) in Table (1) and also chose the 

variables (x7,x9,…,x905) as an important 

variables, while they were not significant in 

AR (6) in Table (1). 

 

4. Conclusions 
In this study, the LASSO method was used as a 

proposed method to improve the selection of 

optimal non-zero parameters among a large 

number of parameters, which may be difficult 

to accommodate a traditional method such as 

AR when the data are for the time series of CE 

with very close and very accurate forecasting 

results for both LASSO and AR methods. Two 

samples of data were used and the results 

showed superiority with high agreement on 

important parameters of the LASSO method 

over AR as a traditional method to modeling 

the time series and forecasting it. The MSE 

criterion was used to indicate the quality of the 

forecasting, which reflected a great 

convergence in the accuracy of the forecasting, 

despite the different parameters chosen by both 

the proposed and traditional methods. The 

LASSO method reflects absolute and true 

preference with different numbers of 

autoregressive variables, as it chooses the best 

variables that actually reflect the data of the 

study. It is possible to conclude the possibility 

of using LASSO as an optimal method with 

high-dimensional time series data for one type 

of roundworms , which carries as a very large 

number of observations represented as 

autoregressive variables. 
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