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The ridge estimator has been shown as a preferable shrinkage strategy to counter the 

impacts of multicollinearity. Interestingly, the Conway-Maxwell Poisson regression 

model is one of the most frequently used models in application where the response 

variable is positively skewed. It is a flexible extension of Poisson regression designed 

to handle count data with overdispersion or underdispersion. It generalizes the 

Poisson distribution by introducing a dispersion parameter that controls the tail 

behavior of the distribution. However, it is a well-established fact that the variance of 

maximum likelihood estimator (MLE) of the Conway-Maxwell Poisson regression 

coefficients can get dragged down due to multicollinearity. Thus, in this paper, a new 

approach named the generalized ridge estimator is developed to fix the flaw of the 

ridge estimator. Many methods for estimating the shrinkage matrix have been 

borrowed. These findings, based on our Monte Carlo simulation and the using of real 

data application results. No matter what kind of estimating method of shrinkage 

matrix, the proposed estimator is better than MLE estimator and ridge estimator, in 

terms of MSE. In addition, some estimating method of shrinkage matrix can make the 

improvement relatively large compared to others. 
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1. Introduction  

  Conway-Maxwell Poisson regression 

model is used in numerous real data problems 

related to automobile insurance claims, 

healthcare economy, and medical science [1, 2, 

3]. Specifically, Conway-Maxwell Poisson 

regression model is used when the response 

variable under the study is not distributed as 

normal distribution or the response variable is 

positively skewed. Consequently, the Conway-

Maxwell Poisson regression assumes that the 

response variable has a beta distribution [4, 5].  

Looking at the estimation of the Conway-

Maxwell Poisson regression model a few 

assumptions made include: There is no 

correlation between the regressing factors. In 

practice, nonetheless, this assumption Tart 

often not holds; if the independent variables in 

a regression model are highly interrelated, there 

exists multicollinearity. Also, in any regression 

analysis conducted while the multicollinearity 

problem is present, the estimated regression 

coefficients of Conway-Maxwell Poisson 

regression model while employing the 

maximum likelihood (ML) method are 

normally highly variable and statistically 

insignificant [6, 7]. Numerous remedial 

methods have been proposed to overcome the 

problem of multicollinearity. The ridge 

regression method [8] has been consistently 

demonstrated to be an attractive and alternative 

to the ML estimation method. 

In classical linear regression models the 

following relationship is ―usually adopted 

https://isj.edu.iq/index.php/rjes
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, y Xβ ε                                                                                    
(1) 

where y  is an 1n   vector of observations of 

the response variable,   (       ) is an 

    known design matrix of explanatory 

variables,   (       ) is a      vector of 

unknown regression coefficients, and ε  is an 
1n   vector of random errors with mean 0 and 

variance 
2 .   

Ridge regression is a shrinkage method that 

shrinks all regression coefficients toward zero 

to reduce the large variance [6, 9]. This is done 

by adding a positive amount to the diagonal of 
T

X X . As a result, the ridge estimator is biased, 

but it guaranties a smaller mean squared error 

than the ML estimator.   

In linear regression, the ridge estimator is 

defined as 
1ˆ ( ) ,T T

Ridge k  β X X I X y
                                                          

(2) 

where I  is the identity matrix with 

dimension p p  and 0k   represents the ridge 

parameter (shrinkage parameter). The ridge 

parameter, k , controls the shrinkage of β  

toward zero. For larger value of k , the 
ˆ

Ridgeβ
 

estimator yields greater shrinkage approaching 

zero [8]‖.  

2.  Statistical Methodology  

2.1 Conway-Maxwell Poisson ridge regression 

model 

In real application, count data have sometimes 

demonstrated overdispersion that is to say, 

variance > mean and at other times have 

indicated underdispersion, that is variance < 

mean. There is a form pursuant to the Conway 

– Maxwell – Poisson distribution (CMPD) that 

provides a straightforward method for 

addressing the extra and defective distribution 

[10, 11]. ―The CMPD is an extension of the 

Poisson distribution with two parameters 

(centering parameter related to the observations 

mean) and   (the shape parameter) [12]. 

