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In this study, two weighted methods are proposed for estimating the varying 

coefficient quantile regression model in the case of longitudinal data. The first method 

is the Weighted Spline Method, and the second is the Weighted Local Polynomial 

Method. Both methods account for within-subject correlations, which are addressed by 

incorporating weights derived from the empirical likelihood of each method. Five 

levels of quantiles were examined, and a simulation study was conducted to compare 

the two methods under different conditions. The methods were applied to the success 

rates data of the third intermediate grade in Al-Diwaniyah Governorate, assessing the 

impact of four explanatory variables on the success rates of 337 middle and secondary 

schools over five years. Results indicated that the efficiency of the methods varied 

across quantile levels: the Weighted Spline Method was more efficient at high and low 

quantile levels, whereas the Weighted Local Polynomial Method proved more efficient 

at intermediate levels. 
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1. Introduction 

Regression analysis is undeniably one of the 

most important topics in statistics, focusing on 

studying and analyzing the relationship 

between a response variable and one or more 

explanatory variables. It has wide applications 

in various fields such as medicine, economics, 

and sociology. Regression analysis comes in 

various forms, one of which is quantile 

regression proposed by (Koenker and Bassett, 

1978). On the contrary ordinary regression, 

quantile regression measures the relationship 

between variables by estimating conditional 

quantile functions of the response variable. this 

provides researchers with insights into the 

relationship between variables across different 

conditional distributions, especially those at the 

beginning or end of the data. In recent years, 

researchers have shown significant interest in 

quantile regression for longitudinal data, 

highlighting the importance of longitudinal 

data for containing more information than time 

series or cross-sectional data. Longitudinal data 

integrates both types of data, providing richer 

information about the phenomenon under 

study. to estimate model parameters and 

analyze the relationship between variables, 

there are parametric, semi-parametric, and non-

parametric methods. Parametric methods often 

make strict assumptions that may be 

challenging to apply in practice, whereas non-

parametric methods have fewer assumptions. to 

increase flexibility, we use varying coefficient 

models, which allow the effect of explanatory 

variables on the response variable to vary based 

on the values of other variables, such as time or 

any other variable. 

https://isj.edu.iq/index.php/rjes
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The problem addressed in this research 

revolves around the fact that when studying 

mean regression models or ordinary regression, 

these models provide the effect of explanatory 

variables on the response variable but do not 

offer a comprehensive view of this effect at 

different levels of the distribution. One of the 

challenges researcher's faces is that some data 

used in regression analysis do not meet the 

assumption of normal distribution, or they may 

not satisfy the assumptions regarding random 

error or suffer from skewness. Traditional 

regression models, such as ordinary least 

squares (OLS), are based on estimating the 

conditional mean of the response variable. 

While effective under certain conditions, these 

models become inadequate when data deviate 

from normality, contain outliers, or exhibit 

skewed distributions. Moreover, they fail to 

provide a comprehensive understanding of the 

relationship between explanatory variables and 

the response variable across different quantiles 

of the distribution, as they focus solely on the 

central tendency. The challenge becomes more 

complex when dealing with longitudinal data, 

which are characterized by repeated 

measurements over time and exhibit within-

subject correlations. Ignoring these correlations 

may lead to inefficient and biased estimators. 

Therefore, there is a pressing need for more 

flexible models that can capture changes in the 

effects of explanatory variables over time or 

across other indexing variables, while properly 

accounting for the unique features of 

longitudinal data. This study addresses the 

problem of modeling variable relationships 

under such conditions, particularly when 

classical assumptions are violated and 

traditional regression approaches prove 

insufficient. 

This study aims to investigate the quantile 

regression model with varying coefficients in 

the context of longitudinal data by: 

1. Estimating the model parameters 
while respecting the structure and 

characteristics of longitudinal data. 

2. Taking within-subject correlations 

into account to improve the efficiency 

and accuracy of the estimators. 

