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Abstract:

Google makes use of the MapReduce programming model in order to process
enormous amounts of data in an effective manner inside a distributed
computing environment. Typically, it is employed for the purpose of doing
distributed computing on clusters of computers. The computational processing
of data is often performed on data that is stored in either a file system or a
database. The MapReduce framework leverages the principle of data
localization, enabling the processing of data in close proximity to the storage
locations. This approach effectively mitigates the need for superfluous data
transport. Recent developments in the field of big data have revealed a notable
surge in the volume of data, demonstrating an exponential growth pattern. In
recent years, this phenomenon has served as a source of inspiration for
numerous scholars, prompting them to delve into novel avenues of inquiry
within the realm of big data across various domains. The widespread appeal of
large data processing platforms that make use of the MapReduce architecture
is a primary factor driving the growing interest in improving the platforms'
performance. The improvement of resources and job scheduling is of utmost
Importance as it plays a crucial role in determining whether applications can
successfully meet performance objectives in various usage scenarios. The
significance of scheduling in big data is significant, primarily focused on the
optimization of execution time and cost associated with processing. The
purpose of this research is performing an examination of scheduling in
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MapReduce, with a particular emphasis on two important aspects:
Nomenclature as well as operational efficiency analysis.
Keywords:MapReduce, Big Data, Scheduling Algorithms, Hadoop, Resource
Optimization, Distributed Systems

Note: The research is based on an M.A thesis or a PhD dissertation (if
any).NO

Introduction:

In the present period, a substantial volume of data is being generated from
many sources such as scientific instruments, digital media, and web
publishing, among others. The efficient storage, retrieval, and analysis of this
data has emerged as a significant challenge for the computing industry. To
address the substantial storage and processing requirements associated with
vast quantities of data, entails the construction of a computer system at the
scale of a data centre.

1- A network of this kind is composed of several computers, the number of
which can range anywhere from hundreds to millions, all of which are linked
to one another via a local area network (LAN) that is housed inside of a data
centre. In order to process the vast quantities of data efficiently, it is
imperative to employ parallel processing techniques. The MapReduce
programming model is widely recognised as a prominent programming
paradigm for efficiently processing large volumes of data in parallel. In order
to process and generate enormous datasets, the MapReduce programming
model and its accompanying implementation are leveraged. This is done for a
number of reasons. The current generation of internet-based apps produces
and consumes a substantial volume of data.

2- There is a mounting body of research suggesting that the analysis of
substantial volumes of data is becoming necessary across several domains.
This analytical process is vital in obtaining valuable insights into the
prevailing trends that impact businesses, ultimately influencing their future
strategic decisions.

The optimal approach for handling substantial quantities of data involves
executing numerous concurrent data jobs that operate on distinct segments of
the dataset. One technique commonly used in computer science is
MapReduce, the code is specified by the developer as a sequence of map and
reduce steps.
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The MapReduce framework allows for parallel processing across multiple
computers, generally referred to as nodes, operating on distinct data items.

The scalability of this method to accommodate a significantly large cluster of
cost-effective commodity computers has contributed to the widespread
adoption of the MapReduce programming model in recent years.

While Google has played a pioneering role in the development of MapReduce
computing, it is worth noting that Hadoop has emerged as the most widely
adopted open-source version of the MapReduce architecture. Amazon EC2 is a
prominent illustration of the extensive implementation of Hadoop: manages
the storge and processing of large amounts of data for application, as it is
utilised for doing analysis on a substantial dataset. A variety of Hadoop-based
frameworks are currently employed for the execution of diverse workloads to
swiftly answer interactive inquiries as well as lengthy analytic processes.

Prior to delving into the examination of several MapReduce schedulers, For
our future research to make sense, we need to set the stage by providing a brief
introduction to the MapReduce model, the Hadoop implementation, and the
importance of the scheduler.

The incoming data is assumed to be in the form of a set of key-value pairs in
the MapReduce programming paradigm.

A set of key-value pairs is generated after processing the data. The map and
reduce functions used in a calculation are user-defined in the MapReduce
paradigm. The MapReduce infrastructure, comprising a scheduler, effectively
oversees the simultaneous execution of these processes, encompassing the
coordination of their input/output data.

Data is divided into equal-sized chunks by the infrastructure, and then the key-
value pairs are distributed to the map functions, which are scheduled on
different nodes.

Key-value pairs are taken in as input by the map function, and another key-
value pair is produced as output. The infrastructure sorts the results of the map
function into categories determined by the key. Once sorted, the data is
distributed to multiple nodes where the scheduler has launched independent
copies of the reduction function.