Suppose {0,1,2,.....}y   is a random variable 

that follows a CMPD, then the probability mass 

function is defined as 

 

 
   

; , , 1, 0,
! ,

y

P Y y
y Z




   

 
   

 (3) 

where 
   

0
, / ( !)s

s
Z s   






 is a 

normalizing constant. The CMPD can model 

both underdispersed ( 1  ) and overdispersed 

( 1  ) data.  

According to Eq. (1), there is no closed form 

representation available for the mean. This is 

because the normalizing constant, 
 ,Z  

, is 

an infinite series with no closed form 

representation [13]. Shmueli, Minka [14] used 

the asymptotic expression for 
 ,Z  

 in Eq. 

(1) to express the mean and variance of the 

CMPD as  

 

1

1

1
( ) ,

2

1
( )

E Y

Var Y














 


 (4) 

For regression modeling in which the count 

responses may change depending on a set of 

explanatory variables, it is more convenient 

and interpretable to model the mean of the 

CMPD directly. By setting 

1

   [15], a re-

parameterization of Eq. (1) to provide a clear 

centering parameter is can be defined as 

 

 
 

1
; , ,

! ,

y

P Y y
y S




 

 

 
   

 

 (5) 

where 
   

0
, / !n

n
S n



  



 .  

Depending on Eq. (3) and in terms of 

generalized linear model framework, the 

Conway–Maxwell–Poisson regression model 

(CMPR) can be formulated as 

 
0

1

ln( ) ,
p

j j

j

  


  x

 (6) 

 
0

1

ln( ) .
q

k j

k

  


  m

 (7) 
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In Eqs. (4) and (5), jx
and jm

are explanatory 

variables, and there are assumed to be p  

covariates used in the centering link function 

and q  covariates used in the shape link 

function. Assuming   as a dispersion 

parameter and using single link function, Eq. 

(4), with ln( )   βx  as a linear predictor 

with log link, where β  is the vector of 

regression coefficients including intercept, the 

log likelihood function can be written a [16] 

 

 
1 1 1

( ) ( ) ln( !) ln ( , ) .
n n n

i i i i

i i i

y y S   
  

    βx βx

 (8) 

Solving Eq. (6), the estimation of the 

regression parameters,β , and the estimation of 

the dispersion parameter,  , can be obtained 

as, respectively,  

 

1

( )
( ln[ ( , )])

n

i i iji
i

y S x  


 
 

 


β

β

 (9) 

 

1

( )
( ln( !) log[ ( , )])

n

i ii
y S  

 

 
  

 


β

 (10) 

Iterative reweighted least square (IRLS) is used 

to solve both Eq. (7) and Eq. (8). By fixing  , 

the maximum likelihood estimator (MLE) of β

is defined as  

 
1

MLE
ˆ ˆ ˆ ˆ( ) ,T Tβ X WX X Wu

 (11) 

where  
2

ˆ( )
ˆ ˆln( )

ˆ

y 





 u

 is a vector of the 

adjusted response variable, and Ŵ  is a matrix 

of weights [13].  

In the presence of multicollinearity, the matrix 

ˆT
X WX  becomes ill-conditioned leading to 

high variance and instability of the MLE of the 

Conway–Maxwell–Poisson regression model. 

As a remedy, a ridge estimator of Hoerl and 

Kennard [8] for Conway–Maxwell–Poisson 

regression model (CMPRE) can be defined as 

 

1
CMPRE MLE

1

ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( ) ,

T T

T T

k

k





 

 

β X WX I X WXβ

X WX I X Wu

 (12) 

where 0k  .  