3. Comparing different weighted 

estimation methods to assess their 

performance and effectiveness. 

4. Overcoming challenges arising from 

the violation of classical assumptions, 

such as normality of errors or 

homoscedasticity. 

5. Providing a more comprehensive 

view of how explanatory variables 

influence the response variable across 

different parts of its distribution, not 

just the mean. 

Many previous studies have discussed this 

topic, among which we will review: 

(Yu and Jones 1998) studied the nonparametric 

estimation of quantile regression using locally 

weighted linear methods. They proposed two 

estimators and concluded that both estimators 

are effective. (Wu and Chiang 2000) Proposed 

two types of kernel estimators based on the 

local two-stage least squares method to 

estimate time-varying coefficients for the 

varying coefficient regression model in the 

case of longitudinal response data and cross-

sectional explanatory variables. (Karlsson 

2007) developed a weighted version of quantile 

regression for nonlinear longitudinal data. 

(Kim 2007) Studied the varying coefficient 

regression model and presented a methodology 

for estimating the model using a Polynomial 

spline function. (Mu and Wei 2009) proposed a 

two-stage estimation method for estimating the 

nonparametric varying-coefficient quantile 

regression model in the case of longitudinal 

data. In this method, the nonparametric spline 

estimator was used for estimation. (Tang and 

Leng 2011) proposed a novel approach for 

estimating quantile regression with longitudinal 

data using the empirical likelihood function 

while considering within-subject correlation. 

(Wang and Zhu 2011) developed an approach 

for two empirical likelihood inference 

procedures for quantile regression in the case 
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of longitudinal data. These proposed methods 

do not require the estimation of the unknown 

error density function and within-subject 

correlation. (Fu and Wang 2012) proposed a 

method for estimating a linear quantile 

regression model for longitudinal data, 

integrating within-subject and between-subject 

estimates, which includes the correlations 

between repeated measurements. (Saifalddin 

and Rasheed 2013) reviewed some 

nonparametric techniques for estimating time-

varying coefficient functions in the context of 

the nonparametric varying-coefficient model 

for balanced longitudinal data. the techniques 

employed included local linear boundary 

regression and cubic smoothing spline 

techniques. (Rashed and Rasheed 2014) studied 

the varying coefficient model as well as the 

partial varying coefficient model. Both the 

varying coefficient models (VCM) and the 

partial varying coefficient model (PVCM) were 

estimated using nonparametric and semi-

parametric estimation methods. (Badr 2016) 

Employed the nonparametric regression 

method to diagnose and estimate the 

longitudinal data model in cases where certain 

assumptions regarding the random error vector 

are not met, particularly in the problem of 

heteroscedasticity and autocorrelation problem. 

(Liu 2017) proposed a two-stage locally 

weighted estimation method. In the first stage, 

initial estimators are found using B-splines. In 

the second stage, the model is transformed into 

a varying-coefficient regression model, and the 

locally weighted likelihood method is applied 

to estimate the varying coefficient functions. 

(Kim and Cho 2018) proposed two types of 

weights for estimating the varying-coefficient 

regression model in order to address within-

subject correlations. The first type is global 

weight, which incorporates all observations in 

its calculation, while the second type is local 

weight, which considers nearby observations. 

(Lin et al. 2020) developed a weighted 

approach to enhance the efficiency of the 

varying-coefficient autoregressive model for 

longitudinal data. They obtained the weights 

via empirical likelihood method, utilized spline 

method for obtaining smoothers. 

2. Quantile regression varying-coefficient 

model in the case of longitudinal data 

   The quantile regression varying-coefficient 

model in the case of longitudinal data can be 

written as follows (Tang et al., 2013): 

       
   (     )     ( )                             ( ) 

Where: 

     The response variable, for the     

observation of the     subject 

   
   The explanatory variables 

  (  )  ) Is the vector of unknown smooth 

functions at the quantile level   
   ( )   The random error 

     Represent the factors that modify the 

coefficients of    
 through unspecified functions 

 ( ). The dependency of  ( )on     involves a 

specific type of interaction between     and    
  

in some cases; the variable     might be time 

follows (Hoover, et al., 1998). 

