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  Fuzzy regression is considered one of the most important regression models, and 

recently the fuzzy regression model has become a powerful tool for conducting 

statistical operations, however, the above model also faces some problems and 

violations, including (when the data is skewed, or no-normal, .....) and thus leads to 

incorrect results, so it is necessary to find a model to deal with such violations and 

problems suffered by the regular fuzzy regression models and at the same time be 

more powerful and immune than the fuzzy regression model called the semi-

parametric fuzzy quantile regression. This model is characterized by containing two 

parts, the first is the fuzzy parametric part (fuzzy inputs and crisp parameters) and the 

second is the fuzzy nonparametric part for fuzzy triangular numbers, and the 

semiparametric fuzzy quantile regression is estimated. To demonstrate the 

effectiveness of our combining model, we will utilize the following Akbari and 

Hesamian (2019) dataset that was used as a reference case study. Estimate Fuzzy 

Quantile Regression Model: (FQRM), Fuzzy semi-parametric quantile regression: 

(FSPQRM), Fuzzy Support Vector Machine: (FSVM), Combining FQRM-FSVR 

(Comb), Combining FSPQRM-FSVR. Using a new metric measure Jensen–Shannon 

Distance: (JS) based on fuzzy belonging functions. Two criteria MSM and G1 were 

used in comparison. 
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1. Introduction  

  The first goal of using fuzzy regression 

models is the need to handle uncertainty in 

both the dependent and independent variables, 

especially when data cannot be expressed with 

precise numerical values. This is where fuzzy 

regression comes into play—allowing for the 

incorporation of fuzzy numbers (which 

represent ranges of values rather than specific 

points) into the regression framework. 

However, despite advances in fuzzy regression 

methods, there are still significant limitations in 

handling quantile regression in the context of 

fuzzy data Quantile regression has become a 

powerful tool in statistical modeling, especially 

when dealing with non-normal data 

distributions or when focusing on specific 

quantiles (e.g., median, upper, or lower 

quantiles) Koenker, R. (2005). rather than the 

mean. This approach is particularly useful in 

contexts where the relationship between 

variables is non-linear or asymmetric, which is 

common in many real-world datasets. 

However, traditional regression models, 

especially those relying on crisp or 

deterministic data, often fail to capture the 

inherent uncertainty and vagueness present in 

real-world data. This is especially true for 

datasets with fuzzy or imprecise information, 

where values are not exactly known but rather 

expressed as fuzzy numbers or intervals  

This paper aims to propose a semi-parametric 

fuzzy quantile regression model that estimates 

the relationships between fuzzy variables in a 

way that captures both the non-linearity and 

uncertainty inherent in real-world datasets. The 

semi-parametric approach is used to combine 

both parametric (linear) and non-parametric 
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(flexible, data-driven) components in the 

model. This method allows for the estimation 

of quantiles of the fuzzy output variable, 

providing a more robust framework for 

modeling the relationship between fuzzy 

predictors and the response. 

A central innovation in this study is the use of 

the Jensen–Shannon (JS) distance as a metric 

for comparing fuzzy distributions. The JS 

distance is a symmetric measure of the 

similarity between two probability distributions 

and is particularly useful for measuring the 

difference between fuzzy distributions, making 

it a perfect fit for fuzzy quantile regression 

models. This metric is introduced to quantify 

the distance between fuzzy numbers 

representing the actual data and the predicted 

outcomes in the regression model. 

Jensen–Shannon Distance allows the model to 

handle uncertainty more effectively, as it 

accounts for the spread or vagueness in fuzzy 

data. The proposed metric ensures that the 

quantiles of the fuzzy response are estimated 

with greater precision, even in the presence of 

noise or outliers. 

2. Methodology  

2.1 Shannon entropy 

Fuzzy entropy refers to the quantity of 

uncertain information that can be obtained 

from a fuzzy set or fuzzy system. Specifically, 

it should be noted that fuzzy entropy is defined 

without the necessity for a probabilistic notion, 

which sets it apart from the traditional Shannon 

entropy. The rationale behind this is that fuzzy 

entropy incorporates uncertainties related to 

vagueness and ambiguity, whereas Shannon 

entropy only includes probabilistic randomness 

uncertainties (Al-sharhan 2001; Arora 2021). 

The membership function is used to define the 

fuzzy entropy. (De Luca and Termini,1993) 

presented a set of conditions that a fuzzy 

entropy should satisfy and define fuzzy entropy 

based on Shannon’s function in 1972. The 

characteristics of fuzzy entropy are commonly 

acknowledged and have evolved into a 

standard by which new fuzzy entropies are 

defined. 