The mean squared error (MSE) of Eq. (9) can 

be obtained as 

 

MLE MLE MLE

1

1

ˆ ˆ ˆ ˆ ˆMSE( ) ( ) ( )

ˆ ˆ[( ) ]

1ˆ ,

T

T

p

j j

E

tr








  



 

β β β β β

X WX

 
 (13) 

where j  is the eigenvalue of the 
ˆT

X WX  

matrix and ̂ is the estimated dispersion 

parameter. On the other hand, the mean 

squared error (MSE) of Eq. (10) can be 

obtained as  

 

2CMPR

2

2

21 1E
ˆ ˆMSE( ) ,

( ) ( )

p pj j

j j
j j

k
k k

 


  
 

 
 β

 (14) 

where j
 is defined as the jth element of 

MLE
ˆ β

and   is the eigenvector of the
ˆT

X WX . 

Generalized ridge estimator  

The generalized ridge estimator (GRE) is 

suggested to generalize the ridge estimator, the 

difference between ridge estimator and GRR is 

there are p  values of k , such that [8] 

 
1ˆ ( ) ,T T

GRE
 β X X K X y

 (15) 

where 1 2diag( , ,...., )pk k kK
. The good thing 

where using GRE is to find the best values of 

ik
so as to obtain the MSE which is less than 

when we using the ridge estimator and OLS.  

The generalized ridge estimator for Conway–

Maxwell–Poisson regression model (GCRM) is 

defined as 

 

1

1

ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( ) .

T T
GCRM MLE

T T





 

 

β X WX K X WXβ

X WX K X Wu

 (16) 

The selection of the matrix K is essential. In 

this paper, several methods are adapted to 

estimate K , such as [17], [18], [19], [20], [21], 
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[22], [23], [24], [25], [26], [27]and [28]. These 

methods are given below, respectively 

 
( ) 2

ˆˆ ,i HK

i

k





[8]                     (17) 

where j
 is defined as the jth element of 

ˆ
GRM β

and   is the eigenvector of  the
ˆT

X WX  

and the dispersion parameter,  , is‖ estimated 

by 
 2 2

1

ˆ ˆˆ (1/ ( )) ( ) /
n

i i i

i

n p y  


  
 [29]. 

 
 2 1 2

( ) 2

ˆˆ ˆ ˆ1 1 ( / )
ˆ

i N i i

i

k


  


    
[18]

 (18) 

 
( ) 2

ˆˆ
ˆ ˆ

i
i TC

i i

k


  



[19]                    (19) 

 
( ) 2

ˆˆ
ˆ ˆ( )

i
i F

i i

k
n p



  


 
[20]        (20) 

 

2 2

1
( ) 2 2

1

ˆ( )
ˆ ˆ

ˆ( ( ))

p

i ii
i HSL p

i ii

k
 


 








 [17]

 (21) 

 

2 2

1
( ) 2 2

max
1

ˆ( ) 1ˆ ˆ
ˆ( ( ))

p

i ii
i AH p

i ii

k
 


 





 


 [23]

 (22) 

 
( ) 2

max

ˆˆ
ˆ

i D

i

k


 


[26]                      (23) 

 
(SB) 2

max

ˆ 1ˆ
ˆ ˆ

i
i

i i

k


   
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
[28]          (24) 

 
(SV1) 2 2

ˆ 1ˆ
ˆ ˆ

i

i Max i

p
k



  
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[28]          (25) 

 
 

(SV2) 22

ˆ 1ˆ
ˆ 2

i

i
Max Min

p
k



  
 

[28]

 (26) 

 

( ) 2

2

1ˆ
ˆ

ˆ ˆ( )

i M

Max i

Max i

k

n p

 

  



 
[28]

 (27) 

 
( ) 2

ˆ 1ˆ
ˆ

i AS

i i

k


 
 

[27]                    (28) 

.  