In this section, two methods for estimating the 

quantile regression varying-coefficient model 

in the case of longitudinal data will be 

discussed. 

 

2.1 The Weighted spline method for estimating 

VCQR models (WSP) 

We attempt to improve the efficiency of the 

estimators by adding weights that enhance their 

efficiency. These weights are obtained from the 

robust empirical likelihood method for varying-

coefficient mean regression models (VCMR), 

not from quantile regression models, because 

integrating correlations with quantile 

regression is extremely challenging with 

longitudinal data. By excluding the quantile 

aspect to find the weights, we then proceed to 

estimate the quantile model as follows: 
Assume that     is the response variable of the 

    observation in the     subject and     

(                 )
 
 (   

     )
 
 

    represents the explanatory of the     

observation in the     subject, with         ‏
‏ ‏          , , where     typically denotes 

time but can be any other index. Assume that 

 ,(   )   At a given quantile level ‏-   ,    
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the varying-coefficient quantile regression 

(VCQR) model is given by;( Lin et al.2020): 

  (      )     
   (   )                                ( ) 

Where: 

  (      ): The conditional quantile function 

of     given    at quantile level  . 

   The index for subjects, ranging from 1 to   

 : The index for observations within a subject, 

ranging from 1 to    

   (          )
 
: The vector of 

explanatory variables for the     observation in 

the     subject, defined as 

    (                 )
 
 (   

     )
 
, 

where       are the explanatory variables and 

    is typically the time variable. 

     Usually represents time but can be any 

other index. It is assumed to be in the interval 

,   -. 

  ( )  .    ( )       ( )/
 

  An unknown 

smooth vector-valued function of  , 
representing the varying coefficients at quantile 

level  . 
 

The error vector is defined as: 

   ( )        (      )                               ( ) 

Assuming that the conditional quantile of 

order  ‏ for    ( )) given    is zero, and 

assuming that the observations     are 

independent, and thus the errors    ( ) are 

independent, by using the spline method, the 

nonparametric coefficient functions in equation 

(2) can be written as (Lin et al, 2020): 

 (      )     
  (   )                                    ( )                            

Where: 

 ( )  .  ( )     ( )/
 

  is the unknown 

vector of smooth functions.  

The random errors are: 

         (      )                                       ( ) 

And by replacing the model  (      ) we get: 

           
  (   )                                        ( ) 

and 

 (     )⁄    

Assuming that  (      )⁄  depends only on    
, denoted by   (   ( using spline functions to 

estimate  ( )we get: 

 (      )  ∑  

 

   

      (   )
 
      

   ( )  

Where: 

   
   (      (   )

 
         (   )

 
)  

 ( )  (  ( )             )  are spline 

functions of order   with   knots, and   

(  
      

 )
 
  T are the spline coefficients. 

To determine the within-subject correlation 

matrix, we use AR1 (autoregressive of order 

one) or CS (compound symmetry) or both: 

       {(          )
 }                  ( )  

The idea is to approximate the inverse of the 

within-subject correlation matrix using the 

quadratic inference function (QIF) by 

modelling some basic matrices (which will be 

described later) as linear combinations (Qu and 

Li 2006; Qu et al, 2000): 

  
   ∑      

 

   

                                              ( ) 

Where: 

     is the identity matrix. 

   (     )   are symmetric matrices. 

𝑠: an integer representing the number of basis 

matrices. 

To select the basis matrices, one of the two 

commonly used schemes by  
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researchers is employed (Song et al.2009; Kim 

and Cho2018): 

1. Symmetric working matrices where 𝑆 = 2: 

 1 is the identity matrix. 