Equation (1) displays the fuzzy entropy that 

(DeLuca and Termini, 1993) proposed its 

definition is predicated on the idea of a 

membership function, of which there are 

   ̃    . It is widely used in various fields, 

including communication theory, data 

compression, cryptography, and statistical 

physics. Let  ̃ is LR-FN the Shannon entropy 

of  ̃ are define as: 

   ( ̃)  ∑      ̃      
 
                             (1) 

where: 

 (   ̃     )                           

                                                                      (2)  

        ∑         
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Where we consider that  

0 · ln(0) =0 and ln(0)/0 =0. 

2.2 Jensen–Shannon Distance  

Let 

 ̃  {⟨     ̃    ⟩|     }     ̃   

        ̃              are fuzzy numbers, 

Jensen–Shannon distance            is 

defined as: 

           
 

 
                                                                         

                                                                 (5) 

where: 

           
 

 
∑        

 
                        (6) 

            
 

 
∑          

                 (7) 

     
      

      
                                              (8) 

      
          

          
                                      (9) 



 

 

Elaf B. Alwan and Omar A. Ali /Iraqi Statisticians Journal / Vol. 2 (2025): Special issue for ICSA2025: 331-336 

333 

 

where: KL is Kullback-Leibler divergence, and 

JS is Jensen-Shannon. 

Properties: 

• DJS(  ̃  ̃) =0 if  ̃   ̃  

• 0 ≤ DJS(  ̃  ̃) ≤ 1 

• D(  ̃  ̃) ≤ DJS(  ̃  ̃) + DJS(  ̃  ̃) if 

 ̃⊆  ̃ ⊆  ̃ 

2.3 FSPQRM Based on Jensen–Shannon 

Divergence Distance 

      Jensen-Shannon Divergence in (2.2), is 

utilized for the FSPQRM model estimation in 

where, the optimization problem associated 

with FSPQRM based on Jensen–Shannon 

Divergence is formulated as equation (10). 

   
    

 (     )     
    

 
 

 
∑  

 

   

    (  ̃ 
   ̃̂ 

) 

                                                         (10) 

So our proposed model is derfrint of 

previous one that introduced by (Akbari and 

Hesamian 2019; Hesamian and et al 2017), 

where they work are based on the α –value 

metric, weare based on membership function, 

our proposed of this metric are get model with 

less complexity.  

3. Results and discussion  

3.1. FQRM results   

Through table (1, 2 , 3: FQRM on JS metric 

),each row represents the results obtained for a 

specific value of the parameter τ By examining 

the values in the G1 and MSM, can observe 

that the highest values are obtained for τ = 0.2 

At this τ value, the G1 metric reaches its 

maximum value of approximately 

(0.725372919) when N=10 , and the MSM 

metric also reaches its maximum value of 

around (0.704490731) when N=10 and τ =0.8 . 

is suggests that for this particular dataset or 

problem, τ = (0.2 , 0.8). 

appears to be the most optimal choice among 

the tested values. Therefore, based on the 

provided results, Can conclude that τ = (0.2 , 

0.8) is the best choice for achieving the highest 

performance in terms of both G1 and MSM 

metrics. From the provided table, you see that 

the number of iterations varies for each τ value. 

For instance, the number of iterations ranges 

from 14 to 18 across the different τ values 

tested. This variation in the number of 

iterations suggests differences in the 

convergence behavior of the optimization 

algorithm for different τ values. The number of 

iterations required for convergence can be an 

important consideration in practical 

optimization tasks. In general, a higher number 

of iterations may indicate that the optimization 

process is taking longer to converge to the 

optimal solution. Conversely, a lower number 

of iterations may suggest faster convergence. 

In the context of this specific optimization 

problem, it’s essential to strike a balance 

between the number of iterations and the 

achieved performance metrics (such as G1 and 

MSM). While a higher number of iterations 

may lead to potentially better convergence and 

finer optimization of the objective function, it 

also increases computational costs. On the 

other hand, a lower number of iterations may 

result in faster computations but could 

potentially compromise the accuracy of the 

optimization results. Therefore, when 

considering the number of iterations, it’s 

crucial to evaluate it alongside the achieved 

performance metrics and computational 

resources available. In practical applications, 

one might choose a τ value that not only 

maximizes performance metrics like (G1 and 

MSM) but also converges within a reasonable 

number of iterations, balancing computational 

efficiency with optimization accuracy. 