3. Results and discussion  

3.1. Simulation study  

For this section, a Monte Carlo experiment to 

compare the performance of these methods in 

GCRM with varying levels of multicollinearity 

is performed. 

 

3.1 Simulation design 

The response variable of n  observations 

from gamma regression model is generated by 

[7, 30, 31, 32, 33, 34, 35, 36]  

 
( , )i iy CMP  

 

 (29) 

where 
exp( )T

i i  x β
, 1( ,..., )p β

 with 

2

1

1
p

j

j





 and 1 2 ... p    

  [37], and 

{0.50,2}  [38]. The explanatory variables 

1 2( , ,..., )T
i i i inx x xx

 have been generated 

from the following formula  

 

2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p     

  (30) 

where   represents the correlation between the 

explanatory variables and ijw
’s are 

independent standard normal pseudo-random 

numbers. n= 50, 100 and 200. In addition, 
4p   and 8p   because increasing the 

number of explanatory variables can lead to 

increase the MSE. {0.90,0.95,0.99}  . The 

averaged mean squared errors (MSE) is 

calculated as  
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1

GCRM GCR

0

M

0 0

1

1ˆ ˆ ˆMSE( ) ( ) ( ).
1000

T

i 

  β β β β β

 

 (31) 

3.2 Simulation results 

The averaged MSE all the combinations of 
, ,n p , and  , are respectively summarized in 

Tables 1 – 6. ―The best value of the averaged 

MSE is highlighted in bold. Several 

observations can be obtained as follows:   

1- In general analysis, the MSE of GRRM is 

less than that of MLE.  

2- As expected GCRM achieved a lower MSE 

compared to GRRM regardless the type of 

estimating method of K matrix. 

3- Clearly, in terms of MSE, F method (Eq. 

(14)), which was proposed by [20], Indeed, 

in proportional to the MSE, F method (14) 

by [20] indicated that the gamma 

generalized ridge estimator outperformed 

the other approaches in all examined cases. 

On the other hand, HK & SB methods gave 

very low results compared with the other 

used methods in all the cases.The results 

regarding the number of explanatory 

variables are quite simple; increasing their 

values have a negative impact on the MSE 

as the r increasing.In terms of   values, 

there is increasing in the MSE values when 

the correlation degree increases regardless 

the value of 
,n 

 and p  with superiority of 

F method.  

4- Regarding the number of explanatory 

variables, it is easily seen that there is a 

negative impact on MSE, where there are 

increasing in their values when the p  

increasing. 

5- Concerning the value of n , the MSE 

values decrease when n  increases, 

regardless the value of 
, 

 and p . 

6- For fixed ,n p  and degree of 

multicollinearity  , as the   increases the 

MSE of all methods decreases‖. 

 

Table 1: MSE on average when 50n   and 4p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods 0.5     2     

 0.90   0.95   0.99   0.90   0.95   0.99   
MLE 5.2535 5.4166 5.6312 5.1599 5.3215 5.5917 

GRRM 3.7795 3.8008 3.7785 3.6636 3.7105 3.7562 

HK 3.3342 3.3885 3.4031 3.3271 3.341 3.3532 

N 2.9976 3.0058 3.0082 2.9904 2.9886 2.9838 

TC 3.0762 3.1305 3.1451 3.0691 3.083 3.0952 

F 2.5508 2.6051 2.6197 2.5437 2.5576 2.5698 

HSL 2.9632 3.0175 3.0321 2.9561 2.97 2.9822 

AH 2.8884 2.9427 2.9573 2.8813 2.8952 2.9074 

D 2.7837 2.7945 2.8001 2.7753 2.7835 2.796 

SB 3.0809 3.1352 3.1498 3.0738 3.0877 3.0999 

SV1 2.9218 2.9761 2.9907 2.9147 2.9286 2.9408 

SV2 2.8671 2.9214 2.936 2.86 2.8739 2.8861 

M 2.8859 2.9397 2.9543 2.8783 2.8922 2.9045 

AS 2.9468 3.0011 3.0157 2.9397 2.9536 2.9658 
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Table 2: MSE on average when 50n   and 8p 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: MSE on average when 100n   and 4p   