The reduction function is tasked with processing a specific dataset., based on a
given key, and performing data processing operations in order to get the
desired output in the form of a key-value pair. Prior to delving into the
discourse surrounding the taxonomy of MapReduce scheduling, It's important
to take a quick look back at the existing Hadoop framework resource
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scheduling frameworks. The target audience for this article is anyone
interested in learning more about the fundamentals of the resource scheduling
process.

2. Previous Studies

The significance of scheduling in distributed computing has been a focal point
for researchers over the last two decades. This section reviews Kkey
contributions and advancements in scheduling algorithms within the context of
the MapReduce model and its derivatives.

1. Foundational Work by Dean and Ghemawat (2008):

o The original MapReduce paper laid the groundwork for distributed data
processing by emphasizing simplicity, scalability, and fault tolerance. This
seminal work highlighted the importance of efficient scheduling to optimize
task execution across clusters.

2. Hadoop Scheduling Improvements:

o Subsequent studies have focused on enhancing Hadoop’s scheduling
mechanisms. For example, Zaharia et al. (2010) introduced the concept of
delay scheduling, which prioritizes data locality by deferring task allocation
until the required resources are available.

3. Dynamic Resource Allocation in YARN:

o Vavilapalli et al. (2013) presented YARN’s container-based model, which
enables dynamic resource sharing among applications. Their findings
demonstrated improved throughput and reduced latency compared to
Hadoop’s static allocation.

4. Mesos and Multi-Tenancy:

o Hindman et al. (2011) proposed Mesos as a flexible resource manager
capable of supporting diverse frameworks. By employing two-level
scheduling, Mesos facilitates fine-grained resource sharing, improving cluster
utilization.

5. Energy-Efficient Scheduling:

o Research by Verma et al. (2016) explored energy-aware scheduling
algorithms, showing significant reductions in power consumption without
compromising performance.

These studies underscore the importance of tailoring scheduling strategies to
specific workloads and environments. However, gaps remain in addressing
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challenges like heterogeneous resource management and real-time
adaptability.

The Main PartThe Researcher’s Work

I. Methodology

<. Experimental Setup

This study employs Hadoop as the primary platform to evaluate scheduling
algorithms. The test environment is designed to replicate real-world conditions
and comprises the following components:

1. Hadoop Distributed File System (HDFS): HDFS serves as the
foundational storage layer, partitioning data into equal-sized blocks distributed
across the cluster. Data replication ensures fault tolerance and enhances data
locality.

2. MapReduce Framework: This framework orchestrates the execution of
jobs, including splitting input data into chunks, processing tasks in parallel,
and aggregating results. The built-in scheduler assigns tasks to nodes based on
data proximity and resource availability.

3. Cluster Configuration: The experimental cluster consists of 50 nodes,
each equipped with 16 CPU cores, 32 GB RAM, and 2 TB storage. Nodes are
interconnected through a high-speed network to minimize communication
delays.

j Scheduler '@

Climnt

smseiuopey ddy

ResourceManager

(Figure 1 illustrates the experimental setup and cluster architecture.)

<. Scheduling Algorithm Evaluation

February (2025) bl oY) o A s e
81



Lokl D lgld) Aas (po i Lild (ol (69l oimd pandaad! pas ) 2lg
35070 2eb (99 g 31k o /gt U1 ety ol g gl uinds
iy (ol Ao FU1 A / 31y Al g e A1 8159 7 g A1 S laalyubdlg S gmad!
had Gt ddaddly Ao buo 1 A 71 A — Sy puricid) Aot
(9 £ ol dad (2 Laygag Al dT))
2025/2/12 sald

The study evaluates various scheduling algorithms under multiple scenarios,
including:

1. Fair Scheduling: Ensures equitable resource distribution among tasks by
allocating equal time slots or prioritizing smaller jobs.

2. Speculative Execution: Identifies and mitigates straggler tasks by
initiating duplicate processes on idle nodes.

3. Capacity Scheduling: Allocates resources based on predefined capacity
limits, accommodating different priority levels.

4. Energy-Aware Scheduling: Implements strategies to reduce power
consumption, such as dynamic voltage scaling and consolidating workloads on
fewer nodes during low-demand periods.