 

The proposed distance function (JS) was also 

applied to the model (FQRM) in table (1) using 

sample size (N=10) and (τ =0.2, 0.4, 0.6, 0.8) 

and according to the criteria MSM , G1 used 

mentioned in chapter two, the best result was 

as follows: (G1=0.72537), when τ =0.2  

MSM=0.704490731) when τ =0.8 . 
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Table 1: FQRM for different values of ( )  based on JS 

metric 

Performance 
When N=10 

  =0.2   =0.4   =0.6   =0.8 

MSM 0.70445 0.70432 0.70413 0.70449 

G1 0.72537 0.72125 0.72370 0.72492 

Beta/ hat 

0.11557 

 

1.66707 

0.12669 

 

1.67004 

0.05259 

 

1.70361 

1.00000 

 

1.7069 

Itr 14 12 14 18 

 
Table 2: FQRM for different values of ( )  based on JS 

metric 

Performance 
When N=20 

  =0.2   =0.4   =0.6   =0.8 

MSM 0.43038 0.46215 0.46217 0.46221 

G1 0.49984 0.46871 0.46881 0.46881 

Beta/ hat 

0.10483 

 

1.49211 

0.99325 

 

1.10494 

0.98941 

 

1.10559 

0.98422 

 

1.10552 

Itr 16 18 20 20 

 

The proposed distance function (JS) was also 

applied to the model (FQRM) in table (2) using 

sample size (N=20) and (τ =0.2, 0.4, 0.6. 0.8) 

and according to the criteria used MSM, G1 

mentioned in chapter two, the best result was 

as follows: (G1=0.499838497) when τ =0.2,  

(MSM=0.462213225) when τ =0.8. 

 
Table 3: FQRM for different values of ( )  based on JS 

metric 

Performance 
When N=50 

  =0.2   =0.4   =0.6   =0.8 

MSM 0.48298 0.49008 0.48979 0.490659 

G1 0.53655 0.50985 0.50889 0.513052 

Beta/ hat 
0.10216  

1.49370 

0.63969  

1.25708 

0.68357  

1.25112 

0.65091 

1.27449 

Itr 18 20 18 22 

 

The proposed distance function (JS) was also 

applied to the model (FQRM) in table (3) using 

sample size (N=50) and (τ =0.2, 0.4, 0.6. 0.8) 

and according to the criteria used MSM , G1 

mentioned in chapter two, the best result was 

as follows: (G1=0.536546757) when τ =0.2 ,  

(MSM=0.49065963) when τ =0.8 . 

 

 

 
           Figure 1: Akbari Data Visualization 

 

3.2 Nonparametric FSVR results 

When running the fuzzy support vector 

machine regression (FSVR) model with the 

provided equation: Hong & Hwang (2003), Smola & 

Schölkopf (2004). 

 ̃                        ̃  
                                        
                                                                    (11) 

We obtained performance metrics G1 and 

MSM with the following values table (4). 

These metrics are crucial for evaluating the 

effectiveness of the FSVR model in capturing 

the relationship between the input variable 

  ̃ and the output variable Y . The G1 metric 

measures the goodness-of-fit of the model to 

the observed data. A value closer to indicates a 

better fit, suggesting that the FSVR model 

explains a significant portion of the variance in 

the data. In this case, tabel (3.4) when n=10 the 

obtained G1 value of approximately 0.773827 

suggests a reasonably good fit of the FSVR 

model to the data. The MSM metric evaluates 

the mean squared error between the observed 

and predicted values. A lower MSM value 

indicates better predictive performance of the 

model. The obtained MSM value of around 

0.748672 suggests that the FSVR model’s 

predictions are relatively close to the observed 

values on average. So, based on the provided 

performance metrics, the FSVR model seems 

to provide a reason- ably good fit to the data 

and demonstrates adequate predictive accuracy. 

However, further analysis and comparison with 

alternative models may be necessary to fully 

assess Their effectiveness and suitability for 

the given task or application. 
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Figure 3: Akbari Data Visualization with Prediction 

with Scatter 

 

3 FSPQRM results  

Table (3.3) shows the outcomes of the 

FSPQRM approach, focusing on signed Dk, 

across various τ values and kernel types. The 

table is organized according to the metric 

utilized, where ”JS” denotes Jensen- Shannon 

divergence, and ”AK” represents the Dk that is 

defined   ( ̃  ̃)  ∫        ̃   ̃     

Upon examining the data, several noteworthy 

observations emerge regarding the estimated 

parameters (βˆ(τ )) and performance metrics 

(MSM and G1) across different τ values and 

kernel types: 

ˆ Under the Jensen-Shannon divergence (JS) 

metric: 

–The estimated parameters  ̂    exhibit 

variability within the range of 1.993 to 2.039, 

indicating diverse levels of captured information 

by the model. 