Methods 0.5     2     

 0.90   0.95   0.99   0.90   0.95   0.99   
MLE 5.1479 5.311 5.5256 5.0543 5.2159 5.4861 

GRRM 3.6739 3.6952 3.6729 3.558 3.6049 3.6506 

HK 3.2286 3.2829 3.2975 3.2215 3.2354 3.2476 

N 2.892 2.9002 2.9026 2.8848 2.883 2.8782 

TC 2.9706 3.0249 3.0395 2.9635 2.9774 2.9896 

F 2.4452 2.4995 2.5141 2.4381 2.452 2.4642 

HSL 2.8576 2.9119 2.9265 2.8505 2.8644 2.8766 

AH 2.7828 2.8371 2.8517 2.7757 2.7896 2.8018 

D 2.6781 2.6889 2.6945 2.6697 2.6779 2.6904 

SB 2.9753 3.0296 3.0442 2.9682 2.9821 2.9943 

SV1 2.8162 2.8705 2.8851 2.8091 2.823 2.8352 

SV2 2.7615 2.8158 2.8304 2.7544 2.7683 2.7805 

M 2.7803 2.8341 2.8487 2.7727 2.7866 2.7989 

AS 2.8412 2.8955 2.9101 2.8341 2.848 2.8602 

 

Table 4: MSE on average when 100n  and 8p 

Methods 0.5     2     

 0.90   0.95   0.99   0.90   0.95   0.99   
MLE 5.2688 5.4319 5.6465 5.1752 5.3368 5.607 

GRRM 3.7948 3.8161 3.7938 3.6789 3.7258 3.7715 

HK 3.3495 3.4038 3.4184 3.3424 3.3563 3.3685 

N 3.0129 3.0211 3.0235 3.0057 3.0039 2.9991 

Methods 0.5     2     

 0.90   0.95   0.99   0.90   0.95   0.99   
MLE 5.5782 5.7413 5.9559 5.4846 5.6462 5.9164 

GRRM 4.1042 4.1255 4.1032 3.9883 4.0352 4.0809 

HK 3.6589 3.7132 3.7278 3.6518 3.6657 3.6779 

N 3.3223 3.3305 3.3329 3.3151 3.3133 3.3085 

TC 3.4009 3.4552 3.4698 3.3938 3.4077 3.4199 

F 2.8755 2.9298 2.9444 2.8684 2.8823 2.8945 

HSL 3.2879 3.3422 3.3568 3.2808 3.2947 3.3069 

AH 3.2131 3.2674 3.282 3.206 3.2199 3.2321 

D 3.1084 3.1192 3.1248 3.1 3.1082 3.1207 

SB 3.4056 3.4599 3.4745 3.3985 3.4124 3.4246 

SV1 3.2465 3.3008 3.3154 3.2394 3.2533 3.2655 

SV2 3.1918 3.2461 3.2607 3.1847 3.1986 3.2108 

M 3.2106 3.2644 3.279 3.203 3.2169 3.2292 

AS 3.2715 3.3258 3.3404 3.2644 3.2783 3.2905 
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TC 3.0915 3.1458 3.1604 3.0844 3.0983 3.1105 

F 2.5661 2.6204 2.635 2.559 2.5729 2.5851 

HSL 2.9785 3.0328 3.0474 2.9714 2.9853 2.9975 

AH 2.9037 2.958 2.9726 2.8966 2.9105 2.9227 

D 2.799 2.8098 2.8154 2.7906 2.7988 2.8113 

SB 3.0962 3.1505 3.1651 3.0891 3.103 3.1152 

SV1 2.9371 2.9914 3.006 2.93 2.9439 2.9561 

SV2 2.8824 2.9367 2.9513 2.8753 2.8892 2.9014 

M 2.9012 2.955 2.9696 2.8936 2.9075 2.9198 

AS 2.9621 3.0164 3.031 2.955 2.9689 2.9811 

 