 2 is a matrix with zeros on the main diagonal 

and ones elsewhere. 

2. First-order autoregressive model where 𝑆 = 

3:  1 ∶ is the identity matrix. 

 2: is a matrix with ones in the upper and 

lower diagonals around the main diagonal and 

zeros elsewhere. 

 3: is a matrix with ones in the first and last 

positions of the main diagonal and 

zeros elsewhere. 

To obtain estimates, we solve the following 

estimating function: 

  ( )  

(

 
 
  
  

 

 
 
      

 
 
 (      )

 

  
  

 

 
 
      

 
 
 (      ))

 
 
    (  ) 

Where: 

   (          )
  

       ( 
 (   )    

 (   )) 
   (          )

  

The  ̂ is the value that maximizes an empirical 

probability function via Empirical likelihood 

(EL) which is a statistical method used to 

estimate the probability function of data 

without assuming a specific distribution. 

Instead, this method relies on the available data 

to construct an empirical probability function 

and uses the data to determine the weights that 

provide the maximum possible likelihood for 

the sample, subject to certain constraints to 

ensure a correct estimate (Lv et al. 2019).  

 ( )     {∏  

 

   

  ( )}                              (  ) 

subject to the conditions: 

    ( )    

  ∑  

 

   

  ( )    

  ∑  

 

   

  ( )  ( )    

The empirical likelihood method does not 

require the estimation of variance, which can 

be complex in nonparametric or 

semiparametric regression models: 

The empirical weights are obtained from: 

  ( ̂)   
  {    ̂

   ( ̂)}
  

‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏‏      

where ‏   ̂
‏‏  و ‏̂   are obtained by solving the 

following equations: 

   ∑ 

 

   

*   ( ̂)
    ̂+  ̂{    ̂

   ( ̂)}
  

                                                   

and 

   ∑ 

 

   

  ( ̂){    ̂
   ( ̂)}

  

                                                                          (  ) 

After determining the weights, the estimator  ̂  
is: 

 ̂           
      

∑ 

 

   

  ( ̂)∑  

  

   

  (   

    
   )                                    

Where: 

  ̂     ( ̂   
     ̂   

 )
 
                     

 

The varying coefficients  
   

 
 are estimated 

from the following equation: 

 ̂
   

 

( )   ( )  ̂                    (  ) 

 

2.2 Quadratic inference function and Basis 

matrices 
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The Quadratic Inference Function (QIF) is a 

statistical method for estimating models in the 

case of longitudinal data to improve estimates 

when observations are correlated within the 

same subject. Its idea relies on fundamental 

matrices that represent the correlation structure 

among these observations, where a quadratic 

estimation function is constructed based on 

these fundamental matrices. 

(Qu et al. 2000) introduced the quadratic 

inference function (QIF) method and assumed 

that the inverse of the correlation structure can 

be estimated by the linear combination in 

equation (9): 

where: 

 .is the identity matrix ‏    

   (   )  are symmetric matrices. 

𝑠   an integer representing the number of basis 

matrices. 

To select the basis matrices, one of the two 

commonly used schemes by researchers is 

employed (Song et al.2009; Kim and 

Cho2018): 

1. Symmetric working matrices where 

𝑆   : 

   is the identity matrix. 

   is a matrix with zeros on the main diagonal 

and ones elsewhere. 

2. First-order autoregressive model where 

𝑆   : 

  ∶ is the identity matrix. 

    is a matrix with ones in the upper and 

lower diagonals around the main diagonal and 

zeros elsewhere. 

    is a matrix with ones in the first and last 

positions of the main diagonal and zeros 

elsewhere. 

The advantage of this approach is that it does 

not require the estimation of linear coefficients 

(which can be considered nuisance 

parameters), as the generalized estimating 

equation is an approximate linear combination 

of the elements of the estimating function: 

 

  ( )  

(

 
 
 (  )  

 
 
      

 
 
 (    (  ))

 

 (  )  
 
 
      

 
 
 (    (  )))

 
 
(  ) 

Where: 

       ( 
 (   )    

 (   )) 
The QIF is characterized by its ability to 

handle complex correlation structures and 

provides less biased and more efficient 

estimates compared to other methods. It offers 

flexibility in the choice of fundamental 

matrices that can be used to enhance the 

estimation (Song et al. 2009) 

 

2.3 interior knots 

The selection of the number of knots in the 

spline method for estimation is of great 

importance, as the degree of smoothing 

depends on determining the number of knots. 

The knots allow for control over the coefficient 

function and play a crucial role in balancing the 

bias and variance components, which together 

form the Mean Squared Error (MSE). 

Therefore, increasing the number of knots leads 

to undesirable smoothing, and vice versa. 

There are several methods for selecting knots, 

including simple methods such as choosing a 

knot at every point where there is a high 

density of data or mathematical methods that 

rely on empirical analysis, where the model's 

performance is evaluated with different 

numbers of knots. In this Dissertation, the 

Schwarz Criterion (𝑆  ) will be used as 

follows (Schwarz 1978; Tang et al., 2013; Lin 

et al. 2020): 

𝑆  ( )     [∑∑  

 

   

(       
  ̂ ( ))

 

   

]

 
   (   )

 (   )
  ( )            (  ) 

Where: 

 : The number of explanatory variables 

 ( )      

The number of fixed parameters and‏  ‏

  : The number of interior knots‏
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Where a number of models with different 

numbers of knots are constructed, and then the 

Schwarz Criterion is calculated for these 

models. The number of knots that achieves the 

lowest value of the Schwarz Criterion is 

selected. 

 

2.4 The weighted local polynomial method for 

estimating VCQR models (WLP)  

 

Equation (1) can be rewritten as follows: 

  (      )     
   (   )     ( )             (  ) 

Under the assumption that the conditional 

quantile   of    ( ) given     is equal to zero 

(Tang, and Leng, 2011) and that the 

observations     are independent, the errors 

   ( ) are therefore independent. The estimated 

varying-coefficient regression model for 

longitudinal data can be expressed as follows in 

Equation (20) (Lin et al, 2020): 

  ( ̂     )     
   (   )                                (  ) 

The fundamental idea behind this method is to 

utilize weights in estimating the VCQR model, 

which can be summarized as follows: the 

coefficients vector is estimated according to the 

formula (Lin et al, 2020): 

 ̂ 
         

      
∑ 

 

   

  ( ̂)∑  

  

   

  (   

    
   )                                 (  ) 

Where: 

    ∑   
 

 

   

(      )
   (      ) 

The weights are calculated through: 

  ( ̂)   
  {    ̂

   ( ̂)}
  
                      (  ) 

  ̂
  and  ̂ are obtained by solving the following 

equations: 

 

   ∑ 

 

   

*   ( ̂)
    ̂+  ̂{    ̂

   ( ̂)}
  

                                             (  ) 
And 

 

   ∑ 

 

   

  ( ̂){    ̂
   ( ̂)}

  

                                                                       (  ) 

Calculated through ( ) gi(α) (Qu and Li , 2006) 

 

  ( )  

(

 
 
  
  

 

 
 
      

 
 
 (  

     )

 

  
  

 

 
 
      

 
 
 (  

     ))

 
 
    (  ) 

Where: 

  
      (      ) 

       ( 
 (   )    

 (   )) 
   (         )

  

 

2.5 Smooth parameter h Selection 

 

As it is well-known, the smoothing 

parameter ( ) plays a crucial role in balancing 

bias and variance, the components from which 

the mean squared error is composed. Thus, the 

value of the mean squared error is influenced 

by the choice of this parameter. To select the 

smoothing parameter( ), we follow the 

following approach, where we rely on the 

nonparametric Akaike Information Criterion 

(AIC) (Cai and Xu, 2008), representing the 

corrected criterion for the bias of 

nonparametric regression models: 