–The mean squared error (MSM) spans 

approximately from 0.5019 to 0.5952, reflecting 

the model’s accuracy in fitting the data. 

–Similarly, the G1 statistic fluctuates between 

0.6451 and 0.7042, signifying the goodness-of-

fit of the model. 

ˆ Under the (AK) metric: 

–The estimated parameters  ̂    also 

demonstrate variability within a comparable 

range as observed in the JS metric. 

–The MSM values range from roughly 0.5009 

to 0.5948, with similar interpretations to those 

observed in the JS metric. 

–The G1 statistic spans from 0.6442 to 0.7048, 

indicating the model’s fit to the data. 

Overall, these results underscore the efficacy of 

the FSPQRM method in capturing the unlearned 

portion of the data distribution across different τ 

values and kernel types, as evidenced by the 

variations in estimated parameters and 

performance metrics. 

Furthermore, the number of iterations (itr) is a 

noteworthy aspect to discuss. Generally, higher 

numbers of iterations may imply that the 

optimization algorithm required more steps to 

converge to a solution, while lower numbers 

suggest faster convergence. The choice of 

metric can influence the number of iterations, as 

observed with JS typically requiring fewer 

iterations compared to AK. This discrepancy 

could stem from various factors such as the 

optimization landscape, algorithm suitability, 

and convergence criteria. It’s crucial to strike a 

balance between computational efficiency and 

optimization performance when selecting 

metrics for the FSPQRM model. 
 

Table 4: FSVMr (Fuzzy Support Vector Machines 

Regresson) 

 

Preformance N=10 N=20 N=50 

W 0.59733 0.49457 2.0.532 

B 1.10656 1.02604 1.31644 

L_B 2.13141 2.49044 1.82277 

R_B 1.56915 2.59679 2.01128 

MSM 0.74867 0.76271 0.77474 

G1 0.773828 0.78042 0.793525 

 

Through table (4) we notice that the (G1) 

criterion leads to better results than the (MSM) 

criterion when using different sample sizes 

(N=10, 20, 50) and depending on the weights 

as well as (W) (R_B, L_B), where the value of 

(G1=0.7738275111), (MSM=0.748672438) 

when N=10 and (G_1=0.7804235134), 

(MSM=0.762711). when N=20 and it also 

leads to better and faster results than the 

previous methods (FQRM) can be relied upon. 

 

3.4 COMBINING Models results  

In this section two COMBINING Models: 

COMBINING FQRM-FSVR and 

COMBINING FSPQRM- FSVR, as follows: 
[Burman & Chaudhuri (2012)]. 
 

3.4.1 COMBINING FQRM-FSVR Model 

When combining the FQRM-FSVR models 

using the equation: 

 ̂                  ̂       ̂          
                                                              (12)    
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where π= represents a weighting parameter, we 

obtained performance metrics G1 and MSM 

with the following values: 

G1=0.7                                                        (13)                                                                  

MSM= 0.57                                                (14) 

 

3.4.2 COMBINING FSPQRM-FSVR Model 

Like previous case when combining the 

FSPQRM-FSVR models using the equation: 

 ̂                  ̂        ̂           
                                                                    (15)  

where π= represents a weighting parameter 

[Stein (1956, January)], we obtained performance 

metrics G1 and MSM with the following table 

(5): 

 
Table 5 COMBINING FSPQRM-FSVR Model  

Performance G_1 MSM 

N=10 0.848126743 0.83946839 

N=20 0.827928938 0.795617246 

N=50 0.841730651 0.826087104 

 

Table 5 COMBINING FSPQRM-FSVR Model 

When B=1 

Performance   G_1               MSM 

N=10              0.848126743   0.83946839 

N=20      0.827928938   0.795617246 

N=50       0.841730651   0.826087104 

 

4. Conclusions  

The researcher reached the following main 

points: 

 When comparing the distance functions, he 

concluded that the proposed function (JS) 

is better using the mentioned comparison 

criteria, and the number of iterations is 

less, and thus the convergence speed is 

faster using different sample 

sizes(10,20,50). 
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