Table 5: MSE on average when 200n   and 4p   

Methods 0.5     2     

 0.90   0.95   0.99   0.90   0.95   0.99   
MLE 5.01616 5.17926 5.39386 4.92256 5.08416 5.35436 

GRRM 3.54216 3.56346 3.54116 3.42626 3.47316 3.51886 

HK 3.09686 3.15116 3.16576 3.08976 3.10366 3.11586 

N 2.76026 2.76846 2.77086 2.75306 2.75126 2.74646 

TC 2.83886 2.89316 2.90776 2.83176 2.84566 2.85786 

F 2.31346 2.36776 2.38236 2.30636 2.32026 2.33246 

HSL 2.72586 2.78016 2.79476 2.71876 2.73266 2.74486 

AH 2.65106 2.70536 2.71996 2.64396 2.65786 2.67006 

D 2.54636 2.55716 2.56276 2.53796 2.54616 2.55866 

SB 2.84356 2.89786 2.91246 2.83646 2.85036 2.86256 

SV1 2.68446 2.73876 2.75336 2.67736 2.69126 2.70346 

SV2 2.62976 2.68406 2.69866 2.62266 2.63656 2.64876 

M 2.64856 2.70236 2.71696 2.64096 2.65486 2.66716 

AS 2.70946 2.76376 2.77836 2.70236 2.71626 2.72846 

 

Table 6: MSE on average when 200n   and 8p   

Methods 0.5     2     

 0.90   0.95   0.99   0.90   0.95   0.99   
MLE 5.11346 5.27656 5.49116 5.01986 5.18146 5.45166 

GRRM 3.63946 3.66076 3.63846 3.52356 3.57046 3.61616 

HK 3.19416 3.24846 3.26306 3.18706 3.20096 3.21316 

N 2.85756 2.86576 2.86816 2.85036 2.84856 2.84376 

TC 2.93616 2.99046 3.00506 2.92906 2.94296 2.95516 

F 2.41076 2.46506 2.47966 2.40366 2.41756 2.42976 

HSL 2.82316 2.87746 2.89206 2.81606 2.82996 2.84216 

AH 2.74836 2.80266 2.81726 2.74126 2.75516 2.76736 

D 2.64366 2.65446 2.66006 2.63526 2.64346 2.65596 

SB 2.94086 2.99516 3.00976 2.93376 2.94766 2.95986 

SV1 2.78176 2.83606 2.85066 2.77466 2.78856 2.80076 

SV2 2.72706 2.78136 2.79596 2.71996 2.73386 2.74606 

M 2.74586 2.79966 2.81426 2.73826 2.75216 2.76446 

AS 2.80676 2.86106 2.87566 2.79966 2.81356 2.82576 
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4. Conclusions 

In this paper, I modified the procedure to 

use the generalized ridge estimator which can 

solve the multicollinearity problem in the 

choice of beta regression model. Several 

techniques for estimating the K matrix have 

been adopted by various sources. The MJS 

prediction studies indicate that GCRM 

irrespective of the type estimating method of K 

matrix has always been more accurate than 

MLE and GRRM in terms of MSE has been 

adapted. According to Monte Carlo simulation 

studies, the GCRM estimator, regardless the 

type of estimating method of K  matrix, has 

better performance than MLE and GRRM, in 

terms of MSE. Moreover, a simple real data 

example is also examined to also investigate 

the advantages of applying the GCRM 

estimator in the case of beta regression model. 

This was accompanied by an observation of the 

superiority of the GCRM estimator relative to 

the raw CM estimator in terms of the resulting 

MSE and a confirmation that the findings tally 

with Monte Carlo simulation outcomes. 
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