   ( )  * ̂ 
 +  

 (    )

,   (    )-
            (  ) 

Where: 

  ̂ 
  : is the estimated variance of the errors for 

quantile regression, calculated using the 

following formula: 

 ̂ 
  ∑∑  

 

   

*       
   (  )

 

   

+           (  ) 

    :  represents the nonparametric degrees of 

freedom, also known as the effective number of 

parameters, which depend on the trace of the 

hat matrix in the linear estimations in 

nonparametric quantile regression. There is no 

explicit expression for the hat matrix due to its 

non-linearity. However, we can use a first-

order approximation to derive an explicit 

expression, which can be interpreted as an 

approximation of the hat matrix. 

 

2.6 Comparison Criterion Mean Squared Error 

(MSE) 
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The comparison of estimation methods is a 

fundamental procedure in statistical research to 

identify the best estimation method. There are 

numerous comparison criteria, some for 

comparing parameters and others for the entire 

model. In general, the choice of the appropriate 

criterion depends on the nature of the data and 

the objectives of the statistical analysis. In this 

study , the comparison criteria Mean Squared 

Error (MSE) will be used .The idea of Mean 

Squared Error is summarized by calculating the 

squares of the differences between the true 

values of the response variable and the 

estimated values, then computing the mean of 

these squared differences. The formula for 

Mean Squared Error for a varying coefficient 

quantile regression model in the case of 

longitudinal data is as follows: 

 𝑆  
∑ ∑ (     ̂  )

  
   

 
   

   
                      (  ) 

Where: 

  ̂   represents the estimated values of the 

response variable according to the estimation 

method. 

MSE is advantageous because it is consistent, 

as it is used for comparing models in 

simulation experiments with different sample 

sizes. Additionally, it is sensitive to large 

differences between the true and estimated 

values because it squares these differences, 

making it useful for identifying models with 

poor estimates. Moreover, it is easy to 

calculate, understand, and interpret. 

 

3. Results and discussion 

3.1 Simulation: 

In this section, we will provide a description 

of the simulation experiment used in this study, 

the statistical programming language R 4.3.1 

was utilized to write the simulation program 

detailing all the different input scenarios 

according to the following varying coefficient 

quantile regression model: 

  (       )      (   )         (   )     

    (   )         (   )        ( )          (  )  

Where: 

Longitudinal Data8  

Number of Subjects         

Number of Observations within each Subject: 

     

Number of explanatory variables     

varying coefficient:  

  ( )      .
   

 
/ ,   ( )  (

√  

   
) 

   ( )      .
 √ 

 
/,    ( )  .

(    ) 

 
/ 

quantile levels: 

 five levels τ                               

Correlation coefficient: 

 ρ        

Correlation structure: 

 First-order Autoregressive   ( )     

Compound symmetry  𝑆 

Generate time indicator:  

are generated independently from Continuous 

uniform distribution ‏     (   )  

Generate explanatory variables8  

The explanatory variables were generated as 

follows8 

      (   ),         (   ) ,      (      ) 
,        (     ) 

Generate a random error: three cases: 

a. First case : Normal error     (   )  

b. Second case : Heteroscedastic 

symmetric error   

    (    ) 
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       [       (

  
 
)
 

]
   

 

 

c. Thread case : Heteroscedastic 

asymmetric error  

   |  |  √
 

 
(       (

  
 
)
 

) 

   (          )
  

    (    ) 

     
     

   

  
       [       (

  
 
)
 

]
   

 

 

And R for the three cases above is: 

1.  (   )   |   |  If  AR(1) 

2.  (   )    (   )  (   ) If  CS    

,     𝑠                 ∶          
              

Estimation methods:  

a) The weighted spline method for 

estimating VCQR models (WSP) 

b) The weighted local polynomial 

method for estimating VCQR 

models‏‏ (WLP) 

Comparison Criterion: 

 The Mean Squared Error (MSE) criteria 

were used to compare the effectiveness of 

the aforementioned estimation methods. 

Number of repetitions: 

 The experiment was repeated 1000 times  

      . 

Table (1) shows the MSE values for the 

Simulation  through the results of the table 1 

we find that  When  τ=0.1,0.9  we observe a 

general increase in the Mean Squared Error 

(MSE) across all methods, with the WSP 

method demonstrating the best performance at 

these levels, followed by the WLP method. 

When τ=0.3,0.5,0.7 the Mean Squared Error 

(MSE) decrease for all methods compared to  

the higher and lower quantile levels, with the 

WLP method demonstrating the best 

performance at these levels.  

When errors are homogeneous, the Mean 

Squared Error (MSE) decrease for all methods 

across different quantile levels. However, in 

the case of heterogeneous errors, whether 

symmetric or asymmetric, the Mean Squared 

Error (MSE) increase. 

3.1 real data 

The following varying coefficients quantile 

regression model for longitudinal data was 

assumed8 

Table (1): the MSE values for the Simulation when(‏ρ                ) 

     1 2 3 4 5 6 7 8 9 10 11 12 

0.1 WSP 25.689 24.501 25.426 25.028 27.399 27.109 27.372 27.083 27.293 27.135 27.241 27.267 

WLP 26.773 25.535 26.499 26.084 28.555 28.253 28.528 28.226 28.445 28.281 28.391 28.418 

0.3 WSP 22.745 21.693 22.512 22.16 24.259 24.002 24.236 23.979 24.166 24.026 24.119 24.142 

WLP 21.827 20.817 21.603 21.265 23.279 23.033 23.257 23.011 23.19 23.056 23.145 23.167 



 

 

Ali M. F., Mohammed S. A. /Iraqi Statisticians Journal / Vol. 2 (2025): Special issue for ICSA2025: 318-330 

327 

 

0.5 WSP 22.403 21.367 22.173 21.826 23.894 23.641 23.871 23.618 23.802 23.664 23.756 23.779 

WLP 21.605 20.606 21.384 21.049 23.043 22.8 23.021 22.777 22.955 22.822 22.91 22.933 

0.7 WSP 25.711 24.522 25.448 25.05 27.423 27.133 27.396 27.106 27.317 27.159 27.265 27.291 

WLP 24.732 23.589 24.479 24.096 26.379 26.1 26.353 26.074 26.277 26.125 26.226 26.252 

0.9 WSP 34.682 33.078 34.327 33.79 36.991 36.599 36.955 36.564 36.848 36.635 36.777 36.813 

WLP 536457 556773 536.55 5265.. 38.011 37.609 37.974 37.572 556643 556423 55657. 5566.6 

              : 

1- Normalerror    𝑆  𝑆                     𝑠         

2- Normal error     ( )   ( )                     𝑠         

3- Normal error     ( )  𝑆                     𝑠         

4- Normal error    𝑆   ( )                     𝑠         

5- Heteroscedastic symmetric error     𝑆  𝑆                      𝑠         

6- Heteroscedastic symmetric error      ( )   ( )                     𝑠         

7- Heteroscedastic symmetric error      ( )  𝑆                      𝑠         

8- Heteroscedastic symmetric error     𝑆   ( )                     𝑠         

9- Heteroscedastic asymmetric error  𝑆  𝑆                      𝑠         

10- Heteroscedastic asymmetric error      ( )   ( )                     𝑠         

11- Heteroscedastic asymmetric error   ( )  𝑆                      𝑠         

12- Heteroscedastic asymmetric error     𝑆   ( )                     𝑠         
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Figure 1.  shows the estimated time-varying coefficient curves for real data 

 

Table (2) : the MSE values for the real data 

 

 

  (       )      (   )          (   )      

     (   )          (   )                         (  )  

 

Where: 

          : represents the number of 

schools6 

‏        : represents the number of 

observations for each school6 

τ : represents the quantile level6 

 is the dependent variable representing‏‏:‏   

the success rates for each school over five 

years6 

 contains the covariate information6‏‏ 8‏   

‏:     ‏ represents the measurement time in 

years, calculated by subtracting 2017 from the 

current year6 

‏      ‏ 8 ‏ is the first explanatory variable, a 

categorical variable indicating the type of 

  

methods  WSP WLP 

0.1  23.5944 23.6098 

0.3  20.2171 20.1122 

0.5  19.0807 18.9135 

0.7  22.2689 21.6039 

0.9  28.1687 28.2496 
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school (0 if the school is private, 1 if the school 

is public)6 

      : is the second explanatory variable 

representing the ratio of the number of teachers 

to the number of students in the same school 

over five years6 

8‏       is the third explanatory variable 

representing the average years of service for 

teachers in each school over five years6 

‏     ‏ 8 is the fourth explanatory variable, a 

categorical variable indicating the gender of the 

school's students (0 if the school is for boys, 1 

if the school is coeducational, and 2 if the 

school is for girls). 

‏                    8 are the time-varying 

coefficients representing the effect of the 

explanatory variables on the dependent 

variable. Through calculating the lag 

correlations, it was observed that the 

correlation structure is AR1.  

From Figure1 which shows the estimated time-

varying coefficient curves for real data and 

from Table (2) which shows: the MSE values 

for the real data we observe the following: 

At the quantile level (0.1), the Weighted Spline 

method is more efficient than the Weighted 

Local Polynomial method,  

At the quantile level (0.3), the Weighted Local 

Polynomial method is more efficient than the 

Weighted Spline method, the Spline method,  

At the quantile level (0.5), the Weighted Local 

Polynomial method is more efficient than 

Weighted Spline method,  

At the quantile level (0.7), the Weighted Local 

Polynomial method is more efficient than the 

Weighted Spline method. 

At the quantile level (0.9), the Weighted Spline 

method is more efficient than the Weighted 

Local Polynomial method. 

The Weighted Local Polynomial method is 

generally more efficient at most quantile levels, 

except at very low and very high quantile 

levels, where the Weighted Spline method 

proves to be more efficient. From Figure1, 

which represent the estimated functions of the 

time-varying coefficients for the estimation 

methods across five quantile levels, where the 

horizontal axis represents time and the vertical 

axis represents the possible values of the 

estimated functions, it was observed that there 

are positive effects of varying magnitudes for 

all explanatory variables on the response 

variable. The magnitude of the effect varies 

according to the quantile level and time, with 

the second and fourth explanatory variables 

having the greatest impact across different 

quantile levels, followed by the effects of the 

third and first variables, respectively. 

  

4. Conclusions 

From the theoretical, experimental, and 

applied aspects presented in the Dissertation, 

there are some important conclusions  

can be summarized in the following points: 

1. The weighted local polynomial method was 

the best among all methods at most quantile 

levels. 

2. It is concluded that at very high and very 

low quantile levels, the weighted spline method 

was better than the other methods. 

3. There is a varying positive effect of all 

explanatory variables in the model on the 

response variable. 

4. While misspecification of the correlation 

structure weighted methods maintain their 

efficiency even when the correlation structure 

is misspecified. 

5. The differences between the mean squared 

errors of the methods vary according to the 

types of errors used. In the first and second 

error formats, the differences are large and 

relatively decrease in the third error format. 

6.The effect of the explanatory variables on the 

response variable varies according to the 

quantile level and the time point at which the 

relationship is estimated, highlighting the 

importance of the varying-coefficient model 

for predicting the future of the relationship. 

The effect of the explanatory variables on the 

response variable increases at the 0.5 quantile 

level. 
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