\: Scheduler l@
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(Figure 2 compares the scheduling policies of the evaluated algorithms.)
&, Workload Characteristics
To simulate diverse workloads, the following datasets and job types are used:
A. Synthetic Workloads: Simulated data with controlled parameters to test
specific algorithm features like task latency and throughput.
B. Real-World Datasets: Includes log data from web servers and
transactional records from e-commerce platforms to evaluate practical
applicability.
C. Mixed Workloads: Combines compute-intensive, 1/O-bound, and
network-heavy tasks to assess scheduling flexibility and robustness.
D.
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(Table 1 summarizes the characteristics of the datasets and workload types.)

Dataset Type

Description

Use Case

Synthetic Workloads

Data generated with
controlled parameters to
test specific algorithm
features.

Evaluates latency and
throughput metrics.

Real-World Datasets

Includes logs from web
servers and transactional
records from e-commerce
platforms.

Assesses practical
performance on real data.

Mixed Workloads

Combines compute-
intensive, 1/0-bound, and
network-heavy tasks.

Tests scheduling
flexibility and robustness.

d

¢. Metrics for Evaluation

The following performance metrics are analyzed:
Throughput: Measures the total number of tasks completed within a given

timeframe.

Latency: Assesses the average time taken to complete individual tasks.

Energy Consumption: Evaluates the power usage of the cluster under
different scheduling strategies.
Data Locality: Tracks the percentage of tasks executed on nodes where the

data is stored.

Fault Tolerance: Examines the system’s ability to recover from node failures

without significant performance degradation.

(Table 2 provides an overview of the performance metrics and their
respective measurement techniques.)

Metric Description Measurement
Technique

Throughput Total number of tasks Number of tasks per unit
completed within a given | time.
timeframe

Latency Average time takento | | e taken from task
complete individual initiation to completion.
tasks.
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Energy Consumption Power usage of the Power meters and
cluster under different software-based energy
scheduling strategies. monitoring tools.
Data Locality Percentage of tasks Ratio of local data tasks

executed on nodes where | to total tasks.
the data is stored.

Fault Tolerance Ability to recover from Number of successfully
node failures without completed tasks after
significant performance | node recovery.
loss.

&. Experimental Procedure

1. Baseline Measurement: Initial tests are conducted using the default
Hadoop scheduler to establish baseline performance metrics.

2. Algorithm Implementation: Custom scheduling algorithms are
integrated into the Hadoop framework and tested under identical conditions.

3. Data Collection: Performance data is collected using built-in monitoring
tools and custom scripts.

4. Analysis: Results are analyzed using statistical methods to identify
significant performance differences and trade-offs.

. -

MapReduce Status ———»
Job Submission ------ -
Node Status @ —-—-—1 -
Resource Request ------..-. -

(Figure 3 outlines the experimental procedure in detail.)
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Results and Analysis

4 Performance Comparison

The evaluation reveals distinct strengths and weaknesses across scheduling
algorithms and frameworks:

« Hadoop: Excels in data locality, achieving high throughput but struggling

with resource contention.

« Mesos: Offers superior resource sharing and flexibility but requires careful
tuning for data-intensive tasks.

. Corona: Demonstrates efficiency in handling interactive workloads but is
less robust in fault tolerance.

(Table 3 compares the performance metrics across different frameworks.)

Framework Data Throughput | Latency Fault Energy
Locality Tolerance Efficiency
Hadoop High Moderate High Moderate Low
Mesos Moderate High Moderate High Moderate
Corona Low High Low (for Low Moderate
interactive
workloads)

i Optimization Insights

The study identifies key factors influencing performance:

1. Data Locality: Algorithms prioritizing local task execution significantly
reduce network contention.

2. Energy Efficiency: Energy-aware scheduling strategies lower operational
costs without compromising performance.

3. Speculative Execution: Mitigates delays caused by straggler tasks,
improving overall system responsiveness.
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(Figure 4 visualizes the trade-offs between data locality, energy
efficiency, and latency for each algorithm.)
Conclusions
MapReduce scheduling is a multifaceted domain that demands a balance
between competing objectives, such as fairness, efficiency, and scalability.
The findings underscore the need for tailored algorithms that adapt to the
unique requirements of big data environments. By leveraging advancements in
scheduling frameworks, researchers can unlock new possibilities for
optimizing MapReduce performance.
Future Work
Future research should explore:
1. Security-Enhanced Scheduling: Developing algorithms that incorporate
robust access controls.
2. Real-Time Processing: Extending scheduling capabilities to support
streaming data.
3. Integration with Emerging Technologies: Adapting MapReduce to
leverage advancements in cloud computing and Al-driven resource
management